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Abstract: Distributed manufacturing systems represent a new paradigm in the industrial context, 

supported by new technologies provided by industry 4.0. In this paper, a model for dynamic allocation of 

Production Orders (PO) in the context of distributed additive manufacturing systems is proposed. The 

scheduling model performs a local optimization of PO allocation considering a production times 

forecasting model, fed by system state data obtained by means of an IoT platform, and transportation 

real-time data. A simulation-based experiment was conducted in a test case with real and simulated data 

collected from an elevator spare parts provider in Brazil. A significant reduction of 77.94% of the 

Average Waiting Time (AWT) was obtained, allowing for an increased efficiency of the additive 

manufacturing system, which supports the forthcoming pilot application. 

Keywords: Decentralized and distributed control; Job and activity scheduling; Internet-of-Things and 

Sensing Enterprise. 



1. INTRODUCTION 

Decision-making in production systems is a complex 

problem for decision makers, in which industrial production 

processes present increasingly dynamic and volatile 

behaviours (Terkaj, et al., 2015; Frazzon, et al., 2018), 

requiring the development of customized products, implying 

a high degree of complexity for the control of machines and 

devices in a distributed, efficient and flexible manner 

(Avventuroso, et al., 2018). In this context, the increased use 

of sensors in machines and equipment has enabled the 

development of approaches based on real-time data, often 

referred to as “Industry 4.0” (Monostori, et al., 2016) 

supported by the increasing computing power, focusing on 

adaptive process control (Terkaj, et al., 2015; Frazzon, et al., 

2018). 

Technological advances such as Internet of Things (IoT) have 

increased the availability and volume of data in production 

systems (Tao, et al., 2018), reducing the cost of collecting 

and storing large sets of information (Megahed & Jones-

Farmer, 2015). Intelligent manufacturing systems integrated 

to sensors and computational platforms with the intensive use 

of data modelling and predictive engineering (Kusiak, 2018) 

allow several opportunities to reconfigure supply chain 

structures and integrate their operating processes (Fu, et al., 

2019). This enables the development of Distributed 

Manufacturing (DM) systems, combining cyber-physical 

technologies to create manufacturing networks 

geographically distributed (Rauch, et al., 2018). 

One of the significant technologies in DM is the use of 3D 

printing, represented by an emblematic shift to on-demand 

and smaller-scale production, where manufacturing is 

decentralized, and the final product is manufactured very 

close to the final customer (Srai, et al., 2016). It is expected 

that in DM Systems the use of resources will be more 

efficient, providing better control of the production process, 

reducing product lifecycle costs and enabling optimal 

resource loading in response to customer-generated variable-

demand tasks (Rauch, et al., 2018). Some recent papers deal 

with scheduling problems in DM context, such as Fu, et al. 

(2019) developed a model for integrated scheduling of 

distributed systems using multi-objective optimization. Lara, 

et al. (2019) developed an agent-based model for 

manufacturing network design decisions. Li, et al. (2018) 

developed an agent-based approach for resource sharing in 

distributed manufacturing. 

In this paper we propose a new conceptual model for 

dynamic allocation of production orders in DM systems 

considering data provided by IoT technologies. The proposed 

scheduling model presents new contributions, focusing on the 

operational management of distributed manufacturing 

systems, dealing with the problem of production order 

allocation considering manufacturing and transportation real-

time data. We implemented the proposed approach and tested 

with real data in a use case to supports a forthcoming pilot 

application. 

2. LITERATURE REVIEW 

2.1 Smart Manufacturing and Cyber-Physical Systems 

The addition of new technologies and the increase in the 

number of devices, as well as the extension of visibility 

outside the industrial environment (e.g. supply chain, 

distributed manufacturing or virtual environment) allowed 

the emergence of the "Smart Manufacturing" concept, 
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referring to industrial systems with intensive application of 

information technology, from the factory floor to higher 

levels, enabling intelligent, efficient and responsive 

operations (Thoben, et al., 2017). 

The development of intelligent industrial systems with cyber-

physical integration, commonly called "cyber-physical 

systems" (Frazzon, et al., 2013; Kusiak, 2018), allows the 

integration of analytical tools with real time data, becoming a 

potential field of research involving industrial systems 

(Heger, et al., 2017; Agostino et al. 2020). This cyber-

physical view allows the acquisition of system status data 

that can be used to support better decisions throughout the 

production networks, with great potential to change 

paradigms in relation to the management of processes with a 

high degree of accuracy and productivity (Monostori, et al., 

2016). 

Kusiak (2018) proposes that the pillars of smart 

manufacturing are: (i) materials, focusing on new materials 

technologies; (ii) manufacturing technology and processes, 

with emphasis on new additive manufacturing technologies in 

large-scale production processes (Avventuroso, et al., 2018; 

Avventuroso, et al., 2017); (iii) resource sharing, focusing on 

decentralization and digital-physical integration; (iv) data, 

with emphasis on data-oriented processes (Frazzon, et al., 

2018); (v) predictive engineering, with emphasis on 

anticipation methods to predict the behaviour of industrial 

variables (Heger, et al., 2017); (vi) sustainability, as an 

important paradigm for productive systems. 

2.2 Distributed manufacturing systems 

Distributed manufacturing (DM) systems represent a new 

paradigm in the industrial context. One of the significant 

technologies in DM is the use of 3D printing, represented by 

an emblematic shift to on-demand and smaller-scale 

production, where manufacturing is decentralized, and the 

end product is manufactured very close to the end customer 

(Srai, et al., 2016). This technology simplifies the production 

process, requiring only the raw material and 3D models of the 

products as input, as opposed to traditional manufacturing 

production methods that require configurations and greater 

numbers of machines and devices to perform tasks (Pour, et 

al., 2016). 

In this context, it is possible to develop DM systems, 

combining cyber-physical technologies to create 

geographically distributed manufacturing networks, 

providing the use of resources more efficiently with better 

control of the production process and reducing the costs 

associated with production, storage and transportation, 

enabling an optimized use of resources in response to 

variable demand (Rauch, et al., 2018). The development of 

geographical production structures distributed in facilities 

with smaller scale of production allows goods to meet local 

needs and be delivered quickly and at lower cost in a more 

sustainable way than in traditional globalized mass 

production (Rauch, et al., 2017). Fig. 1 conceptually 

illustrates the distribution of manufacturing systems. 

 

Fig. 1. Mass production and distributed production. 

Enablers of DM system development include a range of 

technologies that are becoming increasingly mature, such as 

remote sensing and synchronous process analysis methods 

that can provide better production control and support supply 

chain integration. More advanced management systems and 

data analysis that can support decision making by 

incorporating communication technologies with multiple 

objects, machines and equipment (Srai, et al., 2016). 

2.3 Optimization approaches in distributed additive 

manufacturing 

Some recent research addresses the development and testing 

of approaches to distributed system optimization. Fu et al. 

(2019) developed a model for integrated scheduling in 

distributed manufacturing systems considering multiple flow 

shops with different numbers of machines. The authors have 

developed a multi-objective stochastic optimization 

approach. As results it was indicated satisfactory results 

compared to other models in the literature. Lara et al. (2019) 

developed a multi-period model for design and planning of 

distributed manufacturing systems taking into account trade-

offs between investment services and transportation. The 

model used Mixed-integer nonlinear programming and was 

tested one hundred case studies in a biomass supply chain. Li 

et al. (2018) considered a shared scheduling environment in a 

distributed manufacturing system. The authors developed a 

multi-agent system in conjunction with two heuristics to 

solve scheduling problems. The proposed approach was 

tested in a computational experiment reporting good 

performance. Li et al. (2017) developed a mathematical 

model of adaptive optimization for additive manufacturing. 

The heuristic approach was evaluated in a numerical example 

reporting satisfactory results. Kucukkoc (2019) developed a 

similar approach, the author developed a heuristic for 

scheduling optimization in an additive manufacturing 

environment in a distributed system.  

3. METHODOLOGY 

In this section the proposed model to Production Order (PO) 

allocation is described, along with the considered variables 

and adopted forecasting models. This section also describes 

the proposed test case for evaluating the allocation model. 
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3.1 Proposed Approach: Dynamic Production Order 

Allocation 

The proposed model aims to schedule a PO in a distributed 

manufacturing system, integrating local optimization for each 

PO, forecasting models for production times and real-time 

transportation data. The PO allocation includes multiple 

Production Centres (PC) available in a large territory, as well 

as multiple ordering points. Thus, the developed model 

should schedule each PO in order to minimize the response 

time, taking into consideration: 

 Setup time: the time required to prepare the machine to 

accept a PO. 

 Queue time: estimated waiting time on each production 

line. 

 Production time: estimated time to produce a part in a 

specific production line. 

 Transportation time: estimated time between the PC 

and the ordering point. 

The objective function should minimize the total response 

time (rt) as: 

𝑟𝑡 = 𝑚𝑖𝑛 ∑ 𝑠𝑒𝑡𝑢𝑝𝑖 + 𝑞𝑖 + 𝑝𝑟𝑜𝑑𝑗 + 𝑡𝑟𝑎𝑛𝑠𝑝𝑎,𝑏

𝑛

𝑖,𝑗,𝑎,𝑏

 (1) 

Where setupi is the setup time of the selected i machine; qi is 

the queue time of the selected machine; prodj is the 

production time of part j in the order; transportation(a,b) is the 

travel time between production centre a and ordering centre 

b. The structure of the proposed model is presented in Fig. 2. 

 

Fig. 2. Proposed approach: Dynamic Production Order 

Allocation model. 

The input will be the ordering point and the spare part to be 

produced. The output will be the best PC to allocate each PO. 

Each PO request will perform the scheduling by seeking a 

local optimization of the total response time. The model will 

consider three macro variables: 

A: Dynamic transportation times from the place of order to 

each PC available, the data are obtained dynamically through 

the API of Google Maps, which allows to estimate travel 

times in real time considering traffic data, type of transport 

and conditions of roads. 

B: Queue times of each production line available in each 

production centre, data will be captured in real time via the 

IoT platform considering a distributed and automated system. 

C: Historical production data for each type of spare part in 

each PC with the setup time. The historical data will be 

treated as time series and used to dynamically and 

automatically adjust a set of competing forecast models. 

After adjustment, the best model will be selected using error 

measurements, and the forecast will be computed considering 

the current queue time of each production line. Thus, it will 

be possible to include the stochastic effects observed in the 

production systems (Heger, et al., 2017) and estimate the 

production time taking into consideration the estimated 

moment that the part will be produced in each line. The 

forecasting horizon is defined as the estimated queue time of 

each line. Three different forecasting approaches are 

considered in our model. 

Autoregressive Integrated Moving Average (ARIMA): a 

statistical approach characterized by capturing the behaviour 

of the serial correlation between the values of the time series 

and making future predictions (Hyndman & Athanasopoulos, 

2018). Usually, ARIMA models (p, d, q) are represented by: 

 𝜙(𝐵)𝛥𝑑𝑍𝑡 = 𝜃(𝐵)𝜀𝑡 (2) 

where Zt represents the modelled time series, B represents the 

retroactive operator, d represents the order of integration, ϕ is 

the term that represents the autoregressive parameter of order 

p, θ represents the parameter of moving average of order q 

and εt represents the sequence of errors, denoted white noise 

when the average of errors is zero and the variance is 

constant with homoscedasticity ~ (0, σ2). The best fit model 

provided by the Akaike Information Criterion (AIC) (Akaike, 

1974) is selected for analysis and forecasting. 

Exponential Smoothing (ES): mathematical model that aims 

to adjust a curve appropriate to the historical data of a time 

series, widely used in many areas, such as business and 

economics (Montgomery, et al., 2015). The model considers 

three components: level, trend and seasonality, the additive 

model is represented by:  

 𝑍𝑡+𝑚 = (𝐿𝑡 + 𝑏𝑡𝑚) +  𝑆𝑡−𝑠+𝑚 (3) 

Where Lt represents the estimated value of the level; bt 

represents the trend estimate; Z(t+m) corresponds to the 

forecast in period t+m, m represents how many forward steps 

it wishes to predict; and St is the seasonal time series index. 

Autoregressive Neural Networks (NNAR): an artificial 

intelligence approach for modelling time series, capable of 

capturing complex and non-linear patterns through training 

algorithms. The NNAR model is widely used because it 

allows predictions with univariate models, using the lagged 

periods of the series itself in the input layer (Hyndman & 

Athanasopoulos, 2018). The generic model is represented by: 

 
𝑍𝑡 = 𝑏𝑖 + ∑ 𝑤𝑖𝑗𝑥𝑗

𝑁

𝑗=1
 (4) 

Where xj represents the input signals; wij represents the 

weights given to each input signal; bi represents the bias; and 
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N is the total of input signals in the model. The model uses a 

non-linear sigmoid and can be considered a generic non-

linear autoregressive model. 

Considering these models an approach to automatic model 

selection was proposed, represented by Fig. 3 and described 

as follows. 

 

Fig. 3. Procedure to automatic model selection. 

1. The historical production time series is divided into two 

parts: (i) training data, which is used to estimate the 

parameters of the forecasting models; and (ii) test data is used 

to evaluate its accuracy of the adjusted model. For this paper, 

the test data were considered as the last 24 observations from 

a total of 120 last observations available. 

2. For each historical production time series, the three 

different models considered in this paper are adjusted. The 

estimation procedure proposed by (Hyndman & Khandakar, 

2008) was adopted. 

3. Calculate the error measure for each model considering the 

test data. In this paper Root Mean Squared Error (RMSE) 

was adopted as a model error measure as suggested by (Chai 

& Draxler, 2014) and (Hyndman & Athanasopoulos, 2018) 

when analysing forecasts in the same unit of measurement. 

4. Select the best model considering the smallest RMSE error 

measure.  

The proposed model was implemented in R 3.5.2 language, 

using the libraries ‘dplyr’ for data manipulation, ‘forecast’ 

(Hyndman & Khandakar, 2008) for forecast models and 

‘googleway’ for communication with Google Maps API. 

2.2 Test Case: Simulation-based experiment 

In order to evaluate the proposed model, a simulation-based 

experiment was conducted using simulated data combined 

with real data obtained from a real production system. Data 

were collected from an additive manufacturing process for 

elevator spare parts in Brazil. Thus, the experiment was 

conducted as follows: 

 For each simulation-based, an experiment with 1,000 

POs was created; 

 Five different types of spare parts are considered, where 

the company provided the average, standard deviation 

and historical production data; 

 The PO were randomly generated, with the mean 

interval between requests being generated by an 

exponential distribution (μ = 40) and the quantity of 

parts per PO by a Poisson distribution (λ = 2) to stress 

the model to make the allocations; 

 The requests were dynamically allocated according to 

the occurrence of each PO; 

6 different ordering points and 4 production centres 

distributed in the Brazilian territory were defined. The 

definition of locations took into consideration historical data 

and previous analyses provided by the company. Fig. 4 

shows a map with the approximate locations of the facilities. 

 

Fig. 4. Distributed Manufacturing System. 

Two scenarios are proposed for the simulation-based 

experiment: (i) in the first scenario, the production orders are 

always allocated considering the closest PC to the ordering 

point; (ii) in the second scenario, the proposed model was 

used to perform a local optimization for each PO. In both 

scenarios the average waiting time (AWT) for each 

production centre (minutes) was evaluated. In this study, cost 

aspects will not be taken into consideration. 

To define the number of replications, a pre-sampling was 

performed considering n = 30, which obtained mean = 151.42 

minutes and relative standard deviation = 0.23 for the AWT. 

Assuming α = 0.05, the total of replication was calculated as 

n = 90 for a percentage error = 0.05. In this way, each 

scenario was simulated 90 times, being that in each 

simulation, 1,000 POs were dynamically allocated by 

considering real-time data and the results estimated by the 

forecasting models (Hoad, et al., 2010). 

3. EXPERIMENTAL RESULTS 

To evaluate the AWT in the first scenario, the simulation-

based experiment considered the PO allocation in the nearest 

Production Centre the distance was performed. The results 

are shown in Fig 5, where higher AWT simulation, average 

AWT simulation, lower AWT simulation considering all 

replications performed. 
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Fig. 5. First Scenario: PO allocation by distance. 

For the first scenario, the simulation with the higher queue 

time obtained AWT of 2,314.7 minutes, average AWT in all 

simulations of 1,160.8 minutes and the lowest AWT as 506.0 

minutes. The relative standard deviation of the 90 simulations 

was 35.19%. 

To evaluate the AWT in the second scenario, the simulation-

based experiment considered the allocation using the 

proposed model, taking into consideration the estimated 

values of production by the forecasting models, the queue 

time and the real transportation time provided by Google 

Maps API, as described previously. As results of the 

allocation of 1,000 POs, considering 90 replications, the 

following results were obtained. 

 

Fig. 6. Second Scenario: Dynamic Model Allocation. 

For the second scenario, the simulation with the higher queue 

time obtained AWT of 380.2 minutes, the average AWT in 

all simulations of 256.0 and the lowest AWT as 180.9 

minutes. The relative standard deviation of the 90 simulations 

was 15.13%. 

By comparing the results of the two scenarios, considering 

the AWT of each PC, it can be observed that there were 

significant time gains, mainly for PCs 1 and 4. Fig 7 

illustrates the obtained results. 

 

Fig. 7. Second Scenario: Dynamic Model Allocation. 

The application of the proposed model for dynamic allocation 

of POs using real-time queue times, forecasting values of 

production times, and dynamic transportation data has 

provided significant efficiency gains in reduction of waiting 

times for the systems. In PCs 1 and 4, the AWT reductions 

were 83.95% and 84.98%, respectively; whereas, in PCs 2 

and 3, there was no significant AWT reduction. For the 

average time of all PCs, the AWT reduction was 77.94%, 

where the AWT reduction was significant according to t-test 

for difference of means (t = 20.918 and α < 0.05). 

Regarding the studies consulted in the literature, the model 

proposed in this paper presents advances to the current state-

of-the-art by incorporating real-time production and 

transportation data, considering the dynamic changes in the 

operational conditions of the system. Another important 

aspect considered in the proposed model is the incorporation 

of future data through multiple forecasts of production 

variables, considering stochastic effects observed in the 

production systems (Heger, et al., 2017). This aspect is 

described by Kusiak (2018) as a key point in the development 

of smart manufacturing systems with emphasis on 

anticipation methods to predict the behaviour of industrial 

variables. These issues are not found jointly in the studies 

consulted. 

4. CONCLUSION 

In this paper, a new model for Dynamic Production 

Allocation in a Distributed Manufacturing Lines was 

proposed. The model considered real-time data from queue 

times, dynamic transportation data, and forecasting values for 

production times, performing local optimization for each PO. 

An approach was developed for automatic estimation of 

forecasting models, taking into account error measures with 

three different approaches: ARIMA, ES and NNAR.  

As main contribution, the proposed model was able to deal 

with stochastic characteristics of the modelled data in a 

dynamic environment considering internal and external 

information. The model was implemented in an open source 

language and can be easily applied in distributed 

manufacturing contexts considering real-time data provided 

by an IoT technology application. In future work will be 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10806



 

 

     

 

incorporated reactive scheduling and adaptive capabilities to 

the model, as well as to evaluate the proposed model in a 

more complex distributed network considering other 

competing approaches found in the literature, considering a 

larger number of PCs and order points, and a larger number 

of spare parts to support forthcoming pilot application. 
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