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Abstract:  Cooperative microgrids considered the next generation of smart energy trading technology. A 
promising solution is proposed in this paper, for smart energy management of cooperative multi 
microgrids (MMGs) systems based on dual level distributed strategy, achieved by two layers model 
predictive control (MPC) for optimal operation and energy scheduling of the DERs, and energy trading 
among multi-microgrids system, with efficient economic cost reduction. We employed a distributed 
system operator (DSO) as a supervisory layer for energy trading and dynamic power balance ensuring. 
Along with the local controller as a lower layer for tracking a reference trajectory from the upper layer, we 
developed an online algorithm with a hierarchical structure to solve the energy dispatching problem within 
dual-level optimization, offering an environmental-friendly control solution, due to reduction of fuel 
consumption. Finally, simulation results are presented to witness the advantages of our distributed 
algorithm approach in comparison to a noncooperative strategy.  
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1 INTRODUCTION 

In recent years, new technologies and policies were set up to 
fight climate change and improve the use of renewable 
energy in the world. Paris deal was the world's first 
official climate agreement to propose eco-friendly solutions 
by integrating a renewable energy RES and reducing carbon 
emission. Several control techniques have been applied to 
improve the energy management of microgrids systems while 
reducing the dependency on the conventional energy source 
see (Minchala-Avila et al., 2015; Venayagamoorthy et al., 
2016).  

The main objective of the smart energy management system 
is to provide efficient distribution of controllable active 
power within an optimal energy dispatch. In (Papavasiliou et 
al. 2018)proposed a multi-stage stochastic for the storage 
system. Another work made by (Ju et al. 2018) offers a two-
layer EMS considering degradation costs of batteries. 
Recently, energy companies and R&D power institutes focus 
on the use of Model Predictive Control MPC in energy 
management and power systems modeling. In (Parisio et al. 
2017), the authors proposed a robust MPC for residential 
microgrids.  

In another work, see  (Zhai et al., 2018), authors employed 
the robust MPC for isolated microgrids optimization. Other 

enhanced approaches based on multi-layer MPC has 
introduced for islanded microgrids, see (Hajar et al., 2016; 
Legry et al., 2018), However, the previously mentioned 
methods based on centralized MPC may to the high 
computational burden time when processing a large amount 
of data from the central controller, also the high costs of 
centralized installations due to geographic details in real-
world applications. As an alternative, distributed MPC 
DMPC methods show more flexibility, where the information 
can be exchanged with efficiency between subsystems, see 
(Mehrizi-Sani 2017) and our previous work (Brahmia et al., 
2019), in which we employed  DMPC for multi-microgrids 
with a single layer optimization. In (Rezaei and kalantar 
2015), the authors proposed novel hierarchical energy 
management with the distribution system operator (DSO) for 
multi-microgrids based on dynamic frequency control 

Enthused by the above discussion, this paper presents a novel 
hierarchical optimization based on DMPC for optimal energy 
management of resilient multi microgrids operated in off-grid 
mode. To recap, the main contributions of this paper can be 
highlighted as follows    

• We proposed an innovative dual-level optimization 
within a hierarchical distributed strategy for 
cooperative multi-microgrids systems based on 
economic energy dispatch.  

• A promising solution for smart cities, and the next 
generation of intelligent microgrids, with efficient 
renewable energy utilization for cooperative MMGs.  
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• We developed a coordinated energy management 
strategy supervised by a distribution system operator 
DSO to guarantee the power demand-supply 
balance. 

• We propose a smart energy management framework 
to optimize the MMGs network in an economic-
environmental friendly framework. 

This paper focuses on the mentioned points above and is 
organized as follows. In section 2, the description of 
components model and modeling. In section 3 introduces of 
dual-level distributed MPC. In section 4, the validation 
results. In section 5, we conclude the paper with current 
achievement and future works   
 

2 SYSTEM DESCRIPTION AND MODELLING 

2.1  System Overview 

In this paper, we consider a smart cooperative microgrids 
MMGs illustrated in Fig.1. Each MG contain a renewable 
energy RESs with Wind Turbines (WT) and photovoltaic 
(PV) solar panels plus energy storage system (ESSs), a local 
load from a smart building as load demand, for example, we 
have a clinic, office building, and residential component, The 
distributed generators units (ESS, WT, PV, DG) are 
connected to a local controller (LC), All MMGs are 
connected to distributed system operator DSO which receives 
information data from MG and decides the surplus energy 
distribution among MMGs plant, The DSO consider as 
higher level, for the efficient energy dispatching while 
minimizing the operating cost of the DERs. 

 

Fig. 1. Schematic for smart cooperative MMGs 
2.2 System Modelling and Components 

2.2.1 Energy storage system 

To guarantees the energy supply and smooth intermittent of 
renewable energy, it is crucial to employ the storage system 
devices. See (Parisio, Rikos, & Glielmo, 2014). The batteries 
dynamic model is introduced as follows   

( 1) ( ) ( )b b b
i i i i bessE k E k P k t tη ε+ = + ∆ − ∆            (1)         
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the constraint (2) for the energy stored capacity to prevent 
storage system degradation.       

( )
chrdch
ii iE E k E≤ ≤                           (2) 

Where ,
chrdch
iiE E denote minimum discharge and maximum 

charging. The operation and maintenance O&M cost of the 
battery in every time interval can be expressed as follows   

( ) [2 ( ) ( )]b b b
i i i bC k z k P k OM t= − ∆                 (3) 

Wheig.re ( ) ( )b b b
i iz k P kδ= a positive value to improve the 

efficiency and flexibility of battery operation within the range 

of power charging/discharging limits [ , ]
bb
iiP P .                   

2.2.2 Load Demand Model 

In this paper, we consider two types of loads: 
 Critical load: denoted by CL

iP , refer to the load that must 
always be satisfied within the demand-supply balance for a 
specific prediction horizon; for instance, emergency lighting, 
hospital ventilator machines,  in this paper is defined as. 
Controllable load: denoted by SL

iP , consider as flexible load 
and can be controlled and scheduled for a later time, for 
example, hybrid electric vehicle charging that can be planned 
for a later time if the vehicle would not be in use soon. See 
(Nadar, 2013), the total load denoted  by L

iP  for the total of 
customer demand for each microgrid in the MMGs plant 
subject to the following dynamic model  
 

         ( ) ( )+ ( )   L CL SL
i i iP k P k P k=                    (4) 

 ( )  
LL L
ii iP P k P≤ ≤                        (5) 

 0 ( )  
SLSL
iiP k P≤ ≤                        (6) 

Where i=1…M, is the number of microgrids L
iP  and

L
iP  

corresponding respectively to a minimum and maximum 
active controllable power. The curtailment penalty cost on the 
controllable load for the objective to consider customer 
comfort.  

, ,
1

( ) ( ) ( ) ( )
LM

SL SL
cur i i cur i cur i

i
C P k k P k tα β

=

= ∆∑                  (7) 

Where iβ  a positive value limited in the range [ , ]i i
β β   

.i curα is the penalty factor ( Zhai et al. (2017)).                              
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2.2.3 Diesel generator model 

The diesel generators can be scheduled over a specific horizon 
see (Sachs & Sawodny, 2016), constraints on DGs operation 
are introduced as follows    

, ,( ) ( ) ( )
DGDGDG DG DG
iii k i i kP k P k P kδ δ≤ ≤                     (8)               

Where          ,

1,    ( ) 0    
0,   ( ) 0     

DG
iDG

i k DG
i

P k
P k

δ
 >= 

=
switch (On\Off)     

 1( ) ( 1) ( )DG DG DG
i i ik kδ δ δ τ− − ≤                          (9) 

2( 1) ( ) 1 ( )DG DG DG
i i ik kδ δ δ τ− − ≤ −                     (10) 

The power flow capacity in (8) defines the limit of generator 
units. The status on/off with 1, ...,i M DG= the number of 
diesel generators, the equation (9), and (10) used for on the 
minimum up/downtime operation constraint. 1 2,τ τ are 
auxiliary variables, see (Parisio, Rikos, Tzamalis, et al., 2014).  

The fuel cost can be modeled by a quadratic polynomial 
function (11), with (a,b) and (c) are the coefficients of DGs 
and ( )DG

iP k is the output power at time k. 

2( ) ( ( ) ( ) ( ) )DG DG DG
DG i i i i i iC P a P k b P k c t= + + ∆   (11)                                  

2.2.4 Renewable energy supply 

There are several types of renewable energy generation such 
that the PV-solar panels and wind turbines. However, their 
power output depends on meteorological uncertainties; in this 
paper, the total power generated from the RES denoted as 

,
RES

i kP . The constraints on the renewable energy expressed as 

, ,  
RESRES RES
ii i kP P P i M≤ ≤ ∀ ∈                  (12) 

Where RES
iP and 

RES
iP represent the minimum and maximum 

of renewable power generation.    

2.2.5 Power balance  

The supply-demand balance for the cooperative multi 
microgrids plant operated in autonomous mode must be 
achieved for each microgrid. The dynamic power balance for  
the coordinated multi-microgrids system  can be formulated 
as follows 

( ) ( ) ( ) ( )

             ( ) ( )

m DG chr
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P k P k P k E k

E k P k

= + +

− −
              (13) 

Where  

 
( ( ) ( ))

m L RES
i i i

M
RES L

surp ij j j
j i

P P P

P a P k P k
≠

= −

= −∑
 

0surp
iP ≥                                (14)        

 
The condition (14) on the power surplus prioritize the 
utilization of renewable energy rather than the conventional 
energy if its available.  
 

3 DUAL-LEVEL OPTIMIZATION  

In this section, the hierarchical dual-level optimization 
problem is discussed 
3.1  Dynamic Model  

The objective of achieving an efficient energy dispatch for 
the MMGs network within hierarchy optimal control based 
on distributed MPC framework,  

Based on (1) and (13) we have the following dynamic model 
the ith  subsystems  

( 1/ ) ( / ) ( / )
( / ) ( / )

i i i i i

i i i
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+ = +
=

                      (15) 
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Note that the matrices , , ,i i i ia b c d are the states, inputs, and 
output matrices, the optimization over the control horizon is 
given by the following: 

( ) [ ( 1/ ), ( 2 / ),...., ( / )]
( ) [ ( / ), ( 1/ ),.... ( 1/ )]

i i i i

i i i i

x k x k k x k k x k N k
u k u k k u k k u k N k

= + + +
= + + −

   

3.2 Upper Level: DSO optimization: 

 The main objective of the DSO is to guarantee optimal 
operating cost and efficient energy management for the 
MMGs. The reference power profile REF

iP  is computed as 
the solution for the economic optimization problem (16) , In 
particular, define as  

1
1

2 3

4

( ) min ( ( / )) ( / ))

               + ( ( / )) ( ( / ))
               + ( ( / ))             

N M
ref CL RES
i i i

l l i
b b DG DG
i i i i

SL
cur i

J k P k l k P k l k

C P k l k C P k l k
C P k l k

ξ

ξ ξ

ξ

= =

= + − +

+ + +

+

∑∑

(16) 
subject to  

• the satisfaction of following constraints: batteries 
(2), loads (5)-(6), DGs (8)-(10), and RES (12) 

•  the dynamic model (13), and operation cost of each 
unit (3), (7), (11). 

where 1 2 3 4, , ,ξ ξ ξ ξ related to the weighting coefficient, the 
above optimization guarantees the demand-supply for the 
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MMGs system while reducing the operating cost, we defined  
REF

iP  as the optimal solution of (16). 
3.3 Lower level: (re-optimization): local controller 

 the computed optimal reference plan from the DSO higher 
level is imposed as tracking setpoint solution ref

iP by re-
scheduling the active controllable loads and batteries 
charging and discharging as follows  

1
( ) ( ( / ) ( / ))

             ( ( / ) ( / )) 

N
SL ref

i i i
l

ch dch
i i

J k P k l k P k l k

E k l k E k l k
=

= + − +

+ + − +

∑        (17)

subject to 
• the satisfaction of constraints on total active 

scheduled power (6), and constraints on DGs (8)-
(10) 

• the dynamic power balance (13)  
3.4 The hierarchical Dual-level EMS-MPC 

The flowchart in Fig. 2 demonstrate the hierarchical dual-
level optimization framework with DSO as the upper level 
and local as a lower layer. The DOS receives the information 
data form each microgrid, at the same time MMGs exchange 
information between each other, the DSO solves the energy 
dispatch problem based on minimization of global operating 
cost, and provide a reference power scheduling. In the next 
step, the tracking setpoint calculated in the upper level is sent 
to the local controller, in this stage LC re-schedule the emery 
dispatching while coordinating between each other and 
exchange the power surplus   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 2. Flowchart of the hierarchical dual-level optimization 

4 CONVERGENCE AND STABILITY 

Dynamic model (15) can be defined stable, if the following 
conditions are satisfied; the existence of 0P > with 

TP P=  and ( ) ( ) ( )T
i i i iV k x k Px k=  as and positive-

definite quadratic Lyapunov function such that 
( 0( 1) )i iV k V k+ <− . 

 
Let's define an upper bound ( / ) ( )i iV k k kγ≤  on the above 
performance index, is obtained following, for 

0 to l l= = ∞  we have 
 

, ( ) ( )i iJ k kγ∞ ≤                                   (18) 

Given the assumption that the *x  is the initial solution 
( , ), ( , )i iP k l P k n  and ( ,1), ( 1, )i iP k P k n+ are optimal at a 

time interval k and, respectively 1k + . Then by substituting  
(18) with 0 to n n= = ∞ and 1l N≥ −  we get 
 

( )
( )

( / ) ( ( 1/ 1), ( 1, ), ( 1, )

              ( / ) ( ( ), ( , ), ( , ) 0
i i i i

i i i i

V k k x k k P k l P k n

V k k x k P k l P k n

+ + + +

− ≤
       (19) 

Since the ( )i kγ is the upper bound of the MPC optimization 

problem, that means that ( )iJ k is bounded such that 

)(( ) () iiiJ V kk kγ< < , from robust MPC, see (Mayne et 
al. 2005), the index function is non-increasing. Thus, the 
algorithm convergence is guaranteed.  
 
 

5 SIMULATION AND ANALYSIS 

A scenario of three cooperative microgrids connected to the 
DSO illustrated in Fig. 3. We used  a real load demand data  
from US energy department DOE of three commercial 
buildings, solar-PV and wind generation from ELIA 
electricity operators (Datasets - OpenEI DOE Open Data.; 
Solar-PV, (2020), and wind power generation, (2020) ) 

 
Fig. 3. Illustration of studied MMGs 

minimizing 
operation 
cost 

ref
iP

, , 1,...,RES b L
i i iP E P i M=

Upper-layer: 
DSO 

Optimal 
scheduling  Information 

feedback 

- Initialization: update parameters:    
- Repeat with rolling time horizon: for k = 1 
- Get current value of renewable generation and total 
active loads  from each local controller 
- Compute the amount of power mismatch of each MG 
- Solve the optimization (18)   

- Get optimal solution  ref
iP  from DSO. 

- Solve optimization (19).  

- Apply the optimal power dispatch for DERs of each 
MG  
- Set new iteration for k=k+1 ,  send a  new feedback 
with updated state to DSO      

Optimal power 
dispatch 

Lower-layer: 
local controller 

Tracking 
optimal 
power 
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Fig.4. Forecasted Load and RESs generation for a typical day  

 

each microgrid associated with: Load, PV, WT, ESS, and 
DG. For the simulation time horizon is 24 h, parameters 
summarized as follow: 

, ,40, 5, 60, 45
RES genchrg disch
i iSOC i SOC iE E P P= = = =  

Figure.4. shows three MGs demand load and RES power 
production. In Fig. 5. Illustrate optimal energy dispatching 
with the proposed approach, for example,  in MG2 from 11 
am to 3 pm, we notice that due to insufficient RESs 
generation, the surplus energy from MG3 is used to keep 
supply-demand balance. In Fig. 6 .shows the charging and 
discharging of batteries of each MG.Fig.7. DGs power output 
is simulated with our approach compared to independent 
optimization. The result shows that the cooperative dual-level 
strategy is reducing the usage of power from the diesel 
generators due to the advantage of the surplus energy sharing 
strategy between  MGs.   

 

 

 
 

Fig.5 . Energy dispatch and scheduling with cooperative 
dual-level distributed MPC optimization.  

 
Fig.6 Charging -Discharging of each MG 

 

 

 
Fig.7. DGs power output in MG1 and MG2 our cooperative 
approach and noncooperative-independent optimization  

The operating costs of each MGs presented in table 1 and 
Fig. 8 and Fig. 9. The fuel cost is 42 ¥/kW; we assumed that 
the maintenance cost is 2.4 ¥. Noting that currency (¥) 
corresponds to the Chinese Yuan. We compared our approach 
with independent optimization based on robust MPC for the 
operating cost of each microgrid; the results show a 
significant decrease in global costs with our strategy. Thus, 
we verified the advantage of our approach in terms of costs 
and saving. 

Table 1: Total operating cost  
Total cost (¥)  MG 1 MG 2 MG 3 
Cooperative 
optimization 

8164.3 7228.3 3987.4 

Noncooperative 
optmization  

13878.3 9072.6 7341.7 

 

 

Fig.8 . Total operating cost with our approach 
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Fig.9 . Total operating cost with noncooperative optimization 

6 CONCLUSION                                 

In this paper, an optimal optimization strategy is proposed for 
the new generation of cooperative microgrids networks based 
on hierarchal dual-level Model Predictive Control for 
cooperative MMGs operated in islanded mode, with 
distribution system operator DSO as upper-level optimization 
for minimizing the global operating cost and in the other 
hand the local controller as a lower level to track the 
reference plan from DSO. The main objective of this 
hierarchical approach is to achieve an efficient economic 
dispatch along with cost operating reductions for neighboring 
microgrids. The proposed policy shows the effective use of 
renewable energy resources, and a mathematical model is 
employed to solve energy management in an autonomous 
optimization. The forecasted energy dispatch proves the 
effectiveness of the cooperative distributed algorithm 
framework compared to noncooperative optimization, to 
track the supply-demand target. Hence, it can conclude that 
the proposed approach achieves optimal energy management 
in the coordinated microgrids system. Future works can 
follow this paper by considering the renewable generation 
uncertainty by data-driven processing strategies, and dynamic 
pricing for smart microgrids in public grid-connected mode. 
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