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Abstract:
The problem of steering a particular class of n-dimensional continuous-time dynamical systems towards
the minima of a function without gradient information is considered. We propose a hybrid controller,
implementing a discrete-time Direct Search algorithm based on conjugate directions, able to solve the
optimization problem for the resulting closed loop system in an almost global sense. Moreover, we
propose a modified version by imposing a lower bound on the step size and able to achieve robust
practical convergence to the optimum.
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1. INTRODUCTION

In this paper we study the problem of steering a particular class
of dynamical systems towards the set of minima of an objective
function, assumed to not be known but whose measurements
are available at fixed intervals of time. We consider continuous-
time dynamical systems that can be steered, by a known input,
between any two points of the state space. Examples of such
systems are completely controllable linear time-invariant sys-
tems, as well as nonlinear systems whose reachable set after
time T > 0, for all T > 0, is the whole state space, e.g. the
Dubin’s vehicle, see Shkel and Lumelsky (2001).

The problem at hand has been tackled in the literature with
a variety of approaches, mostly related to source-seeking ap-
plications. In Burian et al. (1996) an approximated gradient
descent method is implemented in order to steer an autonomous
underwater vehicle to the deepest part of a pond, or locate
hydrothermal vents. However no stability results are provided
for the closed-loop formed by the exploration algorithm and
the vehicle dynamics. Regarding source-seeking applications,
a similar approach is used within a multi-agent framework in
Bachmayer and Leonard (2002), where, instead, local gradient
measurements are assumed, and stability of the closed-loop
system is proved. In Azuma et al. (2012) a modified version of
the simultaneous-perturbation stochastic approximation is pro-
posed in order to recursively compute directions of exploration
for a general randomly switching objective function, asked
to be thrice differentiable. In Cochran and Krstic (2009) an
extremum seeking controller is adopted assuming continuous
availability of the measurements of a convex quadratic objec-
tive function.
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The problem treated in this paper was solved in Mayhew et al.
(2007) (see also Mayhew et al. (2008b) and Mayhew et al.
(2008a)) for a convex objective function in a 2-dimensional
search space by a hybrid controller, based on the Recursive
Smith-Powell (RSP) algorithm. The latter is an optimization
algorithm that, through a series of line minimizations, se-
quentially compute a set of conjugate directions. For convex
quadratic functions, it ensures to reach a neighborhood of the
minimizer in a finite amount of line minimizations. The classic
RSP implementation, as in Mayhew et al. (2007), uses discrete
line minimizations with fixed step size, able to achieve practical
stability of a set of minimizers for the 2-dimensional convex
quadratic case. In Coope and Price (1999) an extension of the
RSP was proposed in the general context of continuously differ-
entiable functions. By using a decreasing step size asymptoti-
cally converging to zero, this algorithm ensures asymptotic con-
vergence to a stationary point. While some robustness results
of the RSP algorithm where shown in Mayhew et al. (2007), no
results are present regarding the algorithm in Coope and Price
(1999), and in particular for the more general class of Direct
Search methods.

In this paper, we study the class of Direct Search methods, to
which the RSP algorithm belongs, which are optimization algo-
rithms that minimize (or maximize) an objective function with-
out using (or estimating) derivative information of any order of
the objective function (see Lewis et al. (2000) for an overview).
In particular, we propose a direct search algorithm combining
the results of Coope and Price (1999), Kolda et al. (2003), and
Garcia-Palomares and Rodriguez (2002) in order to achieve,
contrary to the RSP algorithm, asymptotic convergence to the
set of minima. Due to the inherent discrete dynamics of the
algorithm and the continuous dynamics of the underlying dy-
namical system, on the wake of Mayhew et al. (2007), the
controller is implemented by relying on the hybrid systems
framework of Goebel et al. (2012). The proposed hybrid con-
troller addresses the optimization problem of an n-dimensional
continuously differentiable function with a set of global min-
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ima, and possibly isolated local maxima, and guarantees almost
global asymptotic stability of the set of minima. Moreover, we
propose a robust algorithm, addressing n-dimensional objective
functions (including the results of Mayhew et al. (2007) as a
special case), highlighting that a trade-off between asymptotic
convergence and robustness is mandatory.

Notation: The set R denotes the set of real numbers, R≥0 :=
[0,∞), R≥1 := [1,∞), and N the set of natural numbers. We
let e denote Euler’s number. We denote by | · | the absolute
value of a scalar quantity and ‖ · ‖ the vector 2-norm. For a
scalar function f : Rn → R, we denote as ∇f : Rn → Rn
the gradient of f . Given a nonempty set A ⊂ Rn and ε > 0,
we denote as εB(A) the set {x ∈ Rn : ‖x‖A < ε}, where
‖x‖A := infy∈A ‖x − y‖. A set valued mapping F from Rn
to Rm is denoted as F : Rn ⇒ Rm. Define a hybrid system
in Rn as the 4-tuple H = (C,F,D,G), with C ⊂ Rn the
flow set, F : Rn ⇒ Rn the flow map, D ⊂ Rn the jump
set, and G : Rn ⇒ Rn the jump map. Solutions to hybrid
systems are defined on hybrid time domains (see Goebel et al.
(2012) for more details) parameterized by a continuous time
variable t ∈ R≥0 and a discrete time variable j ∈ N, keeping
track, respectively of the continuous and discrete evolution.
We denote as domx ⊂ R≥0 × N the hybrid time domain
corresponding to the solution x. We say that for a hybrid system
H with state x ∈ Rn, the set A ⊂ Rn is: stable if for all
ε > 0, there exists δε > 0 such that x(0, 0) ∈ δεB(A) implies
x(t, j) ∈ εB(A) for all (t, j) ∈ domx; globally attractive if
(t, j) 7→ ‖x(t, j)‖A is bounded and limt+j→∞ ‖x(t, j)‖A = 0,
with (t, j) ∈ domx; almost globally attractive when it is
globally attractive from all initial conditions apart from a set of
measure zero; almost globally asymptotically stable if it is both
stable and almost globally attractive; semiglobally practically
asymptotically stable on the parameter θ ∈ Θ ⊂ Rm, with
m > 0, if, assuming H complete and dependent on θ, for any
ε1 > ε2 > 0 and there exist δ > 0 and Θ? ⊂ Θ such that for
all θ ∈ Θ?, x(0, 0) ∈ δB(A) implies x(t, j) ∈ ε1B(A) for all
(t, j) ∈ domx and limt+j→∞ ‖x(t, j)‖ε2B(A) = 0.

2. PROBLEM FORMULATION

In this paper we tackle the following optimization problem:
Problem 1. Minimize a function f : Rn → R, namely

min
x∈Rn

f(x), (1)

subject to the dynamics

ξ̇ = ϕ(ξ, u) ξ = col(x, ζ) ∈ Rn+l, u ∈ Rm. (2)

The state variables x represent the variables involved in the
optimization problem, while ζ represents other possible states.

For simplicity we consider ϕ : Rn+l × Rm → Rn+l to be
continuously differentiable in ξ and u. Moreover, given τ? > 0,
we assume that for each x0 and xf in Rn, with x0 6= xf , there
exists t 7→ u(t) such that the solution to ξ̇ = ϕ(ξ, u(t)) from
ξ0 = (x0, ·) reaches ξf = (xf , ·) after τ? seconds. We assume
that for each bounded input u(t) for all t ≥ 0, ζ(t) is bounded
for all t ≥ 0. The class of systems represented by (2), includes,
for example, point-mass vehicles (ξ = x, with x representing
the position) and Dubin’s vehicles (ξ = col(xT , ζ), with x and
ζ representing position and orientation, respectively).

Moreover, we make the following assumptions on f :

(A0) f is continuously differentiable, lower bounded and it is
not assumed to be known, but sampled measurements
of it are available every τ? > 0, with τ? a tunable
parameter;

(A1) the set {x ∈ Rn : ∇f(x) = 0} of critical points of f is
such that every local minimum is also a global minimum
(i.e. all local minima share the same objective function
value), every local maximum is an isolated point and f is
analytic at every local maximum, and there are no saddle
points;

(A2) the sublevel sets of f , namely the sets Lf (c) := {x ∈
Rn : f(x) ≤ c}, are compact for all c ∈ R.

Assumptions (A0) and (A2) are standard for Direct Search
methods, see Coope and Price (1999), Kolda et al. (2003) and
Garcia-Palomares and Rodriguez (2002). Assumption (A0) can
be relaxed by considering f to be locally Lipschitz, as shown in
Kolda et al. (2003) and Popovic and Teel (2004), which requires
the use of generalized gradients for analysis.

The reason for the particular structure of the set of critical
points assumed in (A1) stems from the fact that our goal is to
prove and guarantee convergence to the set of minima. While
the assumptions on the value of the local minima is considered
to simplify the structure of the problem, without the other
assumptions on local maxima and saddle points, Direct Search
algorithms, and our proposed controller derived from it, only
guarantee convergence to the set of critical points.

Notice that, contrary to Mayhew et al. (2007), no convexity
assumptions have been made on the cost function.

3. THE RSP AND THE PROPOSED ALGORITHM

3.1 Background

Throughout the paper we call line minimization any procedure
that, given a function, a direction and a point, explores the line
defined by the direction applied to the point, and returns the
position of the minimum, or point in a neighborhood of it, of
the function along the line.

We label a line minimization as exact when the minimum along
the explored direction is exactly reached, and as discrete when
the line minimization is an iterative procedure that explores at
each iteration a new point at distance ∆ > 0 (fixed or changing
at each iteration), called step size, from the previously explored
one. A discrete line minimization terminates when the function
value of the newly explored point did not decrease enough with
respect to the function value at the last explored point.

Given a set G ⊂ Rn of linearly independent directions span-
ning Rn, the classic RSP sequentially computes exact line
minimizations along the directions in G in order to minimize
the cost function. Moreover, every n line minimizations, a new
search direction dnew ∈ Rn is computed by exploiting the
Parallel Subspace Property (see Theorem 4.2.1 in Fletcher
(2000)) and the set G is updated accordingly. For a convex
quadratic function with Hessian matrix H , the newly computed
direction dnew is conjugate, by the Parallel Subspace Property,
to the last n− 1 directions in G, i.e. such that dTnewHd = 0 for
each d ∈ G. This property of conjugacy of directions for a con-
vex quadratic function implies that the line minimization along
one direction is independent of the line minimizations along the
other directions in G. Thus, given a set of n conjugate directions
for a convex quadratic function from Rn to R, the minimum
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will be reached after n line minimizations, each along a dif-
ferent conjugate direction. By recursively computing a set of
conjugate directions, the RSP algorithm reaches the minimum
of a convex quadratic function, starting from a set of linearly
independent directions, in at most n2 line minimizations. This
property is usually denoted as quadratic termination property.

3.2 Proposed algorithm

The algorithm proposed in this paper, shown in Alg. 1, is
inspired by Garcia-Palomares and Rodriguez (2002) and im-
proves the results in Mayhew et al. (2007) by guaranteeing, un-
der the less restrictive assumptions (A0) and (A1), asymptotic
convergence to the set of minima. The main differences with
the RSP considered in Mayhew et al. (2007) are reported in the
following. In particular:

1) A different step size ∆i is associated to each direction
dj ∈ G in order to guarantee more freedom of exploration.
As such, when a new direction is computed (lines 28-32)
also a new step size is associated to the new direction (line
27).

2) A variable global step size Φ is considered, such that
λsΦ ≤ ∆j ≤ λtΦ for all j ∈ {0, 1, ..., n − 1}, with
0 < λs < 1 < λt. If no improvement is found along any
direction, the global step size Φ is reduced to µΦ, with
µ ∈ (0, 1/λt) (lines 14-21).

3) In case no improvement is made along a direction (lines
8-12), meaning that αkj = 0, the corresponding step size
is reduced. This is the key step guaranteeing asymptotic
convergence to the minima of the cost function.

4) The new direction, computed via the Parallel Subspace
Property, is “accepted” only if it keeps the directions in
G linearly independent (lines 28), otherwise the previous
set of directions is retained.

Remark 2. The idea of reducing the step size when no improve-
ment is found stems from Theorem 3.3 in Kolda et al. (2003),
where it is reported that the norm of the gradient of the cost
function, at points where no improvement was found along any
direction, is bounded by a class K function of the step size.
Thus, reducing the step size at those iterations implies reducing
the norm of the gradient, hence approaching a stationary point
(or minimum in our case). •

The line minimization procedure explores a direction dkj from
a starting point xkj and returns the distance αkj traveled from
xkj to the found minimum of f along dkj . The main differences
in the line minimization procedure with respect to the RSP in
Mayhew et al. (2007) are the following:

1) Newly explored points are accepted only if a sufficient
decrease condition is satisfied (lines 2 and 12), namely the
function has decreased at least ρ(∆) along the direction d,
where ρ : R≥0 → R≥0 is defined below.

2) When a new iteration is accepted, the step size is, possibly,
increased (lines 5 and 15) if the step size does not violate
the upper bound imposed by the global step size.

Remark 3. The sufficient decrease condition (lines 2 and 12)
guarantees that the Armijo condition, needed for the algorithm
to converge, is satisfied (see Section 3.7.1 in Kolda et al. (2003)
for more details). The function ρ in the sufficient decrease
condition is a strictly increasing function of ∆, that at ∆ = 0 is
smooth (from the right) but non-analytic, and such that ρ(∆) =
o(∆n) for ∆ → 0 for all n ∈ N. The properties of ρ imply

a

Alg. 1: New RSP algorithm with line minimization procedure.

that, under assumption (A1), if x̄ ∈ Rn is a local maxima for
f , there exists ∆̄ > 0 such that for all d ∈ G and ∆ ∈ (0, ∆̄],
f(x̄+ ∆d) < f(x̄)− ρ(∆). •

Define the set of global minima of f as A? := {x? ∈ Rn :
f(x?) ≤ f(x) ∀x ∈ Rn} and define i?kj as the number of
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steps computed in the line minimization procedure in Alg. 1
at iteration k along direction dj . We can conclude the following
convergence result for the algorithm in Alg. 1.
Theorem 4. Consider the class of cost functions fulfilling (A0)-
(A2). Then, for any initial condition x◦ ∈ Rn, the sequence
of iterates xkji generated by the RSP algorithm and the line
minimization procedure in Alg. 1 is such that

lim
k→∞

lim
i→i?

kj

‖xkji‖A? = 0 ∀j ∈ {0, 1, ..., n− 1}. (3)

�

The proof of Theorem 4 is based on standard arguments for
the proof of convergence to stationary points of f in Direct
Search algorithms. In particular, under assumptions (A0) and
(A2), convergence of the sequence of global step size Φk to
0 is shown first, which, together with the sufficient decrease
condition, guarantees convergence of xkji to a stationary point.
Under assumption (A2), and due to the particular structure of ρ,
convergence to the set of minima is shown. The detailed proof
of Theorem 4 will be published elsewhere.

4. HYBRID CONTROLLER

In this section we design a hybrid controller Hc implementing
the new RSP to solve Problem 1 under the assumptions (A0)-
(A2), and steer the state of (2) towards the set of minima of
f .

The reason for resorting to the hybrid systems framework
is to provide results regarding the stability and robustness
of the proposed algorithm when applied to continuous-time
dynamical systems, also in the presence of measurement noise.
In particular, the resulting hybrid controller is based on the
framework for hybrid systems in Goebel et al. (2012), and its
dynamics are given by a flow map Fc when the state belongs
to the flow set C, and a jump map Gc when the state belongs
to the jump set D. In particular, the algorithm in Alg.1 defines
the jump map Gc, which is set valued in order to satisfy the
hybrid basic conditions (Assumption 6.5 in Goebel et al.
(2012)) and lead to a closed-loop system Hcl, given by the
interconnection ofHc and (2), that is nominally well-posed (see
Definition 6.2 in Goebel et al. (2012)), a property needed for the
application of invariance principles in the proofs of the results
in the next section.

The state of the controller is defined as xc = col(τ,∆0, ...,
∆n−1, d0, ..., dn−1,Φ, λ, α

>, ᾱ, p,m, `, q, z,∆, v>), and it
ranges in Xc := R≥0 × Xc/τ , with Xc/τ := Rn≥0 × Rn×n ×
R≥0 × R × Rn × R≥0 × {−1, 1} × {0, 1} × {0, 1, ..., n} ×
{0, 1, 2} × R× R× Rn.

The state variable τ is a timer that resets every τ? > 0 seconds
and regulates when new cost function evaluations are available.
Its hybrid dynamics are given by

τ̇ = 1 (ξ, xc) ∈ C := {(ξ, xc) ∈ Rn+l ×Xc : τ ≤ τ?},
(4)

during flow, and

τ+ = 0 (ξ, xc) ∈ D := {(ξ, xc) ∈ Rn+l ×Xc : τ ≥ τ?},
(5)

at jumps.

The states dj ∈ Rn and ∆j ∈ R≥0, j = 0, 1, ..., n, represent, in
Alg. 1, the search directions and the step sizes corresponding to
each direction. The state variable λ ∈ R, which keeps track of

the distance traveled along the currently explored direction, and
the state variable α ∈ Rn, which stores the total traveled vector
from direction d0, are related to the distance traveled along each
direction, which is the variable αkj introduced in Alg. 1.

The state Φ ∈ R≥0 represents the global step size and ᾱ ∈
R≥0 the total distance traveled during each cycle of directions
exploration.

The positive or negative exploration along the current direction
is determined by the state p ∈ {−1, 1}, and the variable m ∈
{0, 1} indicates whether a turn has already been performed
along the current direction.

To define in which operating point of the proposed RSP al-
gorithm the controller is, the state variables ` ∈ {0, 1, ..., n}
and q ∈ {0, 1, 2} have been introduced. The variable ` repre-
sents the state of the RSP, namely which direction is currently
being explored. Notice that it has n + 1 components since
the direction dn−1 is explored twice to be able to exploit the
Parallel Subspace Property. The variable q, defining the
state of the line minimization, assumes these values:

- q = 0: when a positive line minimization is performed;
- q = 1: when a negative line minimization is performed;
- q = 2: when a line minimization is completed.

The state variable z ∈ R is a memory state that keeps track
of the best minimum value of f found satisfying the sufficient
decrease condition.

Two more states have been added for convenience: ∆ ∈ R and
v ∈ Rn, which store the currently explored search direction and
its corresponding step size, respectively.

The structure ofHc is given by

Hc :


ẋc = Fc :=

[
1 0 . . . 0

]>
(x, xc) ∈ C

x+c ∈ Gc(xc, f(x)) :=

[
0

Gc/τ (xc, f(x))

]
(x, xc) ∈ D

u = K(x, xc, τ
?),

(6)
with sets C, D defined in (4) and (5). The flow map Fc is a
single-valued constant function with all components equal to
zero except for the timer. The jump map Gc : Xc × R → Xc
is a set-valued map, composed by the timer discrete dynamics
and the map Gc/τ : Xc × R → Xc/τ , representing the hybrid
implementation of Alg. 1. The output of Hc is a function
K : Rn × Xc × R>0 → Rm that steers the ξ-subsystem in
(2) between two points, similar to the input steering from x0 to
xf as explained below (2).

The construction of Gc/τ is outlined next.

• Continue a positive line search: if f(x) ≤ z−ρ(∆), p = 1,
q ∈ {0, 1}, m = 0, then Gc/τ implements z+ = f(x),
q+ = 1.

• Correct overshoot: if f(x) ≥ z−ρ(∆), q ∈ {0, 1},m = 0,
then Gc/τ implements p+ = −p, m+ = 1, q+ = q + 1.

• Start a negative line search: if m = 1, p = −1, q = 1,
then Gc/τ implements z+ = f(x), m+ = 0, λ+ = 0.

• Continue a negative line search: if f(x) ≤ z − ρ(∆), p =
−1, q = 1, m = 0, then Gc/τ implements z+ = f(x).

• Update the direction and start a positive line search: If
q = 2, then Gc/τ implements q+ = 0, p+ = 1, λ+ =

0, m+ = 0. Moreover if v = dj , for some j < n, then
v+ = dj+1, and if ` = n, then v+ = dnew and d+0 = dnew
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if linear independence of G is preserved, with dnew ∈ R3

computed exploiting the Parallel Subspace Property.

Due to reasons of space, the full expression of Gc/τ is not
provided but it is available in the simulation case 1 .

5. STABILITY ANALYSIS

Define the hybrid closed-loopHcl as the interconnection of the
dynamics (2) and the controller Hc developed in the previous
section, namely

Hcl :


ξ̇ = ϕ(ξ,K(x, xc, τ

?))

ẋc = Fc
ξ+ = ξ

x+c ∈ Gc(xc, f(x))

}
(ξ, xc) ∈ C}
(ξ, xc) ∈ D

(7)

Define Adis := {−1, 1} × {0, 1} × {0, 1, ..., n} × {0, 1, 2}.
We consider the stabilization problem with respect to the sets
A ⊂ Ae ⊂ Rn+l ×Xc, defined as
A := A? × Rl × [0, τ?]× {0n} × Rn×n × {0} × {0}×

{0n} × {0} × Adis × {f(A?)} × {0} × Rn,
(8)

Ae := Rn+l × [0, τ?]× {{0n} × Rn×n × {0} ∪ Rn×
{0n×n} × R≥0} × {0} × {0n} × {0} × Adis
×R× {{0} × Rn ∪ R× {0n}}.

(9)

The set A represents the desired equilibrium set, namely the
subset of Rn+l × Xc such that if (ξ(0, 0), xc(0, 0)) ∈ A, then
x(t, j) ∈ A? for all (t, j) ∈ dom(ξ, xc). Notice that invariance
of A is guaranteed by all the step size variables being zero on
A. However, the set of equilibria of (7) is a superset of A, and
it is defined as the set with all the step size variables and/or
directions equal to zero. The reason is that for Φ = 0 and/or
dj = 0 for all j ∈ {0, 1, ..., n − 1}, every x ∈ Rn is an
equilibrium point for (7). The set of equilibria of (7) is exactly
Ae.
Theorem 5. Let assumptions (A0)-(A2) hold and the param-
eters of the algorithm Alg. 1 satisfy τ? > 0, δdet > 0,
0 < λs < 1 < λt, µ ∈ (0, 1/λt), θ ∈ (0, 1) and γ ≥ 1.
Then, for the closed-loop systemHcl, the set A in (8) is

• stable;
• almost globally attractive;

hence, it is almost globally asymptotically stable. Furthermore,
the set Ae in (9) is globally attractive forHcl. �

The proof of Theorem 5 and of the next theorem are based on
Lyapunov arguments and invariance principles, applied con-
sidering the Lyapunov candidate function V (ξ, xc) := z −
f(A?). From Theorem 5 and the structure of A and Ae,
it follows in particular that, for any initialization such that
det(col(d0, d1, ..., dn−1)) 6= 0 and Φ 6= 0, boundedness of the
closed-loop trajectories and asymptotic convergence to the set
A are guaranteed.

In the case in which the cost function measurements are af-
fected by noise, it is possible to show that general Direct Search
Algorithms based on line minimizations and asymptotic step
size reduction, and in particular the algorithm in Alg. 1, are
not robust to any bounded random noise, even if stability has

1 GitHub Repository: https://github.com/AleMell/Hybrid-RSP

been shown and convergence results are attainable for a proper
choice of initial conditions.

Robustness to measurement noise for the hybrid closed-loop
system Hcl is recovered by imposing a lower bound Φ > 0
on the global step size Φ, implemented by restricting dom Φ
to [Φ + ε,+∞), with ε > 0, and modifying Gc/τ by adding
Φ+ = Φ + ε if µΦ ≤ Φ + ε. Moreover, given δdet > 0,
we restrict the domain of all the directions dj to be such that
det(col(d0, d1, ..., dn−1)) ≥ δdet. Without loss of generality,
we will denote the desired equilibrium set within the restricted
domain for the directions as A.
Theorem 6. Let assumptions (A0)-(A2) hold, the parameters of
the algorithm Alg. 1 satisfy τ? > 0, 0 < λs < 1 < λt, δdet > 0,
µ ∈ (0, 1/λt), θ ∈ (0, 1) and γ ≥ 1. Then, for all measurement
noise signals ns : R → R, with |ns(t)| ≤ n̄s, there exists
Φ > 0, with the update of Φ modified such that Φ(t, j) ≥ Φ,
for all (t, j) ∈ dom Φ, the set A is semiglobally practically
asymptotically stable on Φ > 0 forHcl. �

6. SIMULATIONS RESULTS

In this section we show the results of different simulations of
the proposed hybrid controller to the minimization of a convex
quadratic function.

Fig. 1 illustrates the level sets of the quadratic convex function
f(x) = x21 + 5x22, (10)

where x = col(x1, x2). The trajectory of a point-mass vehicle,
steered by the proposed hybrid controller in order to minimize
(10), is superimposed to the level sets of (10), showing the
value of f(x) at each corresponding point of the trajectory.
The control input was chosen as K(x, xc, τ

?) = p∆v/τ?.
The tunable parameters of the controller were defined as γ =
1.2, θ = 0.5, δdet = 0.001, µ = 0.15, λs = 0.001, λt = 5.
It can be noticed as in both Fig. 1(a) and Fig. 1(b), the distance

(a) x trajectory versus the level sets of
a quadratic convex function. (b) x and f(x) trajectories.

Fig. 1. Plot of the trajectories of x and f(x), where f(x) = x21+
5x22. (a) Shows the vehicle path (blue with ‘*’ where jump
occurs) on the level sets of f . The initial point is indicated
with a green ‘*’ and the unique minimizer (0, 0, 0) with a
red ‘*’. (b) Shows the evolution of x and f(x) as function
of time.

to the minimizer tends asymptotically to zero as the step size
converges to zero.

In Fig. 2 we show a comparison of the x-trajectories ofHcl for
a point-mass vehicle in case measurement noise affecting (10)
are considered. In Fig. 2(a)-2(b) no lower bound on Φ and no
measurement noise is assumed, the x-trajectory indeed behaves
similarly to the one in Fig. 1, converging asymptotically to
the minimum x? = (0, 0). In Fig. 2(c)-2(d) no lower bound
on Φ is assumed, but a measurement noise ns(t, j), upper
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bounded by n̄s = 0.04 on f is considered. We highlight how
the effect of the noise tricks the hybrid controller into steering
the x-subsystem away from the minimum. This behavior can
be seen in the plot of f(x) in Fig. 2(d) after about 20 seconds
of simulation. In Fig. 2(e)-2(f) the same measurement noise is
assumed, but Φ = 40 is chosen, implying ∆j ≥ 0.4 for all time.
The imposed lower bound on Φ compensates the effects of the
measurement noise, stabilizing the state x in a neighborhood of
the minimum.

(a) x trajectory versus the level sets (10)
assuming no lower bound on Φ and no
measurement noise.

(b) x and f(x) trajectories.

(c) x trajectory versus the level sets
(10) assuming no lower bound on Φ but
measurement noise added to f .

(d) x and f(x) trajectories.

(e) x trajectory versus the level sets
(10) assuming a lower bound on Φ and
measurement noise added to f .

(f) x and f(x) trajectories.

Fig. 2. Comparison of the plots of the trajectories of x(t, j)
and f(x(t, j)), where f(x) = x21 + 5x22, under different
assumptions on measurement noise and Φ. (a),(c) and (e)
show the vehicle path (blue with ’*’ where jump occurs)
on the level sets of f . The initial point is indicated with
a red ’*’ and the unique minimizer (0, 0, 0) with a green
’*’. (b),(d) and (f) show the evolution of x and f(x) as
function of time.

7. CONCLUSION

This paper presents an extension of the results in Mayhew
et al. (2007). In particular, an hybrid controller based on a
modified RSP algorithm, which optimizes an objective function

without gradient information, and that is able to achieve almost
global asymptotic stability of the closed loop composed by the
controller and a particular class of continuous-time dynamical
systems is proposed. As direct search methods are not robust to
measurement noise, a modified practical scheme is proposed,
showing how a trade-off between asymptotic convergence and
robustness is inevitable for this class of algorithms. Simulations
results are provided to validate the proposed approach. Future
developments include the extension of the proposed controller
to the multiagent scenario, in order to efficiently exploit the
parallel subspace property, and to more general objective func-
tions, e.g. to nonsmooth functions, as well as the relaxation of
the regularity of V and of the controllability assumptions on the
vehicle dynamics.
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