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Abstract: In this paper we present the design of active suspension system by using a kind
of passivity-based control method, where the proposed suspension system provides the good
ride comfort and the good road holding simultaneously and only uses relative displacement and
velocity. We show that the proposed method can be extended to nonlinear case easily. The
robustness of proposed method is also analyzed.
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1. INTRODUCTION

Vibration suppression is a fundamental problem in the
design of mechanical systems. Vehicle suspension system,
which is a classical example of the problem, should be
designed adequately for the sake of suppressing the vibra-
tion of vehicles’ body. The performances of a suspension
system include the ride comfort, the road holding ability,
the size of rattle space, and the dynamic tire force as
reported in Hrovat (1997). Among these requirements, the
performances which are focused in most of studies are the
ride comfort and the road-holding ability of vehicle.
As a representative ride comfort control method, the
skyhook control which can reduce the resonant peak of the
sprung mass quite significantly is extensively studied (see,
e.g., Karnrop et al. (1974), Alanoly and Sanker (1988),
Sammier et al. (2003), Emura et al. (1994), Nagarajaiah
et al. (1993), and Priyandoko et al. (2009).) In order
to extend the vibration suppression effect to 5Hz (4–
8Hz), which is known to be asensitive frequency range to
human body according to ISO 2631, and also for improving
the vibration suppression effect, the preview suspenstion
systems that utilize the information of unsprung mass and
road are studied. However, those proposed methods are
not only unavoidable to complicate control laws but also
require the addition of sensors for the sake of detailed
suspension-state observation.
On the other hand, it is known that the skyhook control
method does not focus on the vibration of unsprung
mass. The direct utilization of skyhook control method
often causes a deterioration in the road-holding ability
of the vehicle. To solve this problem, some modified
skyhook methods and the methods using active force
control (AFC) have been proposed by Ahmadian et al.
(2004), Besinger et al. (1995), Novak and Valasek (1996),
Hewit and Burdess (1981), and Hewit and Marouf (1996).
Although the utilization of aforementioned methods can
bring nice performance in a limited frequence range, they
? This work was supported by JSPS KAKENHI Grant Number
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are based on an assumption that all the state are measur-
able, while some of the vehicle states are hard to measured
in actual systems. In particular, most methods require
the utilization of absolute information of sprung and un-
sprung masses, but inexpensive sensors can only measure
the information of relative positions and velocities. From
this point of view, the methods based on linear-quadratic-
Gaussian (LQG) methodology (e.g. Ulsoy et al. (1994)),
the H∞ control technique (e.g. Li et al. (2014), Moran and
Nagai (1992)), and the saturated adaptive robust control
(ARC) strategy (Sun et al. (2013)) have been proposed.
The limitation of the aforementioned studies is that the
application of these methods to nonlinear cases are tricky,
while most components, such as springs and dampers,
containing nonlinearities. The dissipative properties of
Euler–Lagrange (or Hamiltonian) systems guarantee the
asymptotic stabilities of the nonlinear controlled systems.
However, under linear state feedbacks, which are designed
based on linear approximations, the global asymptotical
stability of the closed-loop systems is no longer guar-
anteed, because the feedbacks destroy the structures of
Hamiltonian systems. Namely, methods preserving the
structure of Hamiltonian systems are required for the
control of nonlinear systems. Otherwise, some Hamilton-
Jacobi partial differential equations should be solved for
the global asymptotic stability.
Consequently, a new suspension system which can obatin
the good ride comfort and good road holding performance
simultaneously by only using relative information is ex-
pected. Furthermore, the application to the nonlinear cases
should be easy. In this paper, a powerful controller design
technique that is widely applied in equilibrium stabiliza-
tion problem so called the interconnection and damping
assignment passivity-based control (IDA-PBC) methods
Ortega et al. (2002) is adopted, because this method can
be applied to nonlinear systems and preserve the structure
of generalized Hamiltonian systems. As a kind of energy
shaping method, this method is suitable for applying the
main idea of skyhook control. The aim of this paper
is to present the design of active suspension system by
using IDA-PBC, where the proposed suspension system
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Fig. 1. Quarter-Car Model.

provides the good ride comfort and the good road holding
simultaneously and only uses relative displacement and
velocity. Moreover, besides the damping term, we utilize
the characteristic of energy shaping method to change
the mass of sprung mass and unsprung mass, so that the
vibration suppression effect can be strengthened.
The rest of this paper is organized as follows: In Section
2, the port-Hamiltonian system of a 2-DOF quarter-car
model is derived. In Section 3, we briefly introduce the
standard formulation of IDA-PBC method. In Section 4,
we apply the IDA-PBC to derive the control law that is
only using relative displacement and velocity. In Section
5, we propose the guideline for parameter selction of
control law. In Section 6, the performance of the proposed
suspension system is evaluated by numerical calculation.
In Section 7, we show that the proposed method can be
extended to nonlinear case easily. Conclusions are given in
Section 8.

2. PROBLEM FORMULATION

In this paper, we mainly deal with linear systems since the
analysis of linearly approximated systems is sufficient for
the performance evaluation. Our method can be extended
to nonlinear cases by using our previous result (Hao et al.
(2018)), which will be mentioned in Section 7.
A 2-DOF linear quarter-car model is shown in Fig. 1. This
is the one which is widely used for suspension analyses.
The dynamic model of a quarter-car can be described by
the following equations:

msz̈s =cs(żu − żs) + ks(zu − zs) + u, (1)
muz̈u =cs(żs − żu) + ks(zs − zu) (2)

+ ct(ż0 − żu) + kt(z0 − zu)− u, (3)
where ms stands for a quater of the suspension mass; mu

is the unsprung mass; zs and zu are the vertical displace-
ments of sprung mass and unsprung mass, respectively; z0
represents the road profile; kt is the tire stiffness, whereas
ks is the stiffness of the spring between the tire and the
chassis; and cs is the damping of a passive damper that
provides a damping force proportional to the velocity żs−
żu. The Hamiltonian can be written as

H = 1
2(msż

2
s +muż

2
u + ks(zs − zu)2 + kt(zu − z0)2). (4)

Since one of our purposes is only using relative informa-
tion, it will become convenient to design the control law if
the state of the system is described as relative information.
By rewriting the Hamiltonian with new state

q =
[
q1
q2

]
=
[
zs − zu
zu − z0

]
, (5)

the port-Hamilton system can be described as

ẋ =
[
q̇
ṗ

]
= (J −R)∂H

∂x

>
+Dw +Bu, (6)

where

H(q, p) = 1
2p
>M−1p+ V

M =
[
ms ms

ms ms +mu

]
, p = M

[
q̇1

q̇2 + w

]
, w = ż0,

V = 1
2(ksq2

1 + ktq
2
2),

J =
[
O I
−I O

]
, R =

[
O O
O C

]
, C =

[
cs 0
0 ct

]
,

B = (0 0 1 0)>

D = (a> − Ca>)>, a = (0 − 1)>.
The ride comfort performance can be evaluated by the
sprung mass acceleration z̈s, and the the road holding
performance can be evaluated by the tire deflection q2.
Hence, the purpose of this paper is to decrease the value
of sprung mass acceleration z̈s and tire deflection q2
simultaneously with feedback law that only utilizes relative
information.

3. STANDARD IDA-PBC FORMULATION

The IDA-PBC method is a powerful controller design tech-
nique to solve the stabilization problem and the discussed
dynamics are often written as

ẋ =
[
q̇
ṗ

]
=
[
0n×n In
−In 0n×n

]
∂H

∂x

>
+
[
0n×m
G(q)

]
u, (7)

where q, p ∈ Rn are the generalized position and momen-
tum, respectively, u ∈ Rm is the control input, G(q) ∈
Rn×m, with rank(G)= m. The controlled system is un-
deractuated when m < n. The Hamiltonian function H is
defined as,

H(q, p) = 1
2p
>M−1(q)p+ V (q) (8)

where M ∈ Rn×n is the positive definite inertia matrix
and V ∈ R is the potential energy.
The control objective is to design a static, state feedback
that assigns to the closed loop a desired stable equilibrium
(q, p) = (q?, 0), q? ∈ Rn. This is achieved in IDA-PBC by
matching the port-Hamiltonian (pH) target dynamics[

q̇
ṗ

]
=
[

0n×n M−1(q)Md(q)
−Md(q)M−1(q) J2(q, p)−Rd(q)

]
∂H

∂x

>
, (9)

with the new Hamiltonian function

Hd(q, p) = 1
2p
>M−1

d (q)p+ Vd(q), (10)

where the desired mass matrix Md ∈ Rn×n is positive
definite, the desired potential energy Vd ∈ R verifies

q? = argminVd(q), (11)
and the desired damping matrix is defined by

Rd(q) = G(q)KpG
>(q) ≥ 0,
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Fig. 2. Desired system.
with Kp ∈ Rm×m a free positive definite matrix. The
matrix J2 ∈ Rn×n is free to the designer and fulfills the
skew-symmetry condition

J2(q, p) = −J>2 (q, p). (12)
The closed-loop system (9) has a stable equilibrium point
at (q?, 0) with Lyapunov function Hd, which verifies

Ḣd = −(G>M−1
d p)>Kp(G>M−1

d p) ≤ 0. (13)
By matching the right-hand sides of (7) and (9), we can
derive the expression of the static state feedback law
u(q, p).

4. APPLICATION OF IDA-PBC

4.1 Overview

In this paper, we match the desired system whose structure
is like Fig 2 with the controlled system.

4.2 Desired system

We construct the desired system with an artificial struc-
ture matrix as follows:

ẋ =
[
q̇
ṗ

]
= (Jd(q1)−Rd(q1))∂Hd

∂x

>
+Ddω, (14)

where
Hd(q, p) = 1

2(p>M−1
d p+ Vd(q1, q2)), (15)

denotes the Hamiltonian of desired system, and

Md(q1) =
[
mds mds

mds mds +mdu

]
,

Jd(q1) =
[

O M−1Md

−MdM
−1 J2

]
,

J2(q1) =
[

0 je
−je 0

]
,

Vd(q1, q2) = 1
2q
>Kdq, Kd =

[
kd2 + kd3 kd3

kd3 kd1 + kd3

]
,

Rd =
[
O O
O Cd

]
,

Cd =
[
cd2 + cd4 + cd5 cd4 + cd5
cd4 + cd5 cd1 + cd3 + cd4 + cd5

]
,

Dd = (0 − 1 cd5 ct)>.
Here, Jd(q1), Rd(q1), Vd(q), andMd(q1) denote an artificial
skew-symmetric structure matrix, a positive semidefinite
damping matrix, a potential energy, and the inertia matrix
in the desired Hamiltonian, respectively.

4.3 Matching Dynamics

The expression for the feedback law with equality and
inequality constraints of the parameters of the desired
system can be derived by matching the dynamics of the
desired system with that of the controlled system as
follows:

(Jd −Rd)
∂Hd

∂x

>
= (J −R)∂H

∂x

>
+B2u+ (D −Dd)w.

(16)
We define mass ratios

r1 = mds

ms
, r2 = mdu

mu
. (17)

The following equality constraints can be derived from the
matching equation.

cd4 + cd5 = −je, (18)
cd1 = ct − cd5, (19)
cd3 = ctr2 − ct − cd4, (20)
r2kd1 = kt − r1kd3, r1kd3 = (r2 − r1)kd2. (21)

From the third equation of (16), a feedback law u =
αraw(q, p, ω) is obtained. Because the feedback should be a
function of q and q̇ only, we disassemble the feedback law
as

αraw (q,M(q̇ − aω), ω) = α(q, q̇) + αrest(q, q̇)ω.
The coefficient αrest(·) should be zero identically, and
hence we decompose it again as

(cd2 + cd4 + cd5)(r1 − r2) = r1(2(cd4 + cd5)− cd5r2)
(22)

With these equality constraints, we obtain a feedback law

u =csq̇1 + (2cd2 + cd5r2)
(r1 + r2) q̇1 + cd5q̇2 + ksq1

− r2kd2q1 − (r2 − r1) kd2q2.

(23)

Because of the feature of IDA-PBC, the closed-loop system
is identical to the desired system.
According to the definition, some parameters should be
positive definite to ensure the asymptotic stability. To
make the new Hamiltonian positive definite, Md and Vd
should be positive definite, i.e.,

r1 > 0, r2 > 0 (24)
Kd > 0. (25)

The (25) is equivalante to
kd2 + kd3 > 0 (26)
detKd > 0. (27)

Both of these inequality constraints can be satisfied by
kd2 > 0. (28)

Moreover, for the asymptotical stability of the desired
system, Cd should be positive definite as

cd2 + cd4 + cd5 > 0, (29)
detCd > 0. (30)

Since (30) can be ensured by setting
cd4 + cd5 = ctr1r2

r1 − r2
, (31)

we transform (29) to
r1r2

r2
2 − r2

1
[ctr1 (r2 − 2) + cd4 (r2 − r1)] > 0, (32)

by combining (22) and (31). While designing the parame-
ters for desired system, we must take into consideration
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that all of the parameters should satisfy the equality
constraints (18), (19), (20), (21), (22), and (31), and the
inequality constraints (24), (28), and (32). Therefore, we
choose r1, r2, kd2, and cd4 as free parameters. The other
parameters are determined from the equality constraints.

5. GUIDELINE FOR PARAMETER SELECTION

As we mentioned before, our purpose is to decrease the
value of sprung mass acceleration z̈s and tire deflection q2
simultaneously. Considering the empirical knowledge for
skyhook system Karnrop et al. (1974), we expect that large
cd4 and mds enhance the vibration suppressoin/isolation
effects with respect to the sprung mass mds. For the tire
deflection q2, large cd1 should be selected. We rewrite (19)
as

cd1 =
(

1− r1r2

r1 − r2

)
ct + cd4, (33)

and we can show that selecting 0 < r2 < 1 and large r1,
cd4 will lead to a large cd1.
On the other way, a sufficient condition of (32) can be
written as

r1 > 2 > r2 > 0, (34)
which is satisfied by aforementioned setting.
Consequently, the guideline for parameter selection of de-
sired system is setting 0 < r2 < 1 and large r1, cd4.
The other parameters are determined from the equality
constraints, and the inequality constraints which guaran-
tee the asymptotical stability of the desired system are
satisfied naturally by aforementioned parameter setting.
Remark 1. From the point of view of the desired system,
setting large r1 and small r2 makes the virtual vehicle body
and virtual unsprung mass (usually the tire structure)
heavy and light, respectively. It is well known that heavy
body is effective to suppress the vibration, and the light
unsprung mass is effective to follow the undulation of road.
In general, it requires a large lateral force to control a
heavy body, and the force may exceed the tire capacity.
However, our feedback law only consider the vertical
direction, which means the horizontal performance of
desired system will be the same as the original one.

6. SIMULATION RESULT

In this section, we verify the suspension effect of the feed-
back law with an example. The parameters of controlled
object are set as table 1. In this paper, we compare the

Table 1. Parameters for calculation
Parameters Symbol Unit Value
Sprung mass ms Kg 500
Unsprung mass mu Kg 50
Spring stiffness ks N/m 30,000
Damping coefficient 1 cs N/(m/s) 2,000
Damping coefficient 2 ct N/(m/s) 200
Tire stiffness kt N/m 300,000

vibration suppression effect of proposed method with the
performance that is under skyhook damper controller. The
control law can be descibed as

u = −cshżu.
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Fig. 3. Comparison of the body accelerations
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Fig. 4. Comparison of the tire deflections

For comparison, we choose skyhook damper coefficients
of conventional controller and proposed controller as the
same value. We select cd4 = csh = 3000, and r1 = 1000,
r2 = 0.1, kd2 = 0.1. The other parameters of controller
will be derived from matching equations.
The given results consists of sprung mass acceleration,
sprung mass displacement, suspension deflection, and tire
deflection as shown in Fig. 3 and Fig . 4. The main purpose
of our study, sprung mass acceleration and tire deflectgion,
are notably improved as compared to openloop system and
skyhook damper system.

7. APPLICATION TO A NONLINEAR ACTIVE
SUSPENSION SYSTEM

Although the previous sections have showed the effec-
tiveness of proposed method sufficiently, the necessity of
utilizing the IDA-PBC method is not explained clearly. If
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we only take the linear suspension system into the consid-
eration, some other methods can obtain the similar result.
However, one of our main purposes of using the IDA-PBC
method in this study are that the IDA-PBC method can
be applied to nonlinear system easily and the stability of
the closed-loop system can be guaranteed theoreitcally.
Moreover, most of the aforementioned methods require the
solution of Hamilton - Jacobi partial differential equations.
In this section, we apply our proposed method to a 2-DOF
system with nonlinear inertia matrix. We assume that the
Hamiltonian of considered system can be written as

H(q1, p) = 1
2p
>M(q1)−1p+ V1(q1) + V2(q2)

M(q1) =
[
m1(q1) m2(q1)
m2(q1) m3(q1)

] (35)

The states q, p are set as the same as linear case. It is
assumed that the additional potential V2(q2) is positive
definite with respect to q2 and satisfies ∂V2/∂q2 6= 0
(q2 6= 0). The port-Hamiltonian system is described as

ẋ = (J −R)∂H
∂x

>
+Dω +Bu, (36)

The desired system is expressed as

ẋ = (Jd(q1)−Rd(q1))∂Hd

∂x

>
+Dd(q1, q̇)ω

+Ddω(q1, q̇)ω2,

(37)

where
Hd(x) = 1

2p
>Md(q1)−1p+ Vd(q1, q2) (38)

Md(q1) =
[
md1(q1) md2(q1)
md2(q1) md3(q1)

]
(39)

is the Hamiltonian of desired system, and

Jd(q1) =
[

O M(q1)−1Md(q1)
−Md(q1)M(q1)−1 J2(q1)

]
J2(q1) =

[
0 je(q1)

−je(q1) 0

]
, Rd(q1) =

[
O O
O Cd(q1)

]
Cd(q1) =

[
cd1(q1) cd2(q1)
cd2(q1) cd3(q1)

]
Dd(q1, q̇) = (0 − 1 d1(q1, q̇) d2(q1))>

Ddω(q1) = (0 0 d3(q1) d4(q1))>.
Let Jd(q1), Rd(q1), Vd(q) and Md(q1) denote an artificial
skew-symmetric structure matrix, a positive semidefinite
damping matrix, the potential energy, and the inertia
matrix in the desired Hamiltonian, respectively.
The feedback law and the constraints of parameters are
derived from the matching equation

(Jd −Rd)
∂Hd

∂x
= (J −R)∂H

∂x
+Bu

+ (D −Dd(q1, q̇))ω −Ddω(q1)ω2.
(40)

For simplicity of calculations, we define

S(q1) = M−1(q1) =
[
s1(q1) s2(q1)
s2(q1) s3(q1)

]
Sd(q1) = M−1

d (q1) =
[
sd1(q1) sd2(q1)
sd2(q1) sd3(q1)

]
.

(41)

Each side of (40) is four dimensional vector. The first two
components of (40) are already satisfied for all x and ω.

By focusing on the coefficients of p2
1, p1p2, and p2

2 in the
third component of (40), we obtain

sd1
′ = |Sd|s1

′

s1sd3 − s2sd2
,

sd2
′ = |Sd|s2

′

s1sd3 − s2sd2
,

sd3
′ = |Sd|s3

′

s1sd3 − s2sd2
,

(42)

where ∗′ means the derivative with respect to q1.
The coefficients of p1 and p2 in the third component of
(40) derive the following relations:

cd1(q1) = µ

|Sd|
(s1sd3 − s2sd2), (43)

je(q1) = cd2(q1) + µ

|Sd|
(s1sd2 − s2sd1). (44)

The rest of the third component of (40) leads an equation
for the potential energy

s2sd2 − s1sd3

|Sd|
· ∂Vd
∂q1

+ s3sd2 − s2sd3

|Sd|
· ∂Vd
∂q2

+ V ′1 = 0.

The general solution of the above equation is

Vd(q) = P

[
q2 +

∫ q1

0

s3sd2 − s2sd3

s1sd3 − s2sd2

∣∣∣∣
q1=τ

dτ

]

+
∫ q1

0

V ′1 |Sd|
s1sd3 − s2sd2

∣∣∣∣
q1=τ

dτ,

(45)

where P will be an arbitrary positive-definite function.
By solving the matching equation with respect to u, we
can obtain a feedback law u = αraw(q, p, ω). Notice that
the feedback should be a function of q and q̇ only. Hence,
we decompose αraw as

αraw (q,M(q1)(q̇ − aω), ω) = α(q, q̇) + αrest(q, q̇, ω)ω.

The coefficient αrest(·) should be identically zero, and thus
we decompose it again as

αrest(q, S(q1)p+ aω, ω) =
α1(q1) + α2(q1)p1 + α3(q1)p2 + α4(q1)ω.

By solving αi(q1) = 0 (i = 1, . . . , 4)with respect to
d1(q1), . . . , d4(q1) and applying (42), we obtain additional
equality constraints

d1(q1) = 1
|S|
{(s1sd3 − s2sd2)cd3(q1)

+ (s1sd2 − s2sd1)(je(q1) + cd2(q1)},
(46)

(d2(q1) d3(q1)) = g(q1) · (0 1)M ′S, (47)

d4(q1) = g(q1)
2 · (0 1)M ′(0 1)>, (48)

where M ′ = ∂M/∂q1 and

g(q1) = s2sd1 − s1sd2

s1sd3 − s2sd2
.

The control input can be rewritten as
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u = α(q, q̇)

= (s2sd3 − s3sd2)cd3 − (s3sd1 − s2sd2)(cd2 + je)
|S|

q̇1

+ (c− d1(q1))q̇2 + g(q1)
2 · q̇>M ′q̇ + ∂V2(q2)

∂q2

+ s1sd2 − s2sd1

|Sd|
· ∂Vd
∂q1
− s3sd1 − s2sd2

|Sd|
· ∂Vd
∂q2

.

(49)
Because of the feature of IDA-PBC, the closed-loop system
is identical to the desired system. Therefore, the asymp-
totic stability of zero-disturbance case can be guaranteed
by the nature of pH system. Thus we need to ensure the
positive definiteness of Md, Vd and Cd, and the following
inequality constraints can be derived:

sd3(q1) > 0, |Sd(q1)| > 0, (50)
s1sd3 − s2sd2 > 0, ∀q1, (51)
|Cd(q1)| > 0, (52)
P [σ] > 0, σ 6= 0. (53)

Inequalities (50) show the positive definiteness of the iner-
tia matrix of the desired system. We can show cd1(q1) > 0
from (51) and (43), and therefore (51) and (52) means
that the damping matrix of the desired system is positive
definite. Because of (51), the positivity of the second term
of (45) will be automatically satisfied if q1V

′
1 ≥ 0. Hence,

under the constraint (53), the potential energy function
Vd(q) is positive definite.
We can gain sdi(q1) by solving (42), while the initial
value Sd(0) = Sd0 is a degree of freedom. The inequality
constraints of parameters are (50), (51), (52), and (53).
The equality constraints of parameters are (43), (44), (45),
(46), (47), (48), and (49).
From the above derivation, we can see that our proposed
method can be applied to nonlinear case easily without
solving any Hamilton-Jacobi partial differential equations.

8. CONCLUSION

In this paper, we propose a suspension system which can
have a good ride comfort and road holding ability only
utilizing relative information. The numerical simulation
comparing with the result of skyhook damper method and
openloop system is verified. Our future work is to apply
the proposed method to semi-active suspension systems.
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