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Abstract: This paper proposes a network continuous-time susceptible-infected-susceptible
(SIS) model coupled with individual opinion dynamics, where the opinion dynamics models
an individual’s perceived severity of illness or perceived susceptibility. The effects of opinion
dynamics on the network SIS model are studied by analyzing the limiting behaviors of the
system model, equilibria of the system and their stability.
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1. INTRODUCTION

Epidemiological models have been studied for a long time
for the purpose of understanding the spread of infectious
diseases through large-population societies (Kermack and
McKendrick, 1927). Notable among them are SIS and SIR
(susceptible-infected-recovered) models. Originally these
models only considered a well-mixed population, in which
each agent had an equal probability of interaction with
any other agent. The first extension to a network SIS
model was proposed by Lajmanovich and Yorke (1976) for
the study of gonorrhea in which the interactions among
the individuals is described by a graph. Network models
have lately attracted considerable attention in various
fields including the control community (Fall et al., 2007;
Mieghem et al., 2009; Khanafer et al., 2016) as the network
SIS model and its variants can model the spread of many
types of objects, such as malware in computer networks
and attacks in cyber-physical systems (Eshghi et al.,
2017). For recent development in analysis and control of
network epidemics models, see surveys by Mei et al. (2017);
Nowzari et al. (2016).

It is intuitive that individuals’ perceived severity of the
illness or perceived susceptibility affect the spread of in-
fectious diseases. For instance, an increase in perceived
susceptibility can lead to behavioral changes including
how frequently individuals interact with others, how much
medical treatment they receive, whether they want to
travel or not, and so on. Recently, there has been interest
in the literature on combining disease spread models with
human awareness (Funk et al., 2009; Paarporn et al., 2017;
Liu et al., 2017) and human behavior (Rizzo et al., 2014;
Funk et al., 2010). Those models with human awareness
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capture transitions in the individuals’ awareness of the
disease, moving from completely unaware to alerted of
the disease. However, these models lack an explicit dy-
namics to model how individuals’ perceived severity of
the disease forms and changes over time. Compared with
the awareness models, an opinion dynamics model is able
to capture a wider range of perceived susceptibilities. In
our proposed model, the opinion of the severity of the
illness can additively boost the healing rate and simul-
taneously reduce the susceptibility rate of an individual
on a sliding scale. Additionally, opinion dynamics are par-
ticularly important in modern epidemiology, considering
the rapid development of communication technology and
fast-growing online social networking services, which have
greatly changed the nature of the network of interactions.
With these ideas in mind, we aim to develop a network
model which couples epidemic spreading and opinion dy-
namics, and which allows us to understand the effects of
the two dynamics on each other.

There are very few existing mathematical models com-
bining epidemic spreading and opinion dynamics. The
work of Ni et al. (2011) only considers a single well-
mixed population, thus without any network. Our paper
is motivated by recent work of Ruf et al. (2017, 2019)
in which linear consensus-type opinion models are coupled
with product adoption. Although the model proposed here
shares some similarity with the model by Ruf et al. (2017,
2019), our model is driven by different social psychological
phenomena, namely the health belief model, and possesses
quite different limiting behavior.

The health belief model was proposed as a social psycho-
logical theory to explain and predict how health-related
behaviors change (Glanz et al., 2008). It was developed by
social psychologists from the U.S. Public Health Service
in the 1950s and is still one of the best known and most
widely used theories in health behavior research (Glanz
et al., 2008; Rosenstock, 1974). The health belief model
proposes that people’s engagement, or lack thereof, in
health-promoting behavior can be explained by their be-
liefs about health problems, perceived benefits of action,
and perceived barriers to action. Therefore, their beliefs 1

in their perceived susceptibility and/or in their perceived

1 In this paper, beliefs and opinions are used interchangeably.
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severity of the illness affects how susceptible they are
and/or how effective they will be at healing from these
diseases. Furthermore, there should be something that
provokes the health-promoting behavior. In this paper, we
capture this behavior by modeling the agent’s belief of the
severeness of the disease using opinion dynamics over an
information network. We couple these opinion dynamics
with SIS spread dynamics over a human contact network
capturing both parts of the health belief model. To the best
of our knowledge, this is the first mathematical model of
the health belief model of this kind.

There exist both continuous- and discrete-time network
SIS models, as well as both deterministic and probabilis-
tic ones (Nowzari et al., 2016). It turns out that the
most popular deterministic network model, first proposed
by Lajmanovich and Yorke (1976), can be obtained by
mean-field approximations of a counterpart probabilistic
model (Mieghem et al., 2009). We thus adopt this most
popular model and modify it to take opinion dynamics
into account, as a first step along this new line of re-
search. This paper validates the modification with a social
psychological explanation and explains how individuals’
opinions evolve over time and influence their curing and
infection rates. It turns out that the proposed determinis-
tic continuous-time network model, with a simple coupling
with opinion dynamics, is already more complicated to
analyze compared with the popular network SIS model.
We thus leave other possible models, such as discrete-
time and probabilistic ones which are probably even more
challenging in analysis, as future directions.

The contributions of this paper are two-fold. First, we
propose a novel network SIS model which couples opin-
ion dynamics for the first time. Second, we analyze the
model by characterizing its limiting behavior, equilibria,
and their stability, which reveals the effects of opinion
dynamics on the network SIS spread processes.

Notation: For any positive integer n, we use [n] to denote
the index set {1, 2, . . . , n}. A nonnegative n× n matrix is
called a stochastic matrix (or row-stochastic matrix) if its
row sums are all equal to 1. We use 0 and 1 to denote
the vectors whose entries all equal to 0 and 1, respectively,
and I to denote the identity matrix, while the dimensions
of the vectors and matrices are to be understood from the
context. Sometimes we also use In and 0n×n to denote the
identity and zero matrix of size n× n, respectively. For a
real square matrix M , we use ρ(M) to denote its spectral
radius. For any real number x, we use |x| to denote the
absolute value of x. For any two real vectors a, b ∈ IRn, we
write a ≥ b if ai ≥ bi for all i ∈ [n], a > b if a ≥ b and a 6= b,
and a� b if ai > bi for all i ∈ [n]. For any two sets A and
B, we useA\B to denote the set of elements inA but not in
B. A real square matrix is called Metzler if its off-diagonal
entries are all nonnegative (Berman and Plemmons, 1979).
For a matrix A, σ (A) is the set of eigenvalues of A and
s (A) := max {< (λ) : λ ∈ σ (A)}. We will use the terms
“individual” and “agent” interchangeably.

2. THE MODEL

In this section, we propose a model for describing a
network SIS model coupled with an opinion dynamics in
a social network.

Consider a social network of n > 1 agents, labeled 1
through n. Each agent i can only learn, and be influenced
by, the opinions of certain other agents called the neighbors
of agent i. Neighbor relationships among the n agents are
described by a directed graph G, called the neighbor graph.
Agent j is a neighbor of agent i whenever (j, i) is an arc
in G. Thus, the directions of arcs indicate the directions
of information flow and infection. Each agent i has an
opinion zi that represents agent i’s opinion about the
severity of the epidemic virus spreading over the network.
The opinion zi is a real-valued quantity that evolves as a
function of the opinions of its network neighbors and its
probability of infection, with the precise dynamics being
defined in the sequel.

We consider a virus modeled by an SIS process. Let
xi ∈ [0, 1] denote the probability of agent i being infected
by the virus with dynamics as follows:

ẋi(t) = −δixi(t) + (1− xi(t))
∑
j∈Ni

βijxj(t),

where δi is the curing rate of agent i, Ni is the set of the
neighbors of agent i, βij is the infection rate from agent
j to agent i. The item −δixi(t) represents how each agent
cures itself, and (1− xi(t))

∑
j∈Ni

βijxj(t) represents how
each agent can be infected by its neighbors. The above
dynamics was first proposed by Lajmanovich and Yorke
(1976). It has been shown by Mieghem et al. (2009) that
the model is also the same as one derived from a mean-field
approximation of a networked Markov chain SIS model.

An individual’s opinion of how severe the virus is will affect
their behavior. Without loss of generality, we assume that
each zi takes values between 0 and 1. A value of zi = 0
means agent i believes the virus does not any threat, and
zi = 1 means agent i believes the virus poses a maximal
threat. It is natural to assume that the larger zi is, the less
agent i will interact with its neighbors and the more likely
it will seek treatment if it becomes infected. With this
behavior in mind, we modify the traditional SIS dynamics
presented above as follows:

ẋi(t) =−
[
δmin + (δi − δmin)zi(t)

]
xi(t)

+ (1− xi(t))
∑
j∈Ni

[
βij − (βij − βmin)zi(t)

]
xj(t),

(1)

where δmin and βmin denote the minimum curing rate and
infection rate, respectively. In the case when zi = 0, which
implies that agent i does not consider the virus a threat, it
will take no action to protect itself and thus is maximally
exposed to the infection. In the case when zi = 1, which
implies that agent i believes the virus is extremely serious,
it will interact with others as little as possible and seek out
all the medical treatment options possible. Therefore the
model allows an agent’s opinion to affect how susceptible
they are and how effectively they heal from the virus,
capturing the health belief model (Glanz et al., 2008;
Rosenstock, 1974).

Now we model how each agent’s opinion evolves. We adopt
the canonical Abelson model, which in the 1960s helped
lay the foundation for the study of opinion dynamics and
which has also been studied in the controls community
as the linear consensus protocol in continuous time. We
propose the following modified Abelson dynamics:
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żi(t) = (xi(t)− zi(t)) +
∑
j∈Ni

(zj(t)− zi(t)). (2)

If xi(t) − zi(t) = 0, then (2) simplifies to the Abelson
model, which will lead all agents’ opinions to a consensus.
The term (xi(t)−zi(t)) captures how an agent’s probability
of infection impacts its opinion: the sicker an agent is
the higher their perceived susceptibility. Consider the case
where

∑
j∈Ni

(zj(t)−zi(t)) = 0. If zi is small but the agent
is infected, zi will increase. If zi is large but the agent is
healthy, zi will decrease. This behavior is sensible since
an agent’s sickness level should affect their belief of how
severe the virus is, consistent with the health belief model
(Glanz et al., 2008; Rosenstock, 1974). Meanwhile, agents
share their opinions on the severity of the disease, captured
in the second summand on the right of (2).

We impose the following natural restrictions on the pa-
rameters of the model throughout the paper.

Assumption 1. For all i ∈ [n], there hold xi(0), zi(0) ∈
[0, 1], δi ≥ δmin > 0, and βij ≥ βmin > 0 for all j ∈ Ni.
The neighbor graph G is strongly connected.

It is worth noting that a strongly connected G is equivalent
to matrix B = [βij ]n×n being irreducible.

This paper aims to analyze the networked system consist-
ing of dynamics (1) and (2) under Assumption 1.

3. MAIN RESULTS

We can write the dynamics for the network as follows:

ṡ(t) =

[
ẋ(t)
ż(t)

]
=

[
W 0n×n
In −(L+ In)

] [
x(t)
z(t)

]
, (3)

where

W = −
[
δminIn + (D − δminIn)Z(t)

]
+ (In −X(t))

[
B − Z(t)(B − βminA)

]
(4)

and Z = diag(z1, . . . , zn), X = diag(x1, . . . , xn), D =
diag(δ1, . . . , δn), B = [βij ]n×n, A is the unweighted (en-
tries either 0 or 1) adjacency matrix of neighbor graph G,
and L is the Laplacian matrix of G. We remark that W is
a Metzler matrix. It is also known that when G is strongly
connected, L has a simple eigenvalue at zero, and the
remaining eigenvalues all have negative real parts (Horn
and Johnson, 2012). In fact, L is an irreducible singular
M -matrix (Berman and Plemmons, 1979). Moreover L+A
is a nonsingular M -matrix for any nonnegative diagonal
A having at least one positive diagonal entry (Qu, 2009,
Theorem 4.31). This implies that L+ I has all eigenvalues
with positive real part.

The following lemma shows that the system is well-posed.

Lemma 1. If xi(0), zi(0) ∈ [0, 1] for all i ∈ [n], then
xi(t), zi(t) ∈ [0, 1] for all i ∈ [n] and t ≥ 0.

Proof: Observe that the model is a system of polynomial
ordinary differential equations (ODEs) over the compact

space [0, 1]
2n

. This implies that the system of ODEs in

the model is Lipschitz on [0, 1]
2n

and as such the solutions
si (t) are continuous for all i ∈ [2n]. Suppose to the
contrary that the lemma is not true. Then there is an
index i ∈ [2n] such that si (t) is the first state to go

outside [0, 1]. Consider the case where i ∈ [n], i.e. the
xi(t) variable leaves [0, 1]. If xi(t) becomes negative then
there exists a time t0 ≥ 0 such that xi (t0) = 0, ẋ (t0) < 0,
sj (t) ∈ [0, 1]∀t ∈ [0, t0] and ∀j 6= i. However, by Eq. (1),

ẋi (t0) =
∑
j∈Ni

[βij − (βij − βmin) zi (t)]xj (t0) ≥ 0

giving a contradiction. To show xi(t) cannot exceed one,
we apply similar arguments and observe that

ẋi (t0) = − [δmin + (δi − δmin) zi (t0)] ≤ 0.

This equality would contradict ẋi (t0) > 0, which is
required for xi(t) to exceed one.

Consider the case where i ∈ {n+ 1, · · · , 2n}, i.e. the zi(t)
variable leaves [0, 1]. If zi(t) becomes negative then there
exists a time t0 ≥ 0 such that zi (t0) = 0, ż (t0) < 0,
sj (t) ∈ [0, 1]∀t ∈ [0, t0] and ∀j 6= i. However, by Eq. (2),

żi (t0) = xi (t0) +
∑
j∈Ni

zj (t0) ≥ 0

giving a contradiction. To show zi(t) cannot exceed one,
we apply similar arguments and observe that

żi (t0) = (xi (t0)− 1) +
∑
j∈Ni

(zj (t0)− 1) ≤ 0.

This equality would contradict żi (t0) > 0, which is
required for zi(t) to exceed one.

It is easy to see that x = z = 0 is an equilibrium of the
system given by (3). Note that x = 0 corresponds to the
case when no individual is infected, which implies that
z = 0 is the only equilibrium of (2) since −(L+ In) is an
nonsigular matrix. We thus call this trivial equilibrium the
healthy state.

In the sequel, we define Dmin = δminIn for simplicity. Note
that D−1minB = δ−1minB.

Proposition 1. If ρ(D−1minB) ≤ 1, then the healthy state
is the unique equilibrium of the system.

To prove the proposition, we need the following lemmas.
First recall the following property for Metzler matrices
from (Berman and Plemmons, 1979).

Lemma 2. Suppose that M is an irreducible Metzler
matrix. Then, s(M) is a simple eigenvalue of M and there
exists a unique (up to scalar multiple) vector x � 0 such
that Mx = s(M)x. Let z > 0 be a vector in IRn. If
Mz < λz, then s(M) < λ. If Mz = λz, then s(M) = λ. If
Mz > λz, then s(M) > λ.

Lemma 3. [Proposition 1, Liu et al. (2019)] Suppose that
Λ is a negative diagonal matrix in Rn×n and N is an
irreducible nonnegative matrix in Rn×n. Let M = Λ+N .
Then, s(M) < 0 if and only if ρ(−Λ−1N) < 1, s(M) = 0
if and only if ρ(−Λ−1N) = 0, and s(M) > 0 if and only if
ρ(−Λ−1N) > 1.

For any two nonnegative vectors a and b in IRn, we say
that a and b have the same sign pattern if they have zero
entries and positive entries in the same places, i.e., ai = 0
if and only if bi = 0, and ai > 0 if and only if bi > 0 for
all i ∈ [n].

Lemma 4. [Lemma 1, Liu et al. (2019)] Suppose that
Mx = y where M ∈ Rn×n is an irreducible nonnegative
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matrix and x, y > 0 are in Rn. If x has at least one zero
entry, then x and y cannot have the same sign pattern. In
particular, there exists an index i ∈ [n] such that xi = 0
and yi > 0.

Lemma 5. If s ≥ 0 is an equilibrium of the system, then

x = [I + Z(D−1minD − I)

+ diag(D−1min(B − Z(B − βminA))x)]−1

× [(I − Z)D−1minB + ZD−1minβminA]x

where Z = diag((L+ I)−1x).

Proof: From Eq. (2), the equilibrium z satisfies x = (L +
I)z. Recalling that (L+ I) is nonsingular (see below (4)),
then

z(t) = (L+ I)−1x(t). (5)

From Eq. (1), the equilibrium x satisfies

Bx(t) = Z(t) (B − βminA)x(t) +Dminx(t)

+ Z(t)(D −Dmin)x(t)

+X(t)(B − Z(t)(B − βminA))x(t).

From Assumption 1, Dmin is a positive diagonal matrix,
thus, Dmin is nonsingular and D−1min is also a positive
nonsingular matrix. It follows that,

D−1minBx = D−1minZ (B − βminA)x+ x+D−1minZ(D −Dmin)x

+D−1minX(B − Z(B − βminA))x

= ZD−1min (B − βminA)x+ x+ ZD−1min(D −Dmin)x

+XD−1min(B − Z(B − βminA))x

then

(I − Z)D−1minBx+ ZD−1minβminAx

= x+ Z(D−1minD − I)x+XD−1min(B − Z(B − βminA))x

= (I + Z(D−1minD − I) + diag(D−1min(B − Z(B − βminA))x))x.

Since s ≥ 0, and D−1minD − I, B − Z(B − βminA), D−1min,

D are nonnegative matrix, it follows that I +Z(D−1minD−
I)+diag(D−1min(B−Z(B−βminA))x) is a positive diagonal
matrix which is nonsingular. Therefore,

x = (I + Z(D−1minD − I) + diag(D−1min(B − Z(B − βminA))

x))−1((I − Z)D−1minB + ZD−1minβminA)x,

which completes the proof.

Lemma 6. If s is a nonzero equilibrium of the system,
then 0� s� 1.

Proof: Suppose that s is nonzero equilibrium of the system.
Then, by Lemma 1, it must be true that s ≥ 0. By
Lemma 3,

x = (I + Z(D−1minD − I) + diag(D−1min(B − Z(B − βminA))

x))−1((I − Z)D−1minB + ZD−1minβminA)x

From Assumption 1, it is straightforward to verify that (I+
Z(D−1minD− I) + diag(D−1min(B−Z(B−βminA))x))−1((I −
Z)D−1minB + ZD−1minβminA) is an irreducible nonnegative
matrix. If x has at least one zero entry, then x and (I +
Z(D−1minD− I) + diag(D−1min(B−Z(B−βminA))x))−1((I −
Z)D−1minB + ZD−1minβminA)x must have different zero sign
pattern by Lemma 4, which is impossible. Thus, x� 0.

From Eq (5), we get z = (−(L + I))−1(−x). since −(L +
I) is a nonsingular irreducible Hurwitz Metzler matrix,

(−(L + I))−1 is a strictly negative matrix. Since x � 0,
z � 0. Thus s� 0.

Next we show that x� 1. Since s is an equilibrium of the
system, it follows from (1) that, for all i ∈ [n], one has

xi = ∑
j∈Ni

(βij − (βij − βmin) zi)xj

(δmin + (δi − δmin) zi) +
∑
j∈Ni

(βij − (βij − βmin) zi)xj
.

The fact that δi > 0, βij > 0 for j ∈ Ni by As-
sumption 1, and 0 < zi ≤ 1 from Lemma 1, one
obtains that (δmin + (δi − δmin) zi) > 0 and also that∑
j∈Ni

(βij − (βij − βmin) zi)xj > 0. It follows that xi < 1

for all i ∈ [n].

By Eq. (2), we have (Ni + 1)zi = xi + Nizj , where Ni
is the number of neighbors of agent i (Ni = |Ni|). Thus

zi =
xi+Nizj
1+Ni

. Since 0 < xi < 1 and 0 < Nizj ≤ Ni, it

follows that zi < 1 for all i ∈ [n]. Thus s� 1.

We are now in a position to prove Proposition 1.

Proof of Proposition 1: Suppose to the contrary, that there
is a nonzero equilibrium s of the system. By Lemma 6, it
must be true that s � 0. Since x is an equilibrium, it
follows that

(−D−1min +B)x = Z(D −Dmin)x+XBx

+ (I −X)(Z(B − βminA))x.

Since by Assumption 1, B is nonnegative and irreducible,
by Lemma 1, si ∈ [0, 1] it follows Bx � 0, so XBx � 0.
Since D − Dmin is nonegative, one has (D − Dmin)x ≥ 0
and (B − βminA)x ≥ 0. This yields Z(D − Dmin)x ≥ 0
and (I − X)(Z(B − βminA))x ≥ 0, which implies that
Z(D − Dmin)x + XBx + (I − X)(Z(B − βminA))x � 0.
Thus, (−D−1min +B)x� 0.

Since (−D−1min + B) is an irreducible Metzler matrix, by

Lemma 2, s(−D−1min + B) > 0. Thus, ρ(D−1minB) > 1
by Lemma 3, which contradicts the assumption of the
lemma that ρ(D−1minB) ≤ 1. Therefore, x � 0 cannot

be an equilibrium of the system if ρ(D−1minB) ≤ 1. Since
z = (L+ I)−1x, and (L+ I)−1 exists, s = 0 is the unique
equilibrium of the system if ρ(D−1minB) ≤ 1.

We next characterize the stability of the healthy state.

Note that the Jacobian of system (3) evaluated at (x, z) is

dfx,z =

[
W − Ṽ (x, z) −(D − δminIn)X − (In −X)B̃

In −(L+ In)

]
,

where Ṽ (x, z) and B̃ are diagonal matrices with the ith
diagonal entry being the ith entry of the vectors (B −
(B−βminA)Z)x and (B−βminA)x, respectively. It can be
verified that the Jacobian evaluated at s = 0 is

df0,0 =

[
−Dmin +B 0n×n

In −(L+ In)

]
.

Since −(L + In) is a stable matrix when G is strongly
connected (see proof of Theorem 1), it is clear that
the stability of the healthy state depends on the matrix
−Dmin + B. From Lemma 3, s(−Dmin + B) < 0 if and
only if ρ(D−1minB) < 1, and s(−Dmin + B) > 0 if and only

if ρ(D−1minB) > 1. Thus, we are led to the following results.
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Proposition 2. If ρ(D−1minB) < 1, the healthy state is

locally exponentially stable. If ρ(D−1minB) > 1, the healthy
state is unstable.

Corollary 1. If δmin >
∑
j∈Ni

βij for all i ∈ [n], then 0
is asymptotically stable.

Proof: Since D−1minB = δ−1minB is a nonnegative irreducible
matrix, (Varga, 2009, Lemma 2.8) yields

ρ(δ−1minB) < max
i∈[n]

n∑
j=1

δ−1minβij . (6)

The inequality δmin >
∑
j∈Ni

βij for all i ∈ [n] implies that

δ−1min

∑
j∈Ni

βij < 1 for all i ∈ [n], which combined with

Eq. (6) delivers that if δmin >
∑
j∈Ni

βij for all i ∈ [n],

then ρ(δ−1minB) < 1.

The following theorem shows that in the case when
ρ(D−1minB) ≤ 1, the healthy state is globally stable.

Theorem 1. If ρ(D−1minB) ≤ 1, then the healthy state is

asymptotically stable for all initial conditions. If ρ(D−1minB) <
1, then it is exponentially stable.

Proof: First note that

ẋ(t) = −[Dmin + (D −Dmin)Z(t)]x(t)

+ (I −X(t)[B − Z(t)(B − βminA)]x(t)

= −Dminx(t) + (I −X(t))Bx(t)− (D −Dmin)Z(t)x(t)

− (I −X(t))Z(t)(B − βminA)x(t)

≤ −Dminx(t) + (I −X(t))Bx(t). (7)

The inequality implies further that

ẋ ≤ ẏ = −Dminy(t) +By(t)

because In −X(t) is a nonnegative diagonal matrix with
entries between zero and one. Now, from Lemma 3,
ρ(δ−1minB) ≤ 1 implies s(−Dmin + B) ≤ 0, i.e. −Dmin + B
is Hurwitz. Initialise y(0) = x(0), and from the fact that
ẏ = −δminy(t)+By(t) converges to y = 0 exponentially, we
conclude that ẋ = 0. Since x = 0 is the unique equilibrium
of Eq. (3), we conclude that limt→∞ x(t) = 0 exponentially
fast. If s(−Dmin + B) = 0, since (−Dmin + B) is an
irreducible Metzler matrix, by Lemma A.1 in Khanafer
et al. (2016), there exists a positive diagonal matrix P such
that (−Dmin +B)>P +P (−Dmin +B) is negative definite.
Consider the Lyapunov function V (x(t)) = x(t)>Px(t).
From Eq. (1) and (7), when x(t) 6= 0, we have

V̇ (x(t)) = 2x(t)>Pẋ(t)

≤ 2x(t)>P (−Dmin +B −X(t)B)x(t).

Using the proof of Proposition 2 in Liu et al. (2019), one
can show that x(t) = 0 is asymptotically stable with the
domain of attraction [0, 1]n.

The convergence of ż(t) = −(L+ I)z(t) to 0 exponentially
fast follows immediately from the fact that −(L + I)
is Hurwitz. We are interested in the convergence of the
system

ż(t) = −(L+ I)z(t) + x(t). (8)
Now, Eq. (8) is input-to-state stable because ż(t) = −(L+
I)z(t) has a globally exponentially stable equilibrium at
z = 0 (Khalil, 2002, Lemma 4.6). Thus, with input x(t)
vanishing to zero asymptotically (or exponentially fast),
z = 0 is asymptotically (or exponentially) stable for (8)
with domain of attraction [0, 1]n.

Compared with many existing mathematical epidemiology
models, the value of ρ(D−1minB) can be regarded as an
effective reproduction number R0, the precise definition
being dependent on the particular model, in the sense
that the disease is eradicated if R0 ≤ 1 and persists
if R0 > 1. Extensive simulations show that this is also
the case here: if ρ(D−1minB) > 1, then the system (3) will
asymptotically converge to a unique nonzero state. We call
a nonzero equilibrium of the system, if it exists, an endemic
equilibrium. From Lemma 6, the limiting endemic state
must be strictly positive. However, complete analysis of
its uniqueness and stability, both local and global, has so
far eluded us.

We now present some analysis to identify a condition under
which at least one nonzero equilibrium exists. To do so, we
first need some additional preliminaries. Since −D+βminA
is an irreducible Metzler matrix, φ , s(−D + βminA) is
an eigenvalue of −D + βminA with an associated right
eigenvector y � 0. Without loss of generality, assume
maxi yi = 1. Now, define for any ε ∈ [0, 1) a convex and
compact subset of [0, 1]2n as

Ξε , {s ∈ [0, 1]2n : xi ≥ εyi ∀ i ∈ [n]}. (9)

Note that Ξ0 = [0, 1]2n and for any ε > 0, Ξε ⊂ [0, 1]2n.

To proceed, we let ∂[0, 1]2n and Int([0, 1]2n) denote the
boundary and the interior of the cube [0, 1]2n, respectively.

Lemma 7. Consider the system (3). If s(t) ∈ ∂[0, 1]2n\0,
then s(t+ τ) ∈ Int([0, 1]2n) for some finite τ .

The proof of Lemma 7 is straightforward and thus omitted
due to space limitations.

Theorem 2. Suppose that s(−D + βminA) > 0. Then,
there exists a sufficiently small ε̄ such that Ξε defined in
Eq. (9) for every ε ∈ (0, ε̄] is a positive invariant set for
the system in Eq. (3). Moreover, Eq. (3) has at least one
nonzero equilibrium in Int([0, 1]2n).

Proof: Given the result of Lemma 7, it follows that the
positive invariance of Ξε is established if we can prove that
for all i ∈ [n], there holds ẋi > 0 whenever xi = εyi and
xj ∈ [εyj , 1] for j 6= i. Toward that end, observe from
Eq. (1) that

ẋi = −(δmin(1− zi) + δizi)εyi + (1− εyi)
×
∑
j∈Ni

(βij(1− zi) + βminzi)(xj − εyj + εyj), (10)

and note that we have dropped the argument t for brevity.
Since xj − εyj ≥ 0 and εyi < 1 by hypothesis,

(1− εyi)(
∑
j∈Ni

βij(1− zi) + βminzi)(xj − εyj) ≥ 0.

This implies that Eq. (10) obeys the following inequality:

ẋi ≥ −(δmin(1− zi) + δizi)εyi

+
∑
j∈Ni

(βij(1− zi) + βminzi)εyj

− ε2yi
∑
j∈Ni

(βij(1− zi) + βminzi)yj . (11)

Verify that φy = (−D + βminA)y implies that δiyi +∑
j∈Ni

βminyj = φiyi. Recalling that δi ≥ δmin and βij ≥
βmin for j ∈ Ni, we obtain
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−δminyi +
∑
j∈Ni

βijyj ≥ −δiyi +
∑
j∈Ni

βminyj = φiyi. (12)

Since zi ∈ [0, 1], it follows from Eq. (12)

zi(−δiyi +
∑
j∈Ni

βminyj)

+ (1− zi)(−δminyi +
∑
j∈Ni

βijyj) ≥ φiyi > 0. (13)

Using Eq. (13), the right-hand side of Eq. (11) can then
be further bounded as

ẋi ≥ εφyi − ε2yi
∑
j∈Ni

(βij(1− zi) + βminzi)yj .

Obviously, for some sufficiently small εi > 0, we then have

ẋi ≥ εiφyi − ε2i yi
∑
j∈Ni

(βij(1− zi) + βminzi)yj > 0.

By choosing ε̄ = mini εi, we conclude that Ξε for every
ε ∈ (0, ε̄] is a positive invariant set of Eq. (3).

Since Ξε for ε ∈ (0, ε̄] is compact and convex, and Eq. (3)
is Lipschitz smooth in Ξε, the result of (Lajmanovich and
Yorke, 1976, Lemma 4.1) immediately establishes that
Eq. (3) has at least one equilibrium in Ξε. Taking ε to be
arbitrarily small, and recalling Lemma 7 establishes that
Eq. (3) has at least one equilibrium in Int([0, 1]2n).

4. CONCLUSIONS

In this paper, we have proposed a novel network SIS model
coupled with opinion dynamics. We have analyzed the sys-
tem’s limiting behavior, equilibria, and their stability. Sim-
ulations suggest that when ρ(D−1minB) > 1, the system has
a unique endemic state which is globally asymptotically
stable except when the initial state is zero. The complete
analysis of the proposed system is more challenging than
traditional continuous-time network SIS models like the
one by Lajmanovich and Yorke (1976). An approach using
the Poincaré–Hopf Theorem from differential topology, as
by Ye et al. (2020), will be explored in the future.
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