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Abstract: Autonomous vehicles (AVs) have attracted a lot of attention in recent years and fully-
autonomous vehicles are expected on road in the near future. Collision avoidance is one of the
key driving tasks for autonomous driving which consists of path planning and tracking control.
The main problem discussed in this paper is the development of a path planning and tracking
framework based on model predictive control (MPC) with consideration of the estimated tire-
road friction coefficient (TRFC). The planned path in terms of lateral position is generated based
on the safety distance between the host and the obstacle vehicle, which is related to TRFC and
vehicle speed. A new structure of MPC is further designed so that only lateral position is required
to track the planned path. Moreover, the adaptive weights on the outputs to a wide range of
vehicle speeds have been identified. The effectiveness of the proposed planning and tracking
framework is validated through CarSim-MATLAB/Simulink co-simulations on both high- and
low-friction roads.

Keywords: Autonomous vehicles, Path planning, Path tracking, Model-based control,
Tire-road friction coefficient.

1. INTRODUCTION

Autonomous vehicles (AVs) have great potential to achieve
improved driving safety, passenger’s comfort and traffic
efficiency and thus attracted considerable interests and
efforts from academia, industry and governments, see Li
et al. (2017); Anderson et al. (2014) and Gill et al. (2015).
The significant advances in sensing, computing and artifi-
cial technologies, particularly in the last decade, have fur-
ther inspired the whole society’s expectation and passion
for commercially-viable AVs (Cohen and Hopkins, 2019).
Path planning and tracking control play a critical role
in autonomous driving, which refer to the determination
of the AVs’ collision-free path from the vehicle’s current
location to a designated target in accordance with the
traffic rules, safety, comfortability and vehicular dynam-
ics. There is substantial research on path planning and
tracking control for AVs and very good reviews on various
planning algorithms and control methods can be found in
Katrakazas et al. (2015); You et al. (2015). In order to
find the best path to follow, different types of constraints
imposed by vehicle dynamics, actuator saturation, road
boundary, should be taken into consideration while meet-
ing the requirement of obstacle avoidance. Due to its capa-
bility of handling constraints in a systematic way, model
predictive control (MPC) technique has recently become
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an appealing method to solve the AVs’ path planning and
tracking control problems (Li et al., 2017; Gao et al., 2011).
The approach involves optimizing a performance index
under operation constraints with respect to a sequence of
control inputs to generate a desired path or to track a given
trajectory by applying the first element of such optimal
input sequence to the vehicle system (Gao et al., 2011;
Dixit et al., 2018). Two different research directions can be
seen in the reported studies. Some researchers integrated
the control module with the path planner respecting the
fact that path planning and tracking control have strong
connection to each other. Jalalmaab et al. (2016) investi-
gated a road-adaptive MPC strategy to track the center-
line of the lane while avoiding the obstacle. Although path
planning and tracking were realized within one linear MPC
framework, it should be noted that only kinematic point-
mass vehicle model was used to ensure real-time imple-
mentation. In order to take into account both the tire force
saturation and the vehicle nonlinearities, a nonlinear MPC
based on a four-wheel vehicle model and a Magic Formula
tire model was designed to conduct path re-planning and
tracking task in Gao et al. (2011). The experimental results
have shown that the computation time increases rapidly
and induced an issue of real-time implementation when
the vehicle speed is over 40 km/h.

To avoid complex optimization process which may result in
excessive computational demand, an alternative way is to
address the path planning and tracking problem separately
in a hierarchical architecture. In the project of PRORETA
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3, Bauer et al. (2012) utilized a potential field-based tra-
jectory planner to calculate the optimal vehicle trajectory,
which is then fed into the control layer to achieve collision
avoidance in critical traffic situations. In Ji et al. (2016),
the collision-free path for AVs was generated based on a
three-dimensional potential field method considering road
boundary conditions and vehicle’s kinematic model. The
commanded steering angle to track the generated path was
then obtained from a multi-constrained MPC framework.
Similarly, Shim et al. (2012) designed a collision avoidance
system which determined a collision-free trajectory based
on sixth-order polynomials, and the front steering and in-
dividual wheel torques were controlled by an MPC scheme
to track the reference path. When the nonlinear vehicle
model was used in the MPC, the linearization technique
can be applied in each prediction step to reduce the com-
putational burden, as shown in Yi et al. (2016). In addition
to computational burden, the structure of the cost function
and the tuning weights on outputs and inputs also have
heavy impact on the performance of MPC. Unfortunately,
relatively less efforts have been made toward this field.
Another issue is related to the tire-road friction coefficient
(TRFC), which reflects the limitation of the available force
the road can provide to a vehicle. This coefficient is closely
linked to direction control and stability performance of a
road vehicle and is especially important for AVs since they
should be able to perform driving tasks on different road
conditions. Most of the previous works in a hierarchical
architecture only introduce the TRFC to the path tracking
module as input and/or state constraints, such as Yi et al.
(2016); Gao et al. (2011) and Ji et al. (2016). Actually,
the quality or smoothness of the reference path has a
significant influence on the tracking control performance.
Thus, considering the limitation of the road friction earlier
in the high-level path planner can significantly simplify the
design of the low-level tracking controller.

In this paper, we focus on the two-level path planning
and tracking for an autonomous vehicle to avoid vehicle
collision on a straight one-way, two-lane highway. It is
assumed that road boundaries, lane centerlines and for-
ward speeds of both the host and the obstacle vehicles
are all available from the on-board sensors (e.g., LiDAR,
Radar), and a double-lane change (DLC) maneuver on
roads with different friction levels is considered. In the
high-level planning module, a TRFC-based path for DLC
is generated by making use of the road friction and vehi-
cle speed information. With the front tire steer angle as
the control input, a linear dynamic MPC with adaptive
weights on outputs in the cost function is further designed
to follow the planned path as close as possible under
a wide range of forward speeds. The proposed planning
and tracking framework will be described in detail in the
following sections.

2. PATH PLANNING FOR LANE CHANGING

The scenario of a DLC vehicle collision avoidance is shown
in Fig. 1. XOY is the absolute inertial frame with X-axis
defined positive to the right along the centerline of lane
1, Y -axis defined positive upward along the perpendicular
of the lane centerline. To simplify the generation of the
collision-free path, this paper only focuses on the following
conditions: (i) The host vehicle A is drived at a constant

Fig. 1. A DLC scenario of vehicle collision avoidance

forward speed vA all the time and moving along the
centerline of lane 1 before the lane changing maneuver;
(ii) The obstacle vehicle B is static or moving at a very
low speed vB 6 vA

3 ahead of vehicle A along the centerline
of lane 1; (iii) There is no vehicle in lane 2 which is available
for lane changing.

As the host vehicle A is approaching to the obstacle
vehicle B, lane change maneuver has to be conducted when
a collision cannot be avoided through braking alone. A
conservative safety distance, which is used to determine
when the lane changing maneuver is necessary relevant to
both the TRFC (µ) and the vehicle speeds (vA, vB), is
defined as:

Lx = (v2A − v2B)/2µg + vA ∗ h0 + d0 + l (1)

where the first term represents the minimum braking
distance required to reduce speed from vA to vB , with g =
9.81 m/s2 being the acceleration due to gravity; h0 and
d0 are headway time and standstill distance, respectively;
l is the wheelbase which is added here for consideration of
vehicle geometry. Based on the continuous-curvature path
proposed by Nelson (1989), the safety distance is utilized
to generate the desired path of the host vehicle A, which
is defined by representing lateral position Yd as a function
of the longitudinal position X, and is expressed as:

Yd =


lw[10(

X3

Lx
)3 − 15(

X3

Lx
)4 + 6(

X3

Lx
)5], X1 6 X 6 Xob

lw[10(
X4

Lx
)3 − 15(

X4

Lx
)4 + 6(

X4

Lx
)5], Xob < X 6 X2

0, else
(2)

where lw is the lane width, X1 = Xob−Lx, X2 = Xob+Lx,
X3 = X − X1, X4 = 2Xob − X1 − X, with Xob being
the longitudinal position of the vehicle B as shown in
Fig. 1. By following the reference path (2), vehicle A starts
steering from the centerline of lane 1 to the adjacent lane
2 at X = X1, reaches the centerline of lane 2 at X = Xob,
and goes back to the original centerline at X = X2. The
smoothness of the desired path and the duration of the
DLC maneuver are determined by the safety distance Lx,
and thus related to the TRFC and vehicle speeds. This is
a simple way which may mimic a skillful driver taking the
road friction condition and vehicle speed into account on
highway.

Remark 1. It is evident from (1) and (2) that the lower vA
the sharper path will be generated. It may become difficult
to follow the desired path when the host vehicle is running
at a very low speed. vA > 30 km/h is thus considered in
this paper and this is reasonable especially for studying
DLC maneuver on highway.
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Fig. 2. Simplified one-track model used for path tracking

Remark 2. The friction coefficient (µ) is assumed having
been estimated before the DLC maneuver when the vehicle
is driving on the straight road. More details about the
TRFC estimation can be referred to authors’ previous
work (Hu et al., 2019).

3. PATH TRACKING CONTROLLER DESIGN

3.1 Vehicle Dynamic Model

Considering constant longitudinal velocity, a simplified
one-track model of a vehicle is selected to describe the
lateral motion, as shown in Fig. 2. The vehicle body
frame xoy is centered on the center of gravity (c.g.),
with x defined positive to the right along the centerline
of the vehicle and y defined positive upward along the
perpendicular of x. The motion equations of this model
can be derived with the help of force and torque balances
with respect to the c.g. and coordinate transformations
between the inertial frame and the vehicle body frame:

m(v̇y + vxψ̇) = Fyf + Fyr

Izψ̈ = lfFyf − lrFyr
Ẏ = vxψ + vy

(3)

where m is the vehicle mass, Iz is the rotational inertia
about the z-axis, lf and lr are the distances from the c.g. to
the front- and rear-axle, respectively. vx, vy are the vehicle

longitudinal and lateral velocities in the body frame. ψ, ψ̇
and Y are yaw angle, yaw rate and lateral position of
the host vehicle in the inertial frame, respectively. For
small tire slip angle, the unknown cornering force of front-
and rear-axle, Fyf and Fyr, are approximated as a linear
function of tire slip angle as:

Fyi = −2Ci · αi, i = f, r (4)

where Ci and αi are the individual tire cornering stiffness
and the tire slip angle, i = f, r represents front and rear
tires, respectively. Using small angle approximation, the
tire slip angle (αf , αr) are described by Ahn et al. (2013):

αf = (vy + lf ψ̇)/vx − δf
αr = (vy − lrψ̇)/vx

(5)

where δf is the front tire steer angle.

3.2 MPC Controller Formulation

The state-space vehicle model for the MPC optimization
process is derived based on the equations (3)-(5), and this
model can be compactly written as:

ẋ(t) = Ax(t) +Bu(t)

z(t) = Cx(t)
(6)

where x(t) ∈ Rn is the state of the system, u(t) ∈ Rm
is the input and z(t) ∈ Rp is the output, n = 4 is the
number of states, m = 1 is the number of input and
p = 3 is the number of outputs. The four states are
lateral velocity in the body frame, yaw angle, yaw rate,
and lateral coordinates of the c.g. of the host vehicle
in the inertial frame. These are denoted respectively as
x = [vy, ψ, ψ̇, Y ]′. The only input for lateral control is the
front tire steering angle u = δf . The three outputs are

denoted as z = [ψ̇, Y, β]′ where β is the vehicle’s sideslip
angle. The matrices A, B and C in (6) are listed as:

A =


−2Cf + 2Cr

mvx
0 −vx −

2Cf lf − 2Crlr
mvx

0

0 0 1 0

−2lfCf − 2lrCr
Izvx

0 −
2l2fCf + 2l2rCr

Izvx
0

1 vx 0 0



B =


2Cf
m
0

2lfCf
Iz
0

 , C =

 0 0 1 0
0 0 0 1
1

vx
0 0 0


(7)

In order to obtain a finite-dimensional optimal control
problem, we discretize the system dynamics (6) with a
fixed sampling time Ts using Euler’s method:

x(k + 1|k) = Ad · x(k|k) +Bd · u(k|k)

z(k|k) = Cd · x(k|k)
(8)

where Ad = E + ATs, Bd = BTs and Cd = C, with E an
n-dimensional unit matrix.

Let k be the current time step, xk = x(k|k) is the
state vector at k-th step and consider the following cost
function:

J(xk,Uk, εk) =

Hp∑
i=1

‖η(k + i|k)− ηr(k + i|k)‖2Q

+

Hc−1∑
i=0

‖∆u(k + i|k)‖2R + ρε2k

(9)

where η(k + i|k) = z(k + i|k) represent the predictive
outputs and ηr(k + i|k) are the corresponding reference
signals at sampling step k + i. ∆u(k + i|k) = u(k + i|k)−
u(k + i − 1|k) are the differences of the control inputs at
sampling step k + i and u(k − 1|k) are the known inputs
from the previous control interval. Uk = [u(k|k)′, ..., u(k+
Hc − 1)′]′ is the optimization vector at time step k. Hp

and Hc are the prediction and control horizon respectively,
and Hp > Hc. To reduce computational requirement, the
control signal sequences u(k + i|k) hold equal to u(k +
Hc − 1|k) while Hc 6 i 6 Hp. The term ρε2k penalizes
the violation of the constraint, εk is a slack variable and ρ
is a weighting coefficient. Q and R are diagonal matrices
with the squares of those output weights and input rate
weights, respectively, being the diagonal elements. They
are written as Q = diag(λ21, λ

2
2, λ

2
3), R = λ24.

The objective of the MPC controller is to track the desired
path generated in Section 2. As shown in (2), only refer-
ence lateral position is directly generated. However, the
host vehicle is driving on a straight line before and after
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the lane change maneuver. Considering the physical char-
acteristics, the reference values of both the yaw rate and
vehicle sideslip angle can be set zero before and after the
DLC maneuver. Still, the reference vehicle sideslip angle
and yaw rate during the DLC maneuver are unknown. In
this case, the above optimal problem (9) can not be solved
through a traditional MPC scheme. Here, we propose a
new way to deal with this problem and the prerequisite is
only the reference lateral position.

Remind that the higher the output weights, the higher
demand on tracking the corresponding reference signal.
The controller will ignore the setpoints with zero weight
and allow the output to vary freely. Based on this, the
weight on the predictive output is set to zero when there
is lack of its reference value. Thus, the output weight
on yaw rate (λ1) is set zero during the DLC maneuver
and a nonzero value otherwise. Unlike yaw rate being an
easily measured signal, vehicle sideslip angle is hard to
be directly measured, its output weight is thus setting to
zero all the time (λ3 = 0). Doing so will enable the vehicle
sideslip angle and yaw rate to vary freely around their
respective setpoints when no reference values are given.
The setpoints of vehicle sideslip angle and yaw rate are
assigned both zero in ηr(k + i|k) for respecting the fact
that the host vehicle is starting from the centerline and
going back to the same centerline. Moreover, it is not safe
when the generated yaw rate or vehicle sideslip angle is
beyond the value the road is able to provide (Rajamani,
2011). At high vehicle sideslip angle, the tires may lose
their linear behavior and cause large tracking errors. Hence
the magnitude of these two outputs should be bounded by
the friction-related constraints. At each time step k, the
following finite horizon optimal control problem is solved:

min
Uk,εk

J(xk,Uk, εk)

s.t. x(k + 1|k) = Ad · x(k|k) +Bd · u(k|k)

η(k|k) = Cd · x(k|k)

u(k − 1|k) = u(k − 1)

∆u(k + i|k) = u(k + i|k)− u(k + i− 1|k)

∆umin 6 ∆u(k + i|k) 6 ∆umax
umin 6 u(k + i|k) 6 umax
i = 0, ...,Hc − 1

∆u(k + i|k) = 0, i = Hc, ...,Hpψ̇minYmin
βmin

− εk 6 η(k + i|k) 6

ψ̇maxYmax
βmax

 + εk

i = 1, ...,Hp, εk > 0

x(k|k) = xk, η
r(k + i|k) = [0 Yd 0]′

(10)

where umin and ∆umin, umax and ∆umax are the con-
straints imposed on the control signals. The constraints
exerted on the output variables are denoted in Table 1
with lw and tw being lane width and wheel track width,
respectively. The empirical selection of the friction-related
upper and lower bounds of ψ̇ and β can be referred to
Rajamani (2011).

Remark 3. Vehicle sideslip angle β is approximated as
vy/vx and the output constraint βmin−εk 6 β 6 βmax+εk
is transferred to state constraint on vehicle lateral velocity.

The optimization problem (10) can be recast as a
quadratic program and it does not require any complex op-
timization software. Denoted by U∗k = [u∗(k|k)′, ..., u∗(k+
Hc−1)′]′, the sequence of optimal inputs are computed at
time step k by solving (10) for the current system states
xk, then the first sample of U∗k is applied to the vehicle
at time k. At time k + 1, a new optimization is solved
over a shifted prediction horizon starting from the newly
measured states x(k + 1|k + 1) = xk+1.

Table 1. Constraints on outputs

Outputs Minimum value Maximum value

ψ̇ −0.85µg/vx 0.85µg/vx
Y −lw/2 + tw/2 3lw/2− tw/2
β − arctan(0.02µg) arctan(0.02µg)

3.3 Adaptive Weights in Cost Function

The performance of the above MPC is strongly related to
the tuning weight set λ = [λ1, λ2, λ3, λ4]. Given a vehicle
forward speed, it is easy to tune a set of λ to achieve
acceptable tracking results. However, the performance of
the controller with fixed values of λ will be degraded
or even unacceptable (cause oscillations and instability)
when the vehicle is moving under a different velocity. A
straightforward method is to design the adaptive weights
varying with vehicle speed. While there are four weights
to be tuned, the output weights on yaw rate and lateral
position (λ1, λ2) have larger influence on the performance
of the controller than the input weight. Noted that the
output weight on vehicle sideslip angle λ3 is zero as
explained in Section 3.2, only λ1 and λ2 are needed to set
as speed-adaptive values by setting λ4 = 0.5. In order to
further simplify the tuning process, we set output weight
on lateral position as fixed value of λ2 = 1. Based on
the principle that the higher forward speed, the higher
weights should be imposed on yaw rate to ensure vehicle’s
stability. The adaptive weights on yaw rate were selected
after extensive simulations under a wide range of speeds,
as shown in Table 2.

Table 2. Adaptive weights

vx (km/h) λ1 vx (km/h) λ1
(30, 50] 0.4 (70, 80] 4.0
(50, 60] 1.0 (80, 92] 6.0
(60, 70] 2.8

4. SIMULATION RESULTS

To test the performance of the proposed planning and
tracking framework, a series of collision avoidance maneu-
vers at different forward speeds have been conducted using
CarSim and MATLAB/Simulink software. Two different
road surfaces with friction coefficients of 0.8 and 0.3,
denoted as high-µ and low-µ road, respectively, have been
set in CarSim. The main parameters for the vehicle model
and the highway road used in simulation are shown as:

• m = 1, 416 kg, Iz = 1, 523 kgm2, lf = 1.016 m, lr =
1.562 m, l = 2.578 m, tw = 1.739 m, Cf = 47, 000
N/rad, Cr = 38, 000 N/rad

• lw = 3.5 m, h0 = 2 s, d0 = 2 m
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Fig. 3. Simulation results on µ = 0.8 road under three
different forward speeds. (a) Desired and actual path
(the red box represents the obstacle vehicle). (b) Yaw
rate. (c) Vehicle sideslip angle. (d) Steering angle

The adaptive MPC (10) is with the following parameters:

• Ts = 0.05 s, Hp = 15, Hc = 5
• u ∈ [−10◦, 10◦], ∆u ∈ [−1◦, 1◦]
• Q = diag(λ21, 1, 0), R = 0.52, ρ = 105

4.1 High-µ Road

A relatively high friction coefficient (µ = 0.8) was firstly
selected to simulate the usual running condition on con-
crete or asphalt surfaces for highway vehicles. The host
and obstacle vehicle were initially located at longitudi-
nal position 0 and 150 m, respectively. The host vehi-
cle’s DLC maneuvers under three constant forward speeds
vx = 90, 60, 40 km/h, respectively, have been conducted.
The three desired paths, corresponding to the different
speeds, are computed based on (2), as shown in Fig. 3(a).
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Fig. 4. Simulation results on µ = 0.3 road under three
different forward speeds. (a) Desired and actual path
(the red box represents the obstacle vehicle). (b) Yaw
rate. (c) Vehicle sideslip angle. (d) Steering angle

The higher the forward speed, the earlier the host vehicle
starts steering to the adjacent lane and thus leaving larger
safety distance. The designed MPC tracks the desired path
well and tightly confines the vehicle’s position within the
road boundaries, though a slightly larger error is observed
under 90 km/h. The generated yaw rate, vehicle sideslip
angle and wheel steer angle are shown in Figs. 3(b)-3(d).
All of these three variables are varying with peak values
much smaller than their respective bounds showing the
smoothness of the generated paths. As can be seen from
Fig. 3(c), the magnitude of the generated vehicle sideslip
angle under 90 km/h is much larger than that under two
lower speeds. This shows the vehicle forward speed has a
strong influence on the sideslip angle and may generate
high sideslip angle leading to unstable system. Higher
sideslip angle also results in larger vehicle modeling errors,
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which partly explains a slight tracking oscillation under
90 km/h. It is also pointed out that the designed MPC is
able to obtain acceptable closed-loop performance up to
vx = 92 km/h on high-µ road.

4.2 Low-µ Road

The friction coefficient was set as µ = 0.3 to simulate road
conditions covered by snow in winter of highway. The host
vehicle was initialized at longitudinal position 0 m. The
location of the obstacle vehicle was set as Xob = 200 m
considering that larger safety distance is required on a
slippery road under the same speed. Collision avoidance
scenarios under three speeds vx = 80, 60, 40 km/h have
been investigated. The desired and the actual paths are
shown in Fig. 4(a). Compared to those results obtained on
high-µ road, the designed MPC can achieve better tracking
performance on this low-µ road. This is because the
generated paths based on a larger safety distance on the
slippery road are smoother. Figs. 4(b)-4(d) demonstrate
the generated yaw rate, vehicle sideslip angle and the road
wheel steer angle during the DLC maneuver. Due to a poor
road adhesion, the commanded wheel steer angle changes
more frequently than that on high-µ road to closely track
the desired path. As a result, both the yaw rate and the
vehicle sideslip angle also rapidly change with time during
the lane-change maneuver. The higher the forward speed,
the more rapid changes are observed. Again, it is also
pointed out that the upper bound of the forward speed
for the MPC to stabilize the vehicle and accurately track
the desired path is vx = 82 km/h.

5. CONCLUSIONS

An MPC-based path planning and tracking framework for
AVs using the estimated TRFC is presented. The desired
path is generated based on the safety distance between
the host vehicle and the obstacle vehicle which is related
to both the TRFC and the vehicle speed. With integrated
consideration of output weights in the cost function and
the constraints on the magnitude of the outputs defined by
the TRFC, a new model predictive controller is designed
so that only lateral position is required to track the
desired path. Moreover, adaptive weights on outputs in
the cost function have been identified making the designed
controller applicable to a wide range of speeds.
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