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Abstract: In this paper, the composition of human decision-making process in human-robot
interaction is analyzed and the human decision-making behavior is modeled. The human
decision-making process is divided into data-processing station and human cognitive system.
By combining with the null-space-based control (NSBC) method, the traditional drift diffusion
model (DDM) is applied for for human decision-making behavior modeling in human-robot
interaction (HRI). In addition, HRI is studied for a platoon of autonomous robots in an unknown
environment with multiple obstacles. Moreover, the human intervention task is designed to help
robots achieve tasks successfully. Finally, simulation examples are given to demonstrate the
satisfactory performance of the proposed method.
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1. INTRODUCTION

In the past decade, multi-robot system (MRS) has at-
tracted much attention, because it is a loosely coupled
robot networks, and the robots in it can solve problems be-
yond the capability or knowledge of a single robot through
interaction. Some achievements on formation control in
MRS has been made. The adaptive fuzzy formation control
of multiple autonomous agents with prioritized missions is
studied (Huang et al., 2019a). The consensus algorithm
for first/second order integrator theory and applications is
researched (Ren et al., 2008). These studies enrich the ap-
plication of MRS, and innovative the solutions to problems
of MRS.

Thanks to the improved performance and reduced cost, the
number of robots in MRS would be freely combined to per-
form more complex tasks. Whereas, due to the existence of
conflicts between tasks, it is sometimes unable to complete
the task. Thus, a mechanism for conflicting tasks is needed.
The behavioral control is a very effective way to solve
this problem. The behavioral-based approach for keeping
formation is first proposed and several other behaviors
are considered (Balch et al., 2019), but the traditional
behavioral control cannot solve task conflict. In this paper,
a null-space-based behavioral control (NSBC) is used for a
team of autonomous robots, where the priority of the tasks
should be configured over the changeable environment
(Antonelli et al., 2006). The NSBC architecture is utilized
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to address the formation control problem of MRS with
model uncertainties in the environment (Chen et al., 2016).
However, not all conflicts can be solved by NSBC method
due to the lack of human supervision and intervention
(Goodrich et al., 2008; Huang et al., 2019b).

Therefore, it is necessary to introduce human intervention
to achieve HRI in MRS for better control and task perfor-
mance. So far, the application of HRI has been a hot spot.
A framework of HRI in industrial assembly is proposed
for the parameter and a state estimation algorithm is
presented to optimize a variety of HRI scenarios (Bestick
et al., 2015). Besides it, HRI is now applied in many robot
tasks, including space, aviation, undersea et al. (Sheridan
et al., 2016). To improve the HRI system performance,
the human role is indispensable in the field of HRI, which
contains active role and supervisory role, the active role
means human can provide control input to the subtask,
e.g., the trajectory information or velocity command, and
the supervisory role means human need to select global
behavior, local behavior and intervene robot if necessary,
where the global behavior requires information exchange
among the robots and the local behavior require only the
local information from neighbor robot (Musić et al., 2017).

Although successful in specific applications of interest, the
human role aforementioned lack an accurate human model.
In HRI system, an appropriate human-decision making
model is needed both in the supervisory role and in active
role. The human decision-making behavior model in the
HRI is within the cognitive psychology, which is the scien-
tific study of mental processes. The cognitive psychology
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for human behavior modeling has been researched. A mem-
ory theory is applied and a diffusion process is proposed to
represent the comparison process of the theory (Ratcliff et
al., 1978). After that, the drift diffusion model (DDM) for
two-choice decision tasks is proposed for human decision
(Ratcliff et al., 2008). The DDM can be cited to account
for the accuracy and reaction time of value-based choices
for human (Mormann et al., 2010). Additionally, the DDM
has been successfully used for human behavior modeling
in many human cognitive tasks under social context, e.g.,
lexical decision (Ratcliff et al., 2004). Comparing to the
Markov chain model (Pentland et al., 1999) and the EDFT
model (Gao et al., 2006), the DDM does not employ factors
such as probability or trust of human but instead uses
actual sensory informationin making simple decisions, e.g.,
two-alternative forced-choicetasks (TAFCTs). Moreover,
the human decision-making behavior is rarely modeled by
the DDM in the HRI systems. In this paper, the NSBC
method is combined with the DDM and obtained the
human drift diffusion model (HDDM), which is used for
human decision-making behavior modeling.

The contribution of the paper contains two parts:

(1) The composition of human decision-making process
in human-robot interaction is analyzed. A data-
processing station and human cognitive system is in-
troduced into the human-decision-making process.

(2) The human decision-making process for HRI systems
is modeled by the proposed HDDM which combines
the traditional drift diffusion model and the NSBC
method. We design robot tasks to verify that the
human-decision-making process modeling can help
robots finish tasks successfully and can provide human
decision-making more accurately.

The remainder of the paper is organized as follow: In
section 2, the research problem are introduced. In section
3, the robot and human intervention task is designed
and the main methodology of prioritized multi-mission
composition is presented. Additionally, the HDDM are
introduced and the human decision-making behavior is
modeled. The simulation is in the section 4.

2. PROBLEM FORMULATION

Consider a group of n (n ≥ 2) robots with the following
model:

ṗj = vj , (1)

where pj ∈ R2 is the position of the robot j(j = 1, . . . , n),
and vj ∈ R2 is the velocity vector. In this paper, we
consider a first-order model as in (1) for sake of simplicity.
The formation control objective is to make robots follow
human instructions and perform tasks, which are defined
by different behaviors of robots, e.g., move-to-target and
obstacles-avoidance. To decide when to introduce human
intervention, we make the following assumption:

Assumption 1 : Assuming that robots are completely au-
tonomously controlled, the human intervention can only
happen when the controller of the robots fail to finish
tasks.

3. TASK DESIGN AND COMPOSITION

3.1 Move-to-target Task Function Design

The behavior which drives the robots team to the target

points pgj = [ xgj ygj ]
T

. Once each robot arrive at the
target point, the team would stop. Thus, the behavior
corresponding to the move-to-target task of the jth robot
is encoded by the task function ρmj :

ρmj = pj (2)

where pj is the jth robot position, and the desired function
ρmdj is:

ρmdj = pgj (3)

The output of the function is encoded by the NSBC
method:

vmj = J†mj (ρ̇mdj + Λmj ρ̃mj) (4)

where Λmj is denoted the positive constant of gains of
move-to-target task, ρ̃mj = ρmdj − ρmj is the task error,
Jmj is the configuration-depending task Jacobian matrix,

and J†mj is the pseudo-inverse of Jmj .

3.2 Obstacles-Avoidance Task Function Design

In presence of an obstacle in the advancing direction, its
aim is to keep the robot on a safe distance from the obsta-
cle. D is defined as the radius of the circular safety area.
Once the obstacles are within the safety area of robots,
the robots must execute the obstacles-avoidance behav-
ior. Thus, the obstacles-avoidance behavior is defined as
follows:

ρaj = ‖pj −poj‖ , ρadj = D (5)

where ρaj is the function of obstacles-avoidance task and
poj is the obstacle position of the jth robot. ρadj is
defined as the desired obstacles-avoidance function. Then
the velocity output of obstacles-avoidance task is given by:

vaj = J†aj (ρ̇adj + Λaj ρ̃aj) (6)

where Λaj is the positive constant of gains, the task error
ρ̃aj = ρadj − ρaj , and the pseudo-inverse of the Jacobian

matrix Jaj is J†aj = JTaj
(
JajJ

T
aj

)−1
.

3.3 Human Decision-Making Behavior Modeling

In this paper, the human decision-making behavior is a
process in which one behavior is chosen from a set of hu-
man behaviors, and this behavior can help robots team fin-
ish tasks successfully. As previous description, the human
decision-making behavior can be modeled by adopting the
DDM. In Fig.1, the decision making schematic diagram
under human intervention is constructed, in which the
data procession station and human cognitive system are
introduced. The data information related to the progress
of task execution is transported to the data processing
station, and it would be divided into multi parts. The
DDM can translate the data information into components
of human decision-making information, but not all data
information is used to support human makes decision, e.g.,
ρaj . In this paper, the trajectory error p̃j of the jth robot,
which is the difference between robot reference trajectory
from NSBC and robot preset trajectory, is the selected
information. The drift rate is denoted as the velocity error
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Fig. 1. The decision making schematic diagram under human intervention during task execution

ṽj , which represents the amount of change in p̃j per unit
of time (Ratcliff et al., 1998). Thus, the formula of HDDM
based on p̃j is designed as following:

dp̃j (t) = ṽjdt+ σ
j
dW (t) (7)

where p̃j = prdj − pj , and it supports human decision-
making on the jth robot, where prdj and pj are the
robot preset trajectory and robot reference trajectory from
NSBC of the jth robot at time t, respectively. dp̃j denotes
the change in p̃j over a unit time internal dt. It contains
two parts, the first part is that the amount change in
information per time is ṽj . ṽj = vdj − vj is the drift rate,
which is time varying value. In the task execution process,
it is the velocity difference. vdj is the velocity related to
the preset trajectory and vj is reference velocity that is
obtained from NSBC. W (t) is standard Wiener process
(Hitsuda et al., 1968), σj is standard deviation of the noise
on the jth robot.

As shown in Fig.1, the human decision-making behavior
model is designed, and the human makes decisions among
the finite set of behaviors, which contains supervision
behavior and intervention behavior. In the HDDM, the
behavior is only to be chosen or not to be chosen. Addition-
ally, it is noted that the human can only choose one behav-
ior at each unit time. In HDDM equation (7), the selected
information for human decision-making p̃j evolves over
time , and when it is equal to some value, which is called
threshold, the human should make decision. The HDDM
in this paper is studied in free response paradigm. In this
paradigm, the human makes decision until the evidence
passes through the preset threshold for the first time,
which means the amount of selected information required
to trigger a decision response (Peters et al., 2015). Thus,
the key to accurately decision-making is the setting of the
threshold. The optimal threshold for HDDM is derived
by minimizing the Bayes Risk (BR), which is a common
criteria to capture speed-accuracy trade-off (Edewards et
al., 1965). Thus, the formula of BR is given as following:

B = c1jTj + c2jEj (8)

where B is a cost function of BR, c1j and c2j are the
observing cost per unit time in decision-making process
and cost of decision-making error, respectively. j is the
number of robot, Tj and Ej are the decision time and
the error rate, which are given by the following equations
(Bogacz et al., 2006):

Ej =
1

1 + e2ς̄j āj
−
(

1− e−2p̃0j āj

e2ς̄j āj − e−2ς̄j āj

)
(9)

Tj = ς̄j tanh (ς̄j āj) +

(
2ς̄j
(
1− e−2p̃0j āj

)
e2ς̄j āj − e−2ς̄j āj

− p̃0j

)
, (10)

where ς̄j =
ςj
ṽj

and āj =
(
ṽj
σj

)2

. To obtain the threshold

for HDDM, the equation (9) and (10) are substituted into
the equation (8), then differentiating with respect to ςj
and the cost function B is minimized to 0, which yields
the equation related to the human decision threshold ςj :

Cj

[
−2ς̄je

2ϑ

(1 + e2ϑ)
2 −

(
e−2p̃0j āj − 1

) (
2āje

2ϑ + 2āje
−2ϑ
)

(e2ϑ − e−2ϑ)
2

]

+

[
(tanh (ϑ) + āj) +

2
(
1− e−2p̃0j āj

) (
e2ϑ − e−2ϑ

)
(e2ϑ − e−2ϑ)

2

]
+

(1− 2ϑ)

(e2ϑ − e−2ϑ)
2 = 0

(11)
where ϑ = ς̄j āj , and Cj =

c2j
c1j

.

After determining the threshold, once p̃j evolves and
crosses the threshold for the first time, human operator
should choose behavior among the finite behavior space.
The monitor behavior is the human supervisors the robot
task execution process, and there is no task input to the
robots, but the human intervene behavior would provides
input to the robots. Thus, the human intervention task
should be designed.

3.4 Human Intervention Task Design

If the optimal decision is human intervention behavior,
then the human intervention task is designed and is input
to the supervisor. The human intervention task is set the
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highest priority and the original robots task would be
turned into the lower priority. The human intervention
task is similar to robot tasks, which can be identified by
robots. The human intervention task function is defined as
following:

ρh = f (ph) (12)

where ρh ∈ Rm and m is the dimension of the task space.
f is the differentiable function. ph is the position of the
robot that the human would intervene.

Then the differential of the human intervention task is:

ρ̇h =
∂f (ph)

∂ph
ṗh = Jhvh (13)

where J (h) ∈ Rm×1 is the configuration-dependent be-
havior Jacobian matrix, and it represents the mapping
between ρh and ph. Through inverting the mapping, a
typical requirement is to pursue minimum-norm velocity
and leading to:

vh = J†h (ρ̇hd + Λhρ̃h) (14)

where Λh is the positive constant of gains in human
intervention task and the human intervention task error
ρ̃h = ρhd−ρh, J†h is the pseudo-inverse of Jh. In this paper,
when multi tasks are considered, as shown in the Fig.1, if
human intervention task existed, then the original robot
task vector should project onto the null space of human
intervention task, and it ensures the complete execution of
human intervention tasks, the contradictory parts of robot
tasks are cleared so as to perform the non-contradictory
parts of task.

3.5 Task Priority Design

In task execution process, the task priority should be de-
signed. The low priority task should project onto the null-
space of the high priority task. In general, the obstacles-
avoidance task is set the high priority. Thus, one can
obtain the final output velocity command of the robots:

vrj = vaj +
(
I − J†ajJaj

)
vmj (15)

where vrj is the velocity output of robot task, and j is

the number of robots. I − J†ajJaj is the null space of the
obstacles-avoidance task.

The human intervention task is set the highest priority
within task execution process, and the integration diagram
of human intervention tasks and robot tasks is shown in
the following:

vj = vh +
(
I − J†hJh

)
vrj (16)

where I − J†hJh is the null space of human intervention
task.

Remark 1 : Human intervention task is similar to the
robot task, and it is also the robots identifiable task. By
observing the final velocity output by (16), if the null space

of human intervention task I − J†hJh = 0, the robot task
cannot be executed simultaneously with human task.

4. SIMULATION

In this section, a platoon of three robots is considered
to move in the x − y label plane and each robot is
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Fig. 2. Trajectory of the three robot in case of unresolved
emergency.

modeled as first-order integration. The initial position of

robots are: p1 = [ 1 8 ]
T

, p2 = [ 5 6 ]
T

and p3 = [ 4 1 ]
T

,
respectively. The abostacle position in the coordinate
system are: O1 = [ 8 11 ], O2 = [ 13 10.5 ] and O3 =
[ 10 4 ]. The preset task functions for the robots are:

ρrd1 = [ 1.4t+ 2 0.8t+ 8 ]
T

, ρrd2 = [ 1.4t+ 6 0.8t+ 6 ]
T

and ρrd3 = [ 1.4t+ 5 0.8t+ 1 ]
T

. In the simulation, we
defined the safe distance for robots as 1.5m, the positive
constant gain are Λmj = 15, Λaj = 0.8 and Λh = 1.5. The
human decision-making threshold for three robots is all set
as 3m by the equation (10), where c11 = c12 = c13 = 0.5,
c21 = c22 = c23 = 10, and C1 = C2 = C3 = 20, the initial
velocity difference for three robots are ṽ0j = 1 according
to the initial trajectory error, and the diffusion rate for
three robots are equaled, where σ1 = σ2 = σ3 = 1.

4.1 Robot Encounters Local Minima Problem

In this section, robot 1 and robot 3 finish move-to-target
task and obstacles-avoidance task autonomously, robot 2
encounter local minima problem while avoiding obstacle,
and human intervention behavior is triggered when hu-
man decision-making information first reaches the decision
threshold. The simulation is shown from Fig. 2 to Fig. 4.

In Fig.2, when the robot 2 is performing obstacle avoid-
ance, the sensor detected a new found obstacle, the dis-
tance from new found obstacle and the obstacle which
is avoiding are equaled after few seconds, which reflected
in the distance from obstacle and new found obstacle are
equal to 1.5m in Fig.3. Under this situation, the robot 2
encounters local minima problem, which makes the robot
unable to move. Under this situation, as shown in Fig.4,
the selected information p̃j reached the decision-making
threshold for the first time at 6.22s. This time 6.22s is
the timing of human intervention in this case, the values
corresponding to the black solid line and the black dotted
line represent the human decision threshold and human
decision time, respectively.

4.2 Robot Finishes Tasks with Human Intervention

In this section, the human intervention task is executed
by robot 2 after human intervention behavior is triggered,
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Fig. 5. Robot trajectory diagram under human interven-
tion.

and robot 2 reaches target after human intervention task
has been finished. The simulation and response of human
intervention task are shown from Fig. 5 to Fig. 8.

Fig. 5 shows human finds the distance between the actual
obstacles is larger than the width of the robot itself, then
the human give a new targets to the robot, which is
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man intervention.
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denoted as an blue pentacle. The human intervention task
is set the highest priority, the robot 2 would move to the
new targets and escape from local minima point.

As shown in Fig.6, robot 2 passes through the known
obstacle and new obstacle to reach new target point
(14m, 9m). After that, it activated original robot task
and get original targets. Comparing to the traditional
control scheme without human intervention (Anonellie et
al., 2006), the robot can escape from the local minima
point and can reach target successfully. In Fig.7, after
human decision making, p̃j deceased for the deviation σj
in HDDM, and increased due to the human decision time
and robot execution time, the robot is static. After the
robot execute human intervention tasks successfully, the
error decreased. In Fig.8, the intervention time location is
shown. The robot is intervened by human operator from
6.22s to 9.4s. Except for this time period, the robot relies
on the autonomous controller to carry out tasks all the
time. The response time of human intervention in the
previous work (Fig.8) (Huang et al., 2019b) is not accurate
because the timing of intervention does not match that
of robot encountering local minima problem. This can be
explained by the fact that the timing of human decision-
making is simply determined by human experience. In this
paper, the robot position error is used as human decision-
making information, leading to an exact match of the
human intervention timing at local minima problem.

5. CONCLUSION

This paper provides a human decision-making behavior
modeling method and extends the control framework for
human-robot interaction systems. By combining the drift
diffusion model with null-space-based control method,
the human drift diffusion model is developed for human
decision-making modeling, and the certainly time of hu-
man decision is obtained by setting the decision-making
threshold. With the human drift diffusion model, the ac-
curacy and speed of human decision-making would be
improved. The feasibility of theory is demonstrated by
simulations. Our future work is to design the supervisor
that is used to switch the defined tasks, and research the
HRI based on second-order robots model.
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