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Abstract: We consider a scenario in which an autonomous agent carries out a mission in a stochastic
environment while passively observed by an adversary. For the agent, minimizing the information leaked
to the adversary regarding its high-level specification is critical in creating an informational advantage.
We express the specification of the agent as a parametric linear temporal logic formula, measure the
information leakage by the adversary’s confidence in the agent’s mission specification, and propose
algorithms to synthesize a policy for the agent which minimizes the information leakage to the adversary.
In the scenario considered, the adversary aims to infer the specification of the agent from a set of
candidate specifications, each of which has an associated likelihood probability. The agent’s objective
is to synthesize a policy that maximizes the entropy of the adversary’s likelihood distribution while
satisfying its specification. We propose two approaches to solve the resulting synthesis problem. The
first approach computes the exact satisfaction probabilities for each candidate specification, whereas the
second approach utilizes the Fréchet inequalities to approximate them. For each approach, we formulate
a mixed-integer program with a quasiconcave objective function. We solve the problem using a bisection
algorithm. Finally, we compare the performance of both approaches on numerical simulations.

Keywords: Mission planning and decision making, Trajectory and Path Planning, Autonomous Mobile
Robots.

1. INTRODUCTION

In environments where privacy and security concerns are of
paramount importance, the ability of an agent to deceive an
adversary regarding its specification is critical in creating an
informational advantage. Pertinent environments for deceptive
policies include military operations (Lloyd (2003)), criminal
justice (Skolnick (1982)), and cybersecurity (Carroll and Grosu
(2011)). We explore the concept of deception through the lens
of minimizing the information leaked to an adversarial observer
regarding the agent’s high-level specification.

Specifically, we consider an autonomous agent operating in an
environment while being passively observed by an adversary.
We assume that both the agent and the adversarial observer have
knowledge of a set of specifications. From this set, the agent
maintains a secret ground-truth specification, i.e., the specifi-
cation that the agent actually seeks to satisfy. The adversarial
observer attempts to infer the ground-truth specification based
on the trajectories of the agent. The agent must behave in such a
way as to prevent the adversary from inferring its ground-truth
specification. By doing so, the agent may inhibit the adversarial
observer from optimally allocating its resources towards pre-
venting the satisfaction of the ground-truth specification.

Consider an autonomous agent that must deliver supplies to one
of three possible locations, denoted A, B, and C. The set of
candidate specifications for the agent is {deliver to A, deliver
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to B, deliver to C}. The agent’s ground-truth specification is
{deliver to C}. Although the agent need only travel to C
to complete this specification, doing so makes it apparent to
an observer that {deliver to C} is the agent’s ground-truth
specification. Instead, the agent should travel to each possible
location with an equal probability. By doing so, the adversarial
observer cannot leverage these probabilities towards inferring
which candidate specification is the ground-truth specification.

We develop a method for an autonomous agent to synthesize
a policy satisfying the agent’s ground-truth specification with a
desired probability while also leading an adversarial observer to
infer that each candidate specification is equally likely to be the
ground-truth specification. We model the agent’s behavior as a
Markov decision process (MDP) (Puterman (2014)). MDPs are
commonly used to model planning and acting in stochastic en-
vironments with nondeterministic action selection. Numerous
methods exist to synthesize policies for MDPs, which resolve
the nondeterminism by prescribing probability distributions for
action selection.

To model the agent’s specifications, we use parametric linear
temporal logic (pLTL) (Chakraborty and Katoen (2014); Alur
et al. (2001)). Standard linear temporal logic (LTL) allows for
the formal expression of specifications related to the occurrence
of events, causality between events, and the ordering of suc-
cessive events (Baier and Katoen (2008)). pLTL extends LTL
by introducing parameterized temporal operators, which allows
specifications to be expressed over particular time horizons. We
focus on the class of syntactically co-safe pLTL specifications,
which can be satisfied in finite time (Xu et al. (2019)).
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We assume that the adversarial observer assigns a likelihood
probability to each candidate according to a simple averag-
ing rule, and set the objective of the agent as maximizing
the entropy of the adversary’s likelihood distribution. The
information-theoretic concept of entropy (Cover and Thomas
(2012)) measures the average uncertainty of a random variable,
an ideal measure for the task at hand. We propose two methods
to solve the resulting synthesis problem. The first method ex-
actly computes the probabilities that each specification is com-
pleted, which we formulate as a quasiconcave mixed-integer
program (MIP) and solve using a bisection method. The ex-
act solution method faces an exponential blow-up in the state
space as a function of the number of candidate specifications.
The second method we propose avoids the state-space blowup
by instead using lower bounds for the probabilities that each
specification is satisfied. However, because these probabilities
are a conservative estimate, the approximate solution method
may indicate that fewer specifications are satisfiable compared
to the the exact solution method. We formulate this method as
an MIP and again solve using a bisection method.

The challenge in synthesizing an exact solution for our problem
is analogous to the difficulty of synthesizing policies for multi-
agent systems with high-level task specifications. To combat the
state-space explosion of these multi-agent problems, Menghi
et al. (2018), for example, decentralizes the synthesis problem
amongst each individual agent, while Maliah et al. (2017)
does so in a privacy-preserving manner. Alternatively, Ulusoy
et al. (2013) utilizes a depth-first search to consider only the
relevant states. For the types of temporal logic specifications we
consider, our approximate solution method likewise provides a
process to avoid such an explosion in the state-space.

Recently, the works of Savas et al. (2019) and Karabag et al.
(2019) focused on synthesizing policies that are either unpre-
dictable or difficult for an adversarial observer to infer. These
studies focused on the low-level actions rather than on the
high-level specifications as we do. Inferring temporal logic
formulas has been extensively studied. For example, Neider
and Gavran (2018) inferred LTL properties classifying a la-
beled set of trajectories. Similarly, Xu and Julius (2019) con-
sider privacy-preserving temporal logic inference, while Xu and
Topcu (2019) consider temporal logic inference in the con-
text of reinforcement learning. As for the inference of pLTL
specifications, Xu et al. (2019) inferred pLTL formulas from
a set of trajectories that was informative with respect to prior
knowledge. As opposed to these studies, we seek to make the
inference problem as difficult as possible for the observer.

2. PRELIMINARIES

Notation. We denote the set {1, 2, . . .} of natural numbers and
the set (−∞,∞) of real numbers by N and R, respectively. For
a given logical formula,> and⊥ denote that the formula is true
and false, respectively. For a set S, we denote its power set by
2S . Finally, for N∈N, we denote the set {1, 2, . . . , N} by [N ].

2.1 Markov Decision Processes

Definition 1. A Markov decision process (MDP) is defined
by the tuple M=(S, s0,A,P,AP,L) where S is a finite set
of states, A is a finite set of actions, s0 is a unique ini-
tial state, P:S×A×S→[0, 1] is a transition function such that∑
s′∈S P(s, a, s′)=1 for all a∈A and s∈S, AP is a set of

atomic propositions, and L:S→2AP is a labeling function.

We denote the transition probability P(s, a, s′) by Ps,a,s′ . The
size of an MDP is the number of triples (s, a, s′)∈S×A×S in
which Ps,a,s′>0.
Definition 2. A policy π for an MDP M is a sequence
π=(d1, d2, d3, . . .) where each dt:S×A→[0, 1] is a mapping
such that

∑
a∈A dt(s, a)=1 for all s∈S. For an MDP M, we

denote the set of all admissible policies by Π(M).

A stationary policy satisfies π=(d1, d1, d1, . . .). We denote the
probability of choosing an action a∈A in a state s∈S under a
stationary policy π by π(s, a).

For an arbitrary length L∈N, we refer to a sequence of states
%π,s0s1 . . . sL generated in M under a policy π∈Π(M) as
a trajectory, which starts from the initial state s0 and satisfies∑
at∈A dt(st, at)Pst,at,st+1

>0 for all 0≤t<L.

2.2 Parametric Linear Temporal Logic

Following Chakraborty and Katoen (2014), the syntax of para-
metric linear temporal logic (pLTL) is defined recursively as

φ ,> | p | ¬φ | φ1 ∧ φ2 | ©φ | φ1Uφ2 | ♦∼iφ,
where p is an atomic proposition, ¬ and ∧ stand for negation
and conjunction, respectively,© and U are temporal operators
representing “next” and “until”, respectively, 3∼i is a param-
eterized temporal operator representing “ parameterized even-
tually”, where ∼∈{≥,≤}, and i∈N is a temporal parameter.
We recursively define the logical connective ∨ (disjunction),
and temporal operators 3 (eventually), 2 (always), 2∼i (pa-
rameterized always) and U∼i (parameterized until) from the
aforementioned operators (Chakraborty and Katoen (2014)).
Furthermore, for i1<i2, we define the parameterized tempo-
ral operators 3[i1,i2] and 2[i1,i2] such that, for a formula φ,
3[i1,i2]φ = 3≥i1φ ∧3≤i2φ and 2[i1,i2]φ = 2≥i1φ ∧2≤i2φ.

For an MDP M under a policy π∈Π(M), a trajectory
%π=s0s1 . . . sL generates a word wπ,w0w1 . . . wL, where
wk=L(sk) for all 0 ≤k≤L. For a pLTL formula φ and a trajec-
tory %π at time index k≤L, the satisfaction relation (wπ, k) |=
φ is defined recursively as

(wπ, k) |= p iff p ∈ L(sk),

(wπ, k) |= ¬φ iff (wπ, k) 6|= φ,

(wπ, k) |= φ1 ∧ φ2 iff (wπ, k) |= φ1

and (wπ, k) |= φ2,

(wπ, k) |=©φ iff (wπ, k + 1) |= φ,

(wπ, k) |= φ1Uφ2 iff ∃k′ ≥ k, (wπ, k′) |= φ2,

and ∀k′′ ∈ [k, k′], (wπ, k′′) |= φ1,

(wπ, k) |= 3∼iφ iff ∃k′ ∼ k + i, (wπ, k′) |= φ.

If the satisfaction relations are evaluated at time index k = 0,
then we simply write wπ |= φ. For an scpLTL formula φ, the
set {%π:wπ|=φ} is measurable (Baier and Katoen (2008)). We
denote PrπM(w|=φ) as the probability that a word w, generated
by an MDP M under a policy π∈Π(M), satisfies a pLTL
formula φ; i.e., w∈{%π : wπ |= φ}.
As discussed in Xu et al. (2019), syntactically co-safe pLTL
(scpLTL) formulas are a special class of pLTL formulas that
can be satisfied by words of finite length. The syntax of scpLTL
is defined recursively as

φ ,> | π | ¬π | φ1 ∧ φ2 | φ1 ∨ φ2 | ©φ | 3φ | φ1Uφ2

| 3∼iφ | 2≤iφ | φ1U∼iφ2.
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Because scpLTL is a restriction of pLTL, the satisfaction rela-
tion of scpLTL formulas can be derived from the satisfaction
relation of general pLTL formulas.

3. PROBLEM FORMULATION

We consider an agent operating in a stochastic environment
whose behavior is modeled by an MDP. The agent aims to com-
plete a task, expressed as a ground-truth scpLTL specification
φ?, with desired probability Γ∈(0, 1), while in the presence of
an adversarial observer. The adversary aims to infer the task
of the agent through observations of its trajectory. Aware of
the adversary’s objective, the agent aims to complete its task
with the desired probability while simultaneously minimizing
the information leaked to the adversary about the task.

Let φ , {φ1, φ2, . . . , φN} be a set of scpLTL specifications
such that φ?∈φ. The adversary has a finite set φcan⊆φ of
candidate scpLTL specifications, which it uses to describe the
task of the agent. In particular, let β∈(0, 1) be a constant
candidacy threshold, and π∈Π(M) be the agent’s policy. An
scpLTL specification φi∈φ is a candidate, i.e., φi∈φcan, if and
only if PrπM(w|=φi)≥β. In other words, a specification is a
candidate if the trajectories followed by the agent satisfy the
specification with at least probability β.

We assume that, to each candidate specification φi∈φcan, the
adversary assigns a likelihood probability

Pr(φi = φ?|φi ∈ φcan) ,

PrπM(s0 |= φi)I{φi ∈ φcan}∑
φi∈φ PrπM(s0 |= φi)I{φi ∈ φcan}

(1)

where I{s∈S} is an indicator function such that I{s∈S},1

if s∈S and I{s∈S},0 otherwise. The probability assignment
(1) is a simple averaging rule representing the adversary’s con-
fidence in the candidate being the ground-truth specification.
The adversary may also measure its confidence level using a
distribution different from (1); e.g., Boltzmann distribution. In
that case, the solution techniques introduced in this paper can
still be utilized to synthesize a policy minimizing the adver-
sary’s information about the task. However, depending on the
distribution, the synthesis of such a policy may require one to
employ different computational methods.

We use the adversary’s certainty on the ground-truth specifi-
cation as the measure of the information leakage. For a given
policy π∈Π(M), let PrM,π,φi,Pr(φi=φ?|φi∈φcan). We mea-
sure the adversary’s uncertainty on the specification φ? by the
entropy

Hπ(φcan) , −
∑

φi∈φcan

PrM,π,φi log PrM,π,φi (2)

of the distribution Pr(φi=φ?|φi∈φcan). The rationale behind
this choice can be better understood by recalling that the en-
tropy of a random event is the lower bound on the average num-
ber of bits required to describe the outcomes of the event (Cover
and Thomas (2012)). Moreover, this lower bound is maximized
when the probability distribution associated with the event is
uniform. By following a policy maximizing Hπ(φcan), the
agent satisfies all candidate specifications φi∈φcan with similar
probabilities, making it more difficult for the adversary to guess
the ground-truth specification φ? with high confidence.
Problem 1. Given an MDP M, a set of candidate scpLTL
formulas φ={φ1, φ2, . . . , φN}, a ground-truth formula φ∗∈φ,

and constants Γ, β∈(0, 1) such that Γ≥β, synthesize a policy
π∈Π(M) that solves the following problem:

maximize
π∈Π(M)

Hπ(φcan) (3a)

subject to: PrπM(w |= φ?) ≥ Γ (3b)
φi ∈ φcan ⇐⇒ PrπM(w |= φi) ≥ β (3c)

Intuitively, a policy solving (3a)-(3c) maximizes the uncer-
tainty of the adversary about the agent’s task while ensuring
that the agent completes the task with desired probability.

4. AN EXACT SOLUTION METHOD

We now present an exact solution method for the problem
defined in (3a)-(3c). First, we construct a product MDP on
which the satisfaction probability of each specification φi∈φ
can be verified. We then formulate a nonlinear optimization
problem on this product MDP, whose solution provides a policy
solving the problem defined in (3a)-(3c).

4.1 Product MDP

We construct a product MDP in three steps. First, we con-
struct a deterministic finite automaton for each specification φi.
Second, we form an expanded MDP whose state labels track
the stage number of the underlying process. Finally, we take
the product of the expanded MDP with each of the automata
constructed in the first step.

For any scpLTL specification φi with fixed parameters, one
can construct a deterministic finite automaton with the input
alphabet 2AP which accepts a word wπ if and only if (iff)
wπ satisfies the specification φi, i.e., wπ|=φi (Kupferman and
Vardi (2001)).
Definition 3. A deterministic finite automaton (DFA) is a tuple
A=(Q, q0,2

AP ,δ,F), where Q is a finite set of states, q0 is a
unique initial state, 2AP is an alphabet, δ :Q×2AP→Q is a
transition function, and F⊆Q is a finite set of accepting states.

For a given scpLTL formula φi∈φ, we denote its corresponding
DFA by Aφi . Without loss of generality (w.l.o.g.), we assume
that the accepting states F of Aφi are absorbing, i.e., δ(q, p)=q
for all q∈F and p∈2AP . We do not lose generality since an
input word is accepted by a DFA Aφi iff it has a finite prefix
that reaches an accepting state on Aφi . The continuation of the
word after that prefix has no effect on its acceptance by Aφi .

We modify a given DFA Aφi by augmenting Q with a terminal
state qti which is absorbing and reachable only from the states
in F . Specifically, the modified DFA Aφi has the finite set of
states Q,Q ∪ {qti}, with a transition function δ:Q × 2AP→Q
defined by δ(q, p) , qti if q∈F∪{qti} and δ(q, p) otherwise.
In Fig. 1, we provide an example construction of the modified
DFA Aφi for the scpLTL formula φi=�≤2¬a where {a}∈Σ.

We now form the expanded MDP whose state labels tracks the
stage number of the underlying process so that the satisfaction
of a given scpLTL specification can be verified.
Definition 4. Let M=(S, s0,A,P,AP,L) be an MDP and
[T ],{1, 2, . . . , T } be an index set. The expanded MDP
M×[T ]=(S[T ], s

[T ]
0 ,A,P [T ],L[T ],AP [T ]) is a tuple where

S[T ] = S × [T ], s[T ]
0 = (s0, 1), P [T ]((s, t), a, (s′, t′))=Ps,a,s′

if t<T and t′=t+1, Ps,a,s′ if t=T and t′=t, and 0 otherwise,
L[T ]((s, t)) = L(s) ∪ {t}, and AP [T ] = AP ∪ [T ].
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q0 q1 q2

q3

¬a

a
a

¬a
1

1

q0 q1 q2

q3

qti
¬a

a
a

¬a 1

1

1

Fig. 1. An example construction of the modified DFA Aφi for
the scpLTL specification φi=�≤2¬a. (Left) The nominal
DFA Aφ where q2∈F is the only accepting state. (Right)
The modified DFA Aφ.

We note that by choosing 2AP
[Ti] instead of 2AP as the input

alphabet Σ, one can dramatically decrease the number of states
in the DFA Aφi . In Fig. 2, we demonstrate the significance of
the input alphabet on the size of a DFA corresponding to the
formula φi=�≤m¬a. To reduce the size of the state-space in
the solution of the problem (3a)-(3c), we verify the satisfaction
of a given formula φi overM×[Ti] instead ofM.

To verify if the probability that the trajectories followed by an
agent onM×[Ti] satisfies a specification φi exceeds a desired
threshold, one can construct a product MDP and verify whether
the agent’s trajectories reach the accepting states of the product
MDP with desired probability. Note in the following definition
that we abuse the notation for the expanded MDPM×[Ti].
Definition 5. Let M×[Ti]=(S, s0,A,P,AP,L) be an ex-
panded MDP and Aφi=(Qi, q

i
0, 2
AP , δi,Fi) be a modified

DFA. The product MDP M×[Ti]×Aφi=(Sp, s0p ,A,P,AP ,
Lp,Fp) is a tuple where Sp=S×Qi, s0p = (s0, q) such that q =

δi(q
i
0,L(s0)), P((s, q), a, (s′, q′))=Ps,a,s′ if q′=δi(q,L(s′))

and 0 otherwise, Lp((s, q)) = {q}, and Fp=S ×Fi.

A product MDP M× [Ti] × Aφi may contain states that are
not reachable from the initial state. Unreachable states have no
effect in the analysis of the MDP. These states can be found in
time polynomial in the size ofM× [Ti]×Aφi by graph search
algorithms, e.g., breadth-first search, and can subsequently be
removed from the product MDP w.l.o.g. We hereafter assume
that there is no unreachable state inM× [Ti]×Aφi .
For a given specification φi with a fixed parameter set pi, let
Ti,maxpi be the maximum element of pi, e.g., pi={4, 8} and
Ti=8 for φi=�≤4a ∧ ♦≥8b. We note that for nested formulas,
the parameter set can be defined recursively. As an example,
for φi=♦[a,b]�[c,d]p, letting φj,�[c,d]p, we have pj={c, d},
and pi={a + c, a + d, b + c, b + d}. For an MDP M and a
set φ={φ1, φ2, . . . , φN} of specifications, we form the prod-
uct MDPMp,M×[T ]×Aφ1

×Aφ2
×. . .×AφN by recursively

applying Definition 5, where T ,maxi∈[N ] Ti. In this construc-
tion, the input alphabet to each DFA Aφi is 2AP

[T ]

.

q0 q1 . . . qm−1 qm

qm+1

¬a ¬a ¬a

a
a a

¬a

1
1

q0 q1

q2

¬a ∧ (t < m)

¬a ∧ (t ≥ m)

a

1
1

Fig. 2. The effect of the input alphabet on the size of the au-
tomaton for the scpLTL specification φi=�≤m¬a where
m∈N is a constant. (Left) The DFA has the input alphabet
2{a}. (Right) The DFA has the input alphabet 2{a}∪[m].

4.2 Policy Synthesis: An Optimization Problem

After constructing the product MDP Mp on which the satis-
faction probability of each specification φi can be verified, we
now provide a nonlinear optimization problem whose solution
provides a policy solving the problem defined in (3a)-(3c).

Let the tuple s,(s, t, q1, q2, . . . , qN ) denote a state inMp such
that s∈S, t∈[T ], and qi∈Qi for all i∈{1, 2, . . . , N}. We denote
the kth element of the tuple s by s[k], e.g., s[1]=s, s[2]=t,
s[3]=q1 and s[N+2]=qN . Moreover, with an abuse of notation,
we denote the transition function ofMp by P.

We partition the states ofMp into the disjoint setsB and Sp\B.
Let B be the set of states s∈Sp such that∑

s′∈Sp:s′[i+2]=s[i+2]∀i∈[N]

Ps,a,s′ = 1 (4)

for all a∈A. The setB is a collection of states s whose elements
s[k+2] correspond to the automata states qk that are absorbing.
Once a state s∈B is reached by the agent, we know that each
specification φi is either satisfied or violated by the agent. Note
that the set B can be computed in time polynomial in the size
of Mp, as condition (4) can be verified by simply checking
whether the automata elements of a state are absorbing or not.

We assume w.l.o.g. that φ1=φ?, i.e., φ1 is the ground-truth
specification φ?. Let α:Sp→[0, 1] be a function such that
α(s0p)=1 and α(s0p)=0 otherwise, i.e., α is the initial state
distribution ofMp. The optimization problem is given as:

maximize
λ(s,a),x(i)

−
∑
i∈[N ]

ν(i)∑
j∈[N ] ν(j)

log

(
ν(i)∑

j∈[N ] ν(j)

)
(5a)

subject to:

∀s ∈ Sp\B,
∑
a∈A

λ(s, a)−
∑
s′∈Sp

∑
a∈A

Ps′,a,sλ(s′, a) = α(s)

(5b)

∀i ∈ [N ], µ(i) =
∑

s∈Sp: s[i+2]∈Fi

∑
a∈A

λ(s, a) (5c)

µ(1) ≥ Γ (5d)
∀i ∈ [N ], µ(i) ≥ βx(i) (5e)
∀i ∈ [N ], ν(i) = µ(i)x(i) (5f)
∀s ∈ Sp,∀a ∈ A, λ(s, a) ≥ 0 (5g)
∀i ∈ [N ], x(i) ∈ {0, 1} (5h)

The decision variables in the above optimization problem are
λ(s, a) for each s∈Sp and a∈A, and x(i) for each i∈[N ].
The variables µ(i) and ν(i) are functions of λ(s, a) and x(i),
defined in (5c) and (5f), respectively, to simplify the notation.
The variable λ(s, a) corresponds to the expected number of
times the state-action pair (s, a) is visited (Etessami et al.
(2007)). In particular, we have the relation

λ(s, a) =

∞∑
t=1

PrπMp
(St = s, At = a|S1 = s0p) (6)

where the policy π∈Π(Mp) is defined as

π(s, a) ,

{
λ(s,a)∑

a′∈A
λ(s,a′)

if
∑
a′∈A λ(s, a′) > 0

1/|A| otherwise.
(7)

For more details on the variable λ(s, a), we refer the reader to
(Puterman, 2014, Chapter 6), (Altman, 1999, Chapter 2), and
Etessami et al. (2007). Finally, the binary variable x(i), under
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the constraints (5b)-(5h), satisfies the relation that x(i)=1 if
PrπM(w |= φi)≥β and 0 otherwise.

Constraint (5b) is traditionally referred to as the “flow con-
straint” (Etessami et al. (2007)), which ensures that the number
of times the agent leaves a state is equal to the number of times
it enters that state. Constraint (5c) defines the variable µ(i),
the probability of reaching an accepting state of the automaton
Aφi . Although the variable λ(s, a) is the expected number of
visits to (s, a), because we use the modified automaton Aφi in
the product MDPMp, λ(s, a) corresponds to the reachability
probability for states s satisfying s[i+ 2]∈Fi. Constraints (5d)
and (5e) ensure, respectively, that the ground-truth specification
φ1 is satisfied by at least probability Γ, and that if x(i)=1, we
have φi∈φcan. Constraint (5f) defines the variable ν(i), which
is equal to the satisfaction probability of the specification φi if
x(i)=1 and zero otherwise. Finally, constraints (5g) and (5h)
define the feasible domains of the decision variables.

The objective function (5a) is the entropy of the probability
distribution ν(i)/

∑
j∈[N ] ν(j), which, under the constraints

(5b)-(5h), is equal to the right hand side of (1). Specifically,
it can be seen from the constraints (5c)-(5f) that we have
ν(i)=PrπM(w |= φi)I{φi∈φcan}.
We note that, once an optimal solution λ?(s, a) to the prob-
lem (5a)-(5h) is computed, one can obtain an optimal policy
π?∈Π(Mp) on the product MDP Mp using the construction
given in (7). Then, using the one-to-one correspondence be-
tween the policies onM andMp (see, e.g., Baier and Katoen
(2008),Wolff et al. (2012)), we can finally construct a policy on
M, which solves the problem (3a)-(3c).

4.3 Policy Synthesis: A Solution Approach

The nonlinear optimization problem (5a)-(5h) has a structure
which we can exploit to utilize off-the-shelf optimization tool-
boxes to obtain a global optimal solution. We now provide an
algorithm, based on a bisection method (Boyd and Vanden-
berghe (2004)), that allows the utilization of such toolboxes.

We begin with the exact relaxation of the constraint (5f). Note
that (5f) is a bilinear constraint since both µ(i) and x(i) are
variables in the optimization problem. Such constraints are not
handled by most off-the-shelf toolboxes. However, recalling
that µ(i) represents the probability of reaching an accepting
state of the automaton Aφi , we know that 0 ≤ µ(i) ≤ 1. Using
this additional information, we can replace each constraint
(5f), with its corresponding McCormick envelope (McCormick
(1976)), given by the following inequalities

ν(i) ≥ 0, ν(i) ≤ x(i), (8)
ν(i) ≤ µ(i), ν(i) ≥ x(i) + µ(i)− 1. (9)

Note that, using these inequalities, we have ν(i)=0 if x(i)=0,
and ν(i)=µ(i) if x(i)=1. Therefore, the relaxation of the
constraint (5f) with the above inequalities is exact. Moreover,
since the above constraints are affine in the variables µ(i) and
x(i), they can now be handled by off-the-shelf toolboxes.

Next, we utilize the quasiconcavity of the objective function in
(5a) in the variables ν(i). A quasiconcave function is formally
defined below. For additional details on convex sets and func-
tions, we refer the reader to Boyd and Vandenberghe (2004).
Definition 6. (Boyd and Vandenberghe (2004)) A function
g:D→R is called quasiconcave if its domain D and all its
superlevel sets Ωθ,{x ∈ D : g(x) ≥ θ} for θ∈R are convex.

Let ν,[ν(1), ν(2), . . . , ν(N)] be a vector of variables ν(i) for
i∈[N ], and f :RN+ → R be a function such that

f(ν) , −
∑
i∈[N ]

ν(i)∑
j∈[N ] ν(j)

log

(
ν(i)∑

j∈[N ] ν(j)

)
.

The function f(ν) is not concave, as shown in Fig. 3 for
ν∈[0, 1]2. By defining functions f1:RN+→R and f2:RN+→R
such that

f1(ν) , −
∑
i∈[N ]

ν(i) log

(
ν(i)∑

j∈[N ] ν(j)

)
, f2(ν) ,

∑
j∈[N ]

ν(j),

we obtain the relation f(ν)=f1(ν)/f2(ν). Convexity of the
sublevel set Ωθ,{ν∈RN+ :f(ν)≥θ} for any θ∈R follows from
the fact that f1(ν)≥θf2(ν) defines a convex region since the
functions f1(ν) and f2(ν) are, respectively, concave and affine
over their domains (Boyd and Vandenberghe (2004)). We thus
conclude the quasiconcavity of f(ν) from Definition 6.

We are now ready to introduce an iterative algorithm for the
solution of (5a)-(5h), which is a variant of the bisection method
for quasiconcave optimization (Algorithm 4.1 in Boyd and
Vandenberghe (2004)). Let v? be the optimal value of the
problem in (5a)-(5h), and u∈R be an arbitrarily large constant
which satisfies u≥v?. Moreover, let l∈R be a constant such
that l≤v?, e.g., l=0. At each iteration of the algorithm, we set
θ,(u+ l)/2 and solve the feasibility problem given in (10). If
the problem has a feasible solution, in the next iteration of the
algorithm, we set u,θ, otherwise, we set l,θ. The algorithm
terminates when the stop condition u − l≤ε is satisfied, where
ε>0 is a constant tolerance parameter.

find θ

subject to: f1(ν) ≥ θf2(ν)

ν = [ν(1), ν(2), . . . , ν(N)]

(5b), (5c), (5d), (5e), (5g), (5h), (8), (9)

(10)

As mentioned in Section 4.2, an optimal policy π?∈Π(Mp) on
the product MDP Mp can be obtained using the construction
given in (7), once an optimal solution λ?(s, a) to the problem
(5a)-(5h) is computed using the algorithm defined in (10).

5. AN APPROXIMATE SOLUTION METHOD

Although the method presented in Section 4 provides an exact
solution to the Problem 1, it requires one to form the product
MDP, which is the product of the expanded MDP with the au-
tomata corresponding to each specification φi. The construction
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Fig. 3. The function f(ν) is not concave. However, f(ν) has a
different useful property, which is quasiconcavity.
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of the product MDP is, in general, a computationally expen-
sive operation; therefore, for practical purposes, it is desirable
to develop algorithms that synthesize policies directly on the
expanded MDP. Focusing on a subset of scpLTL specifications,
we now present a method that conservatively approximates the
satisfaction probabilities of the specifications φi and allows
one to synthesize policies on the expanded MDP. Throughout
this section, we restrict our attention to a subset of scpLTL
specifications with the following assumption.
Assumption 1. Each scpLTL specification φi∈φ we consider
has one of four possible forms: ♦[a,b]p, �[a,b]p, ♦[a,b]�[c,d]p,
or �[a,b]♦[c,d]p, where a, b, c, d∈N and p∈AP .

5.1 The Fréchet inequalities

We now present the Fréchet inequalities (Fréchet (1935);
Hailperin (1965)), which allow us to conservatively approxi-
mate the satisfaction probability of a specification φi. For each
i∈[K] where K∈N, let Ei be a logical proposition, and ei be
the probability that the proposition Ei is true. Then,

Pr
( K∧
i=1

Ei

)
≥ max

{
0,

K∑
i=1

ei − (n− 1)
}
, (11)

Pr
( K∨
i=1

Ei

)
≥ max{e1, e2, . . . , eK}. (12)

These lower bounds are the best possible bounds if nothing is
known about the events E1, E2, . . . , EK except that their prob-
abilities are e1, e2, . . . , eK , respectively (Hailperin (1965)). A
remarkable property of these lower bounds is that they are in
terms of the satisfaction probabilities ei of the subformulas Ei
only. If one can represent a logical formula E as a conjunction
or disjunction of the subformulas Ei whose satisfaction proba-
bility can be computed easily, then by ensuring that the lower
bound exceeds a desired threshold β, one can guarantee that the
formula E is satisfied with at least probability β.

In what follows, we form an expanded MDP on which, instead
of measuring the satisfaction probability of a specification φi,
we measure the satisfaction probabilities of subformulas of
φi corresponding to each time step. As an example, instead
of measuring the satisfaction probability of φi=�[1,3]p, we
measure the probability that the predicate p holds true at a
given time step 1≤t≤3. Then, using the syntax of scpLTL
specifications, we utilize these measurements to derive the
lower bound on the satisfaction probability of φi.

Recall from Section 4.1 that for a given specification φi with
a fixed parameter set pi, we have Ti=maxpi. For an MDP
M and a set φ={φ1, φ2, . . . , φN} of specifications, using Def-
inition 4, we form the expanded MDPM,M×[T +1] where
T ,maxi∈[N ] Ti. OnM, we can measure the satisfaction prob-
ability of a predicate p∈AP at time t∈[T ] by the expected num-
ber of visits to states s∈S[T+1] such that s[2]=t and p∈L(s).

To synthesize a policy π∈Π(M) on the expanded MDPM, we
solve a modified version of the problem (5a)-(5h) on the state-
space S[T +1] ofM. In particular, for each specification φi, we
replace the corresponding constraint (5c) with a series of other
constraints. Recall that the variable µ(i) in (5c) is equal to the
probability of satisfying the specification φi. Instead of using
the exact satisfaction probability, for each specification form in
Assumption 1, we introduce a set of constraints which ensure
that µ(i) is a lower bound on the actual satisfaction probability.

5.2 Additional constraints for each approximation

For each scpLTL formula considered, we now present the sets
of additional constraints that allow for the estimation of the true
satisfaction probabilities using only the expanded MDP.

•φi=♦[k1,k2]p. We first introduce the variables η(t)∈R for
each t∈N such that k1≤t≤k2. Using the syntax of pLTL spec-
ifications, we can show that the lower bound in (12) is equal to
µ(i), defined by the following constraints:∑

s∈S[T+1]:
s[2]=t, p∈L(s)

∑
a∈A

λ(s, a) = η(t), (13a)

µ(i) = max
{
η(k1), η(k1 + 1), . . . , η(k2)

}
. (13b)

In the above constraints, each variable η(t) captures the prob-
ability that the formula φi holds at the particular time step t.
To utilize the off-the-shelf toolboxes for encoding the above
constraints, we need to relax the constraint (13b). We do so by
replacing (13b) with the following set of constraints:

∀k1 ≤ t ≤ k2, µ(i) ≥ η(t); µ(i) =

k2∑
t=k1

y(t)η(t), (14a)

∀k1 ≤ t ≤ k2, y(t) ∈ {0, 1};
k2∑
t=k1

y(t) = 1. (14b)

The above relaxation is exact. In (14a), the term y(t)η(t) is
bilinear as both y(t) and η(t) are variables. However, since we
know that 0≤η(t)≤1 from (13a), by defining an extra variable
γ(t),y(t)η(t), we can represent each term γ(t) exactly with its
corresponding McCormick envelope given in (8)-(9).

•φi=�[k1,k2]p. We first introduce the variables η(t)∈R for
each t∈N such that k1≤t≤k2. Using the syntax of pLTL spec-
ifications, we can show that the lower bound in (11) is equal to
µ(i), defined by the following constraints:∑

s∈S[T+1]:
s[2]=t, p∈L(s)

∑
a∈A

λ(s, a) = η(t), (15a)

µ(i) = max

{
0,

k2∑
t=k1

η(t)− (k2 − k1)

}
. (15b)

To utilize the off-the-shelf toolboxes for encoding the above
constraints, we need to relax the constraint (15b). We do so by
replacing (15b) with the following set of constraints

µ(i) ≥ 0; µ(i) ≥

(
k2∑
t=k1

η(t)− (k2 − k1)

)
, (16a)

y ∈ {0, 1}; µ(i) = y

(
k2∑
t=k1

η(t)− (k2 − k1)

)
. (16b)

The above relaxation is exact, but it involves the bilinear
terms yη(t). However, once again, by introducing new vari-
ables γ(t),yη(t), we can represent each term γ(t) exactly
with its corresponding McCormick envelope given in (8)-(9).
•φi=♦[k1,k2]�[k3,k4]p. We first introduce the variables η(t)∈R
for each t∈N such that k1+k3≤t≤k2+k4, and ζ(m) for each
m∈N such that k1≤m≤k2. Using the syntax of pLTL specifi-
cations and both of the bounds in (11)-(12), we can obtain a
lower bound µ(i) on the satisfaction probability of φi using:
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∑
s∈S[T+1]:

s[2]=t, p∈L(s)

∑
a∈A

λ(s, a) = η(t), (17a)

ζ(m) = max

{
0,

m+k4∑
t=m+k3

η(t)− (k4 − k3)

}
, (17b)

µ(i) = max
{
ζ(k1), ζ(k1 + 1), . . . , ζ(k2)

}
. (17c)

We can perform the relaxation of the constraints in (17b)-(17c)
by introducing new binary variables and subsequently using the
corresponding McCormick envelopes as previously explained
in the relaxation of the specifications ♦[k1,k2]p and �[k1,k2]p.

• φi=�[k1,k2]♦[k3,k4]p. We first introduce the variables η(t)∈R
for each t∈N such that k1+k3≤t≤k2+k4, and ζ(m) for each
m∈N such that k1≤m≤k2. Using the syntax of pLTL specifi-
cations and both of the bounds in (11)-(12), we can obtain a
lower bound µ(i) on the satisfaction probability of φi using:∑

s∈S[T+1]:
s[2]=t, p∈L(s)

∑
a∈A

λ(s, a) = η(t), (18a)

ζ(m) = max
{
η(m+ k3), . . . , η(m+ k4)

}
, (18b)

µ(i) = max

{
0,

k2∑
m=k1

ζ(m)− (k2 − k1)

}
. (18c)

Again, we perform the relaxation of the constraints in (18b)-
(18c) by introducing new binary variables and using the corre-
sponding McCormick envelopes as explained in the relaxation
of the specifications ♦[k1,k2]p and �[k1,k2]p.

Finally, after replacing each constraint (5c) in (5a) with its
corresponding set of constraints introduced in this section, we
solve the resulting nonlinear optimization problem using the
bisection method presented in Section 4.3.

6. NUMERICAL EXAMPLES

We now provide several examples to demonstrate the efficacy
of the proposed solution methods. For each example, we use a
tolerance of ε=1×10−4 for the bisection method. We use the
GUROBI solver with the CVX (Grant and Boyd (2014)) inter-
face to solve the exact and approximate optimization problems.

6.1 A Resupply Mission

We first consider an autonomous agent operating on the grid-
world shown in Fig. 4. The colored states represent different
bases that the agent can travel to. The agent’s mission is to
resupply the blue base, which we encode as the pLTL formula
“�[a,b]blue”; i.e., the agent must reach the blue base at a speci-
fied time a and remain there until its supplies are unloaded after

I

S1

O1 O2

O3O4

Fig. 4. (Left) Gridworld considered in the resupply mission.
(Right) MDP considered in the surveillance mission.

Table 1. Sets of specifications used for the exam-
ples. φ∗ indicates the ground-truth specification.

Example Specifications
Resupply-1 φ∗:�[9,10]blue, φ2:�[29,30]red

Resupply-2 φ∗:�[9,10]blue, φ2:�[16,18]yellow
φ3:�[23,25]green, φ4:�[29,30]red

Surveillance φ∗:�[1,10]♦[0,5]outpost1, φ2:�[1,10]♦[0,5]outpost2
φ3:�[1,10]♦[0,5]outpost3, φ4:�[1,10]♦[0,5]outpost4

b−a time steps. Due to the presence of an adversarial observer,
the agent must additionally attempt to obfuscate which base it
actually delivers the supplies to. By doing so, the adversary is
least able to infer which base actually received the supplies.

The agent is assumed to start in the upper left corner of the
gridworld in state I . In each state, the agent can select one of
four possible actions: move left, move right, move up, or move
down. Once the agent has selected an action, it transitions to its
desired state with probability 0.99, while slipping to the left, to
the right, or backwards each with probability .01/3.

We study two cases for the specifications of the agent. We
first consider that the agent only seeks to prevent information
leakage by additionally visiting the red base. We then consider
that the agent seeks to prevent information leakage by visiting
the green and yellow bases as well. For each set of specifica-
tions, we let Γ=0.95 and β=0.8. The sets of specifications are
provided in Table 1, under “Resupply-1” and “Resupply-2”,
respectively. For each set, we run the exact and approximate
methods to solve the optimization problem (5a)-(5h).

Table 2 lists the relevant output information for each solution
method and specification set. We note that the number of vari-
ables in the optimization problem is after GUROBI completed
presolving the problem. Because of how the approximation
for specifications of the form �[a,b] was constructed, the two
solution methods have the same numbers of binary variables.
However, as the approximate solution method does not require
taking the product with each specification automaton, the num-
ber of continuous variables in its corresponding optimization
problem scales better than that of the exact solution method,
requiring less time to solve. The approximate solution method
also performs nearly as well as the exact solution method
at minimizing the information leakage about the ground-truth
specification. Both methods obtain the maximum cardinality
of the set φcan and nearly obtain the maximum-entropy upper
bounds of 1 and 2 bits for each specification set, respectively.

6.2 A Surveillance Mission

We now consider an agent that must repeatedly surveil an
outpost containing sensitive information on the boundary of
its base. Specifically, the agent operates on the MDP shown
in Fig. 4, where four outposts surround the central base. We
assume that the adversarial observer does not know which of the
outposts contains the sensitive information. For this reason, the
agent must additionally surveil the three non-sensitive outposts.
By doing so, the adversary cannot use the fact that the agent
visits an outpost towards inferring which outpost contains the
sensitive information. Thus, the adversary cannot optimally
allocate its resources towards infiltrating the correct outpost.

We assume that the agent’s initial state is in the central state
S1. In each state, the agent can either remain in its current state
or transition to a neighboring state, where it transitions with
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Table 2. Number of continuous and binary variables, solution times, probabilities of satisfaction,
resulting entropy, and the size of the set φcan for exact and approximate solution methods.

Example Num. of Var.
exact

Num. of Var.
approx.

Time
exact

Time
approx.

PrπM(w|=φ∗)
exact

PrπM(w|=φ∗)
approx., comp.

PrπM(w|=φ∗)
approx., actual

Hπ(φcan)

exact
Hπ(φcan)

approx.
|φcan|
exact

|φcan|
approx.

Resupply-1 4870 con.
1 binary

3079 con.
1 binary

9.25s 6.75s 0.950 0.950 0.971 1.000 0.999 2 2

Resupply-2 6980 con.
3 binary

3125 con.
3 binary

53.71s 25.11s 0.950 0.950 0.971 1.999 1.999 4 4

Surveillance 22209 con.
3 binary

617 con.
239 binary

148.37s 26.59s 0.950 0.951 0.991 1.999 1.999 4 4

probability 1. We again set Γ=0.95 and β=0.8, respectively.
We use the pLTL structure “�[a,b]♦[c,d]outposti” to encode the
surveillance specification; i.e., at each time step over the time
horizon, the agent must eventually visit an outpost within [c, d]
time steps. The specifications for the agent are listed in Table 1
under “Surveillance”. We again run the exact and approximate
methods to solve the optimization problem (5a)-(5h).

Table 2 shows the comparison of the output between the exact
and approximate solution methods for the set of surveillance
specifications. Although the approximate solution method uses
a large number of binary variables compared to the exact solu-
tion method, it still solves the optimization problem (5a)-(5h)
more quickly. Both solution methods perform similarly well in
minimizing the information leakage about which outpost con-
tained the sensitive information. Likewise, each method obtains
the maximum cardinality of the set φcan and nearly achieve the
upper bound on the maximum entropy of 2 bits.

7. CONCLUSIONS

We study the problem of synthesizing a policy for an au-
tonomous agent that leaks the minimum amount of information
regarding its high-level task specification to an adversarial ob-
server. We measure the information leakage as the adversary’s
confidence that a candidate mission specification is the ground-
truth mission specification. Modelling the inference problem of
the adversary as an averaging rule, we formulate the problem
of the agent as a mixed-integer program with a quasiconcave
objective function, and develop two methods for its solution.
The first method exactly computes the probability that the agent
satisfies a specification, whereas the second method approx-
imates these probabilities using the Fréchet inequalities. We
provide two numerical examples to demonstrate the efficacy of
the proposed methods in minimizing the information leakage.
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