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Abstract: Modern control systems routinely employ wireless networks to exchange information be-
tween a large number of plants, actuators and sensors. While wireless networks are defined by random,
rapidly changing conditions that challenge common control design assumptions, properly allocating
communication resources helps to maintain operation reliable. Designing resource allocation policies is
usually challenging and requires explicit knowledge of the system and communication dynamics, but
recent works have successfully explored deep reinforcement learning techniques to find optimal model-
free resource allocation policies. Deep reinforcement learning algorithms do not necessarily scale well,
however, which limits the immediate generalization of those approaches to large-scale wireless control
systems. In this paper we discuss the use of reinforcement learning and graph neural networks (GNNs) to
design model-free, scalable resource allocation policies. On the one hand, GNNs generalize the spatial-
temporal convolutions present in convolutional neural networks (CNNs) to data defined over arbitrary
graphs. In doing so, GNNs manage to exploit local regular structure encoded in graphs to reduce the
dimensionality of the learning space. The architecture of the wireless network, on the other, defines an
underlying communication graph that can be used as basis for a GNN model. Numerical experiments
show the learned policies outperform baseline resource allocation solutions.

Keywords: Resource Allocation; Control over networks; Graph Neural Networks; Reinforcement
Learning Control; Neural Networks

1. INTRODUCTION

Modern control systems often use wireless communication net-
works to exchange information between plants, sensors and ac-
tuators. Wireless networks add flexibility to the control system,
but also make the design of control and communication policies
more challenging (Hespanha et al., 2007; Park et al., 2018).
Wireless networks are characterized by rapidly changing, ran-
dom communication conditions known as fading. The reliabil-
ity of the communication loop depends not only on the fading
state of the communication channel but also on the resources
assigned to that particular channel. Communication resources
are usually limited, however, and it is natural to look for an
optimal way to distribute the resources available in the network.
Mathematically, such resource allocation problems involve op-
timizing some performance metric over an allocation function,
which usually results in an infinite dimensional problem, cf.
e.g. (Cao and Li, 2001; Eryilmaz and Srikant, 2007). The for-
mulation of the resource allocation problem resembles that of a
statistical learning problem, allowing one to leverage machine
learning techniques for resource allocation (Eisen et al., 2019;
Liang et al., 2018). In the case of wireless control systems, we
need to balance metrics such as power consumption, latency
and reliability while assuring proper operation of the control
? Supported by Intel Science and Technology Center for Wireless Autonomous
Systems and ARL DCIST CRA W9111NF-17-2-0181.

plants. That is precisely the problem works on resource alloca-
tion and scheduling tackle, cf. e.g. (Rehbinder and Sanfridson,
2004; Shi et al., 2011; Gatsis et al., 2015; Charalambous et al.,
2017).

The dynamic nature of the problem points to reinforcement
learning as a possible framework to solve it. Reinforcement
learning aims to represent the notion that learning occurs in
interaction with the environment and its structure is particularly
suitable for problems where explicit information about underly-
ing models is limited. The association of reinforcement learning
with deep neural networks, in particular, recently led to im-
pressive results in applications such as AlphaGO (Silver et al.,
2016). Those results in turn motivated the use of similar deep
reinforcement learning techniques in other areas, among them
resource allocation for wireless control systems, cf. (Demirel
et al., 2018; Leong et al., 2018; Baumann et al., 2018) and our
previous work (Lima et al., 2020).

Deep reinforcement learning algorithms, however, usually suf-
fer from sample complexity. As the dimensionality of the prob-
lem grows, so do the number of parameters to be learned and
the number of samples necessary to train the algorithm. The
dimensionality of the learning space, however, can be reduced if
we are able to exploit some symmetry or particular structure of
the problem. In wireless networks and wireless control systems,
we can turn to the underlying communication graph to param-
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eterize the allocation policy (Lee et al., 2019); in particular,
we substitute graph neural networks (GNNs) instead of tradi-
tional neural networks (Eisen and Ribeiro, 2019; Shen et al.,
2019). GNNs generalize time- or spatial-domain convolutions
in traditional convolutional neural networks (CNNs) to explore
regularity in general graph structures (Scarselli et al., 2009;
Gama et al., 2019). Training in GNNs boils down to learning
the coefficients of the filters used to aggregate information from
the network nodes — instead of the weights of the linear combi-
nations at each hidden unit as in multilayer neural networks —,
thus reducing the number of overall parameters the algorithm
must learn.

Here we consider a centralized setting where independent con-
trol plants share a wireless communication medium. Allocation
decisions are taken by a remote base station (BS) based on
estimates of current plant states and channel conditions (Sec-
tion 2). The wireless communication model takes into account
fading and interference, defining a graph that allows us to
use GNNs (Section 4) to parameterize the resource allocation
policy. A standard reinforcement learning framework (Section
3) is then used to learn the coefficients (i.e. graph filters) of
the resource allocation policy. Numerical experiments (Section
5) illustrate the use of the proposed approach. Throughout the
paper uppercase letters refer to matrices and lowercase letters
to vectors. Positive (semi)definiteness of a matrix is indicated
by X(≥) > 0. R and N stand for the set of real and natural
numbers.

2. RESOURCE ALLOCATION IN CONTROL SYSTEMS

Consider a system made up by m independent plants sharing
a common wireless medium as exemplified in Figure 1. As is
common in large scale applications — e.g. industrial control
— the plants are organized into various cells; within each
cell the plants share a common wireless base station (BS).
We further assume each BS is configured in a multiple-input-
single-output (MISO) configuration, with dedicated transmit
antennas serving each of the plants in its cell. At each time
instant a plant samples its state and sends this information to
its base station (BS) containing a centralized controller. The
base station then sends the corresponding control signals back
to the plants with some allocated resources based on the plant
states and channel conditions. The dynamics of each plant i
is given by a discrete, time-invariant but not necessarily linear
model f(·, ·) : Rp × Rq → Rp mapping a current state vector
x

(i)
t ∈ Rp and corresponding control input u(i)

t ∈ Rq to the next
state of the system. Each of those plants is affected by some
random noise w(i)

t ∈ Rp with covariance matrix W (i) ∈ Rp×p
standing for eventual disturbances and unmodeled dynamics,

x
(i)
t+1 = f

(
x

(i)
t , u

(i)
t

)
+ w

(i)
t . (1)

The control input u(i)
t is designed as some function of the state,

i.e. u(i)
t = g(x

(i)
t ), such as a standard linear quadratic regulator

in the case of linear plants.

In this setting the plants close their feedback loop over a shared
wireless network overseen by a base station. This medium is
inherently noisy and prone to packet drops. When the plant
is able to successfully receive the control signal, the feedback
loop is closed, and the plant can execute the ensuing control
action. When the plant cannot reliably receive the signal, how-
ever, it relies on a local estimate of the current control signal.

BS1

BS2

plant 1

plant 2

plant 3

plant m− 1

plant m

x(1)

u(1)

x(2)
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x(3)

u(3)
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Fig. 1. Wireless control system made up by m independent
plants with states x(i).

Under these assumptions, the dynamics of each plant can be
represented by

x
(i)
t+1 =

f
(
x

(i)
t , u

(i)
t

)
+ w

(i)
t , closed loop,

f
(
x

(i)
t , ũ

(i)
t

)
+ w

(i)
t , open loop,

(2)

where ũ(i)
t is an estimate of u(i)

t computed locally at the plant,
such as the last successfully received control signal.

The probability of closing the feedback loop over the communi-
cation channel will depend on the resources or power assigned
to the plant as well as a random channel state known as wireless
fading. Let then h(ii), i ∈ [m], a random variable describing
the fading state experienced between the plant i and its paired
antenna in its cell’s BS. That fading state is comprised of a
constant slow fading term dependent on the distance between
the plant and the BS, and a random fast fading term drawn
from a probability distribution o(h). Moreover, since multiple
control plants share the communication network, information
packets from a plant might interfere with those from others.
That interference is described by a random variable h(ji), which
reflects the fading state between plant j’s dedicated transmit an-
tenna and plant i . These can be aggregated in a random matrix
H describing the fading states and interference coefficients of
the communication model,

H =

h
(11) . . . h(1m)

...
. . .

...
h(m1) . . . h(mm)

 . (3)

Now, denote by α(i) ∈ R+ the power assigned to plant i. In this
setting the signal to noise plus interference ratio for plant i will
be given by

SNIR(i) =
h(ii)α(i)(H)

σ2 +
∑
j 6=i h

(ji)α(j)(H)
, (4)

with σ2 the variance of the communication channel noise. The
probability of the plant receiving the feedback control signal
will depend on the ratio above. Formally, define a function
v : R+ × R+ → [0, 1] that, given a resource allocation dis-
tribution as well as fading and interference conditions, returns
the probability of successfully receiving the information packet.
We assume each control plant in the system will then close the
feedback loop with probability
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v(α(i), H) = 1− exp
(
−SNIR(i)

)
. (5)

This allows us to rewrite the system dynamics in (2) as

x
(i)
t+1 =

f
(
x

(i)
t , u

(i)
t

)
+ w

(i)
t , w.p. v(α(i), H),

f
(
x

(i)
t , ũ

(i)
t

)
+ w

(i)
t , w.p. 1− v(α(i), H).

(6)

From the structure of the control system (6) and equations (4)
- (5), we can see that allocating more power to a plant will
increase the chances of that plant closing its control loop. In
most practical systems, however, we do not have unlimited
power to allocate between the communication channels. The
resource allocation problem consists of properly allocating re-
sources available in the communication network while keeping
all plants in desirable states. We want to find a resource allo-
cation function α(H,x) that, given current fading and interfer-
ence conditions aggregated in the interference matrix Ht (3)
and plant states xt := [x

(1)
t ; . . . ;x

(m)
t ], distributes a maximum

power budget pmax among the plants. It is important to keep the
plants operating around an equilibrium point, and as such we
consider a finite horizon, cumulative quadratic metric to assess
the performance of the allocation function. The constrained
resource allocation problem can then be formulated as

min
α(H,x)

Eα(H,x)
x0

[
T∑
t=0

xᵀtQtxt|x0 = x̂0

]

s. t. α(H,x) ∈ P;P =

{
α(H,x) :

m∑
i=1

α(i) ≤ pmax

}
,

(7)
with Qt ≥ 0 and α(i) the ith component of the resource alloca-
tion vector α(H,x), i.e. resource allocated to plant i. At each
time t, the BS uses power α(i)

t = [α(Ht, xt)]i to send the con-
trol signal u(i) back to plant i. The communication exchange
subsequently occurs with success rate given by v(α

(i)
t , Ht) (5)

and plant i evolves according to (6).

In (7), the objective involves finding the resource allocation
function α(x, h) that results in the minimum operation cost
of the plants while satisfying the resource constraints. Note
that this leads to an (infinite-dimensional) optimization prob-
lem over a function α(x, h). It is generally intractable to find
optimal solutions even for problems with a low number of
plants and with short optimization horizons. Moreover, finding
an optimal policy directly in (7) necessarily requires explicit
knowledge of the plant dynamics and communication models
in (6), which are often unavailable in practice. The challenging
nature of the problem and the search for model-free allocation
policies motivated recent works (Demirel et al., 2018; Bau-
mann et al., 2018; Lima et al., 2020) to use deep reinforcement
learning techniques to design resource allocation functions in
wireless control systems.

3. REINFORCEMENT LEARNING FOR RESOURCE
ALLOCATION

Reinforcement learning represents the idea that learning occurs
in interaction with the environment: at each time step, an
agent executes some action, observes the resulting state of the
system, receives a cost from the environment and then tries to
find actions that minimize the cumulative value of those one-
step costs (Sutton and Barto, 2018). Reinforcement learning
problems are mathematically described in terms of Markov

Decision Processes (MDPs). A MDP is a tuple 〈S,A,P〉 with
S a set of states, A a set of actions and P a state transition
probability kernel. The state transition probability kernel P :
S × A × S → [0, 1] assigns to each triplet (s, a, s′) the
probability of moving from state s to s′ if action a is chosen.
A transition from a state st to st+1 incurs a cost per stage rt,
and the agent takes actions according to a stochastic policy
π(a|s) in a space Π. That policy corresponds to a probability
distribution that gives the probability of the agent to choose an
action a when its current state is s. The agent’s objective is to
minimize the cumulative cost

J(π, s) := Eπs [Rt] = Eπs

[
T∑
k=1

γtrk+t+1

]
(8)

starting from state s and following a policy π(·) with γ ∈ (0, 1]
a given discount factor (Hernandez-Lerma and Lasserre, 1996;
Sutton and Barto, 2018; Szepesvári, 2010). The optimization
problem then consists in finding a policy π∗ that achieves the
minimum of the value function

J∗(s) = inf
π∈Π

J(π, s), s ∈ S. (9)

In the resource allocation setting we consider the base station
as a centralized agent taking actions (allocation decisions) on
Rm+ according to some resource allocation policy p(H,x, u).
At each time instant the base station defines the allocation
policy based on estimates of the plant states and channel and
interference conditionsH , as well as on previously used control
inputs. The state of the agent is then given by

st = [Ht;xt] =
[
Ht;x

(1)
t . . . ;x

(m)
t ;u

(1)
t . . . ;u

(m)
t

]
.

As usual in control systems, the performance of the resource al-
location function is measured by a quadratic cost that penalizes
large deviations from the equilibrium point,

J(π, s) = Ep(h,x)
s

[
T∑
t=0

γtxᵀtQtxt|x0 = x̂0

]
. (10)

Here we will make use of policy-based reinforcement learning
algorithms, and thus the resource allocation function α(h, x) is
first parameterized with some stochastic policy π(p|s; θ). That
policy is fully specified by some parameter vector θ ∈ Rr, i.e.

α(h, x) = π(p|s; θ). (11)
The resource allocation problem can then be written as

min
θ

Eπ(h,x;θ)
x0

[
T∑
t=0

γtxᵀtQtxt|x0 = x̂0

]

π(h, x; θ) ∈ P;P =

{
π(h, x; θ) :

m∑
i=1

π(i) ≤ pmax

}
(12)

Note that the cost function will now depend on the parameters
θ, allowing us to take

J(θ) = Eπ(h,x;θ)
x0

[
T∑
t=0

γtxᵀtQtxt|x0 = x̂0

]
. (13)

To find the optimal allocation policy in this setting, at each iter-
ation we will perform approximate gradient descent in the cost
function J(θ) (Sutton and Barto, 2018, ch. 13). The gradient
descent step is based on some estimate ∇ ˆJ(θt) of the gradient
of J(θ) with respect to θ, yielding

θt+1 = θt − β∇ ˆJ(θt), (14)
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where β is the step size or learning rate. This is the basic struc-
ture behind policy gradient methods. Note that the update rule
in (14) does not take into account the underlying model of the
agent or the environment — or, in our case, the dynamic model
of the control plants and wireless communication network. The
estimate ∇ ˆJ(θt) in (14) is instead computed from the samples
— i.e. actions, state transitions and costs — obtained during
training. That is justified by the policy gradient theorem, ac-
cording to which the gradient of the cost function, ∇J(θt), is
proportional to the gradient of the policy, ∇π(·; θt), and the
expected return from following that policy. Given that relation,
policy based methods then come up with strategies to sample
actions, costs and states so as to approximate the gradient of
the cost function. In particular, we will consider in this paper
the classic REINFORCE algorithm, in which that estimate will
depend on the action at taken at time t (Williams, 1992; Sutton
et al., 2000),

θt+1 = θt − βγtRt
∇π(at|st; θt)
π(at|st; θt)

. (15)

The equation shows that each update of the REINFORCE
algorithm depends on the return Rt associated to the action at
taken and the ratio between the gradient of the probability of
executing that action and the probability of doing so (Sutton
and Barto, 2018). Moreover, equations (11), (14) and (15)
show that policy-based algorithms are suitable to applications
involving continuous action spaces: policy parameterization
(11) allows us to consider continuous policies directly, and the
policy gradient theorem (14) — (15) gives a strategy to sample
transitions from a continuous space.

There is some flexibility on the choice of the parameters θ, but
in deep reinforcement learning, the parameters θ correspond
to outputs of a multilayer neural network. This combination
of deep learning with reinforcement learning led to impressive
results in computer science (Mnih et al., 2015; Silver et al.,
2016) and was later extended to other areas. Deep RL has also
been successfully applied in wireless (Eisen et al., 2019; Liang
et al., 2018) and wireless control systems (Demirel et al., 2018;
Leong et al., 2018; Baumann et al., 2018; Lima et al., 2020).
Deep reinforcement learning suffers from a sample complexity
problem, however, which hinders the immediate generalization
of those techniques to large-scale settings. Standard artificial
neural networks consist of successive computations of linear
combinations followed by nonlinear transformations. Deep RL
algorithms must then learn the parameters used in the linear
combinations at each hidden unit in the network. As the dimen-
sion of the input of the neural network — made up by the cur-
rent state of the underlying MDP, associated actions and costs
— grows, the number of parameters to be learned becomes
prohibitively large. To overcome this dimensionality issue, we
can look for some regular structure in the learning problem that
reduces the dimensionality of the training space. In particular,
note that the communication model in the wireless resource
allocation problem (3) defines an underlying graph structure for
the optimization problem. This suggests that we might leverage
graph neural networks to parameterize the resource allocation
function.

4. GRAPH NEURAL NETWORKS

We introduce the graph neural network (GNN) as an alternative
to the standard, fully connected neural network to represent our
resource allocation policy. GNNs can be viewed as a general-

1

2

34

5

h(12)

h(11)

h(22)

h(33)h(44)

h(55)

h(23)

h(13)

h(25)

h(45)

h(15)

h(34)

h(24)

Fig. 2. Graph defined by the interference model (3).

ization to the popular convolutional neural network (CNN), a
widely used deep learning tool in large scale applications such
as image and speech recognition, in part by exploiting the regu-
lar structure of time and spatial data. In CNNs, the arbitrary lin-
ear operations used in standard deep neural networks (Bishop,
2006, ch. 5) is replaced with linear convolutional filters. This
more controlled structure significantly reduces the number of
overall parameters the model must learn during training, since
the algorithm now learns the coefficients of the corresponding
convolutional filters and not the weights of the linear combi-
nations computed at every neuron in the network. Moreover,
the dimensionality of the filters being learned is invariant to
the size of the input data, making the CNN attractive for large
scale applications. While the convolution employed by CNNs
are naturally suited for processing of temporal or spatial data,
the same does not hold true for inputs without such a regular
structure. However, the wireless control system architecture
considered here nonetheless contains structure embedded in
the fading patterns H that can be incorporated into the policy
parameterization—namely, this structure may be represented
by a graph.

GNNs generalize the CNN by replacing the standard convolu-
tional filter with a so-called graph convolutional filter (Henaff
et al., 2015; Gama et al., 2019; Ruiz et al., 2019). For a graph
G = (V, E ,W) with node and edge sets V = {1, . . . , N},
E = {(i, j); i, j ∈ V} and weight function W : E → R,
the graph shift operator (GSO) is defined as a matrix S ∈
RN×N that reflects the sparsity of the graph in the sense that
Sij = 0 if i 6= j and (i, j) /∈ E . Common examples of
GSOs are the adjacency matrix and the Laplacian matrix. Now
let y = [y(1), . . . , y(N)] a graph signal with components y(i)

at node i ∈ V and ψ ∈ RK a graph filter with coefficients
ψ = [ψ(1), . . . , ψ(K)]. The application of filter ψ to graph
signal y produces a vector z ∈ RN with components

zj := [ψ∗Sy] =

K∑
k=0

ψ(K)[SKy]j . (16)

Note that the graph convolution in (16) reflects the local struc-
ture of the graph; we will have SKij 6= 0 only if node j is a k-hop
neighbor of i (Kipf and Welling, 2016).

GNNs are then composed of a series of (hidden) layers that
combine graph convolutions and nonlinear operations. Each
hidden layer l takes as input a graph signal yl produced by the
previous layer and outputs a graph signal yl+1 calculated by a
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graph convolution followed by a nonlinear operation,
yl+1 = φl (ψl∗Syl) . (17)

The nonlinear operation φl may be any function that respects
the local structure in S (Ruiz et al., 2019).

Recall the random fading interference patterns of the wireless
network underling the control system at time t as denoted by
Ht. We may use the matrix Ht to define a graph Gt with nodes
V = {1, . . . ,m} given by the m plants and edges weighted
by a function Wt((i, j)) := h

(ij)
t with GSO operator St :=

Ht—see Fig. 2. Observe that while in standard applications
of GNNs, e.g. (Gama et al., 2019), the graph G is fixed, here
the graph defined by the interference model in (3) is randomly
distributed. Hence we make use of the notion of random edge
GNNs (REGNNs) introduced by (Eisen and Ribeiro, 2019).
Further define the input graph signal to be the plant states
y0 = [x

(1)
t , . . . , x

(m)
t ]. The output of the REGNN is then given

by
zt = φL (ψL∗Ht

(. . . φ1 (ψ1∗Ht
xt) . . . )) . (18)

This output may then be used to parameterize the policy dis-
tribution π(p | st; θ) in (11)—e.g. success probability of a
Bernoulli distribution—where θ := [ψ1, . . . , ψL] contains the
filter coefficients that define the REGNN. Note that, similar to
the case with CNNs, here we need to learn only the coefficients
of the graph filters used at each hidden layer; letting Kl the
filter length at each layer l = 1, . . . , L, the overall number of
parameters we need to learn will be np =

∑L
l=1Kl. Contrary

to standard neural networks, np is independent of m.

The resulting procedure is shown in Algorithm 1.

Algorithm 1: RL/ GNNs for resource allocation in wire-
less control systems (adapted from (Sutton and Barto,
2018)).
Required: Horizon T ; number of episodes N . System

dynamics, communication model and cost
function J(x, u, α) are used to simulate the
environment but are unknown to the agent.

Result: Resource allocation policy.

1 initialization: load initial training / parameter set Θ
/* loops over episodes */

2 for ii = 1, . . . , N do
/* T-step horizon simulation */

3 generates complete episode using current policy:
4 x0, H0, α0, r1, . . . , xT−1, HT−1, αT−1, rT
5 while t < T do

/* calculates cost-to-go */

6 Rt ←
∑T
k=t+1 γ

k−t−1rk
/* updates policy parameters

*/
7 θ ← θ − βγtRt∇ lnπ(αt|st; θ)
8 end
9 end

5. NUMERICAL EXPERIMENTS

We now present some numerical experiments to illustrate the
use of reinforcement learning in combination with graph neural
networks for resource allocation in wireless control systems.
We consider a system made up by m scalar, independent, un-
stable plants sharing a total power budget pmax. Plant dynamics

0 0.5 1 1.5 2

10
4

3

3.5

4

4.5

5

5.5

6

6.5

7
10

4

Fig. 3. Finite horizon cost (7) during learning phase.

are linear and randomly sampled from the interval [1.01, 1.2]

The channel states h(ij) consist of a path fading term h
(ij)
p

depending on the distance between transmitter and receiver,
and a fast fading component h(ij)

f randomly sampled from a
Rayleigh distribution with parameter µ = 1. Thus, the fading
and interference conditions experienced by plant i are given by

h(ij) = h(ij)
p h

(ij)
f . (19)

For the numerical experiments we consider that the controller
does not act when the transmission fails, that is, ũ(i)

t = 0, and
use a standard REINFORCE algorithm (Williams, 1992; Sutton
et al., 2000) to learn an allocation policy. Moreover the resource
allocation decision is based on estimates of plant states, that is
the allocation policy receives as inputs x̃t with

x̃t = xt + w
(o)
t (20)

where w(o)
t is an observation noise term with covariance matrix

Wobs. Here, we took Wobs = 1 and σ = 1 (4). During the
training phase we considered a finite horizon T = 10, but
during the test phase we considered a longer simulation time
T = 30. At each iteration of the algorithm we used a sample
with batch size of 100 and adopted a learning rate β = 5×10−4.

First we considered a setting where each plant has a dedicated
receiver, leading to an ad-hoc network. Plants are spatially
distributed according to an uniform distribution U(−m,m),
with receivers randomly assigned to positions sampled from
U(−m/10,m/10) around the corresponding transmitter. The
interference and fading conditions are computed according to
(3), and the plants share a total power budget pmax = m

2 . More-
over, the initial states of the plants follow a normal distribution
with mean 0 and variance 5, i.e. x0 ∼ N (0, 5) . Figures 3 and
4 show the evolution of the cost at each iteration during the
training phase for m = 30 plants. As expected, the overall cost
of each episode decreases as the agent collects more experience,
but the algorithm converged rather quickly when the policy
is parameterized with (random edge) Graph Neural Networks.
For this problem we considered a multivariate Gaussian policy
with means scaled by a softmax procedure so as to respect the
instantaneous power budget (7). After the training phase, the
learned allocation policy was tested with a larger simulation
horizon (T = 30) and compared with some baseline heuristics,
namely dividing power equally among all the plants and ran-
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Fig. 4. Finite horizon cost (7) during learning phase for leaned
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Fig. 5. Cost comparison between the learned allocation us-
ing GNNs (blue), learned allocation using multilayer per-
ceptrons (yellow), distributing power equally among the
plants (orange), and distributing power randomly accord-
ing to a Dirichlet distribution (purple).

domly allocating power according to a Dirichlet distribution.
The comparison is summarized in Figure 5. Notice that the
learned allocation policy using GNNs performs better than all
the heuristics in this setting, whereas the policy parameterized
with fully connected neural networks or multilayer perceptrons
(MLPs) does not perform well possibly due to the dimension-
ality of the inputs (m plant states and m2 channel interference
conditions) as well as the outputs (continuous allocation deci-
sion for m plants) in this setting.

Next we considered the multi-cell problem described in Section
2. In our simulations we considered first a system made up by
n = 5 base stations with k = 5 users per station for a total of
m = 25 plants. Base stations are distributed spatially according
to an uniform distribution U(−m,m), and users are assigned
to the nearest base. Note that, when compared with the ad-hoc
setting, this problem is more challenging since the plants share
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Fig. 6. Finite horizon cost during training (multi-cell configura-
tion with 25 plants).

a transmitter and thus interference conditions make it difficult
for nearby plants to receiver their packets without collision. In
this setting, we consider then a type of scheduling problem,
with the agent taking binary decisions and considering whether
to send or not an information packet with some power p0. The
power allocation decision in this case takes the form

αit ∈ {0, 1} (21)
with the corresponding SNIR given by

SNIR(i) =
h(ii)α(i)(H)p0

σ2 +
∑
j 6=i h

(ji)α(j)(H)p0
. (22)

To model this policy, we consider a Bernoulli distribution
where the success probability for each plant is output by a
graph neural network. Furthermore we took p0 = 7, σ = 1
and Wobs = 1. Figure 6 shows the evolution of the finite
horizon, quadratic cost (7) during training phase with a learning
rate β = 5 × 10−4 and optimization horizon T = 10. As
the number of iterations increases, the agent collects more
experience and performance improves. REINFORCE, however,
has rather poor sample complexity, and we expect to see faster
convergence and improved performance when using state-of-
the-art reinforcement learning algorithms.

After the learning phase, we compared the learned policy
against some baseline heuristics and with a longer simulation
horizon T = 30. Results are summarized in Figure 7, where we
show the finite horizon quadratic cost (7) for the learned policy
using GNNs (blue), learned policy using multilayer perceptrons
(yellow), randomly selecting some plants to transmit (purple)
and allowing plants to transmit when their state is above a
certain threshold (orange). Each point in the graph corresponds
to an average of 100 simulations with initial points xi0 sampled
from a normal distribution N (0, 5). In this setting, learned
policies parameterized with GNNs and MLPs outperformed the
baseline heuristics.

Next we scaled simulations to consider a setting with 15 base
stations and 5 users per station. Simulation results are sum-
marized in Figures 8 and 9. Figure 8 shows the finite hori-
zon cost per iteration during the training phase for the policy
parameterized with GNNs and MLPs. Using GNNs not only
makes convergence faster, as can be seen in Figure 8, but also
provides overall better performance when compared against
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Fig. 7. Cost comparison between the learned allocation using
GNNs (blue), learned allocation using standard neural net-
works / multilayer perceptrons (yellow), randomly choos-
ing some plants to transmit (purple), and transmitting
when the plant state is above a certain threshold (orange)
for a multi-cell network with 5 base stations and 5 users
per station.
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Fig. 8. Finite horizon cost during training for the policy param-
eterized with GNNs (blue) and standard neural networks
(yellow) for a multi-cell configuration with 75 plants.

both baseline solutions and a policy parameterized with MLPs
in this larger scale scenario as Figure 9 shows.

6. CONCLUSION

In this paper we discussed the use of reinforcement learning
in tandem with graph neural networks (GNNs) to learn model-
free allocation policies in wireless control systems. Resource
allocation problems are usually challenging, leading to the re-
cent widespread use of machine learning techniques to approx-
imate optimal allocation policies. Deep reinforcement learning
in particular has achieved significant success in this setting, but
sampling complexity limits the applicability of traditional deep
RL algorithms to large-scale wireless control problems. Here,
we proposed to use GNNs instead of deep neural networks to
parameterize the resource allocation policy. GNNs depend on
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Fig. 9. Cost comparison between the learned allocation using
GNNs (blue), learned allocation using multilayer percep-
trons (yellow), randomly choosing some plants to transmit
(purple), and transmitting when the plant state is above a
certain threshold (orange) for a multi-cell network with 15
base stations and 5 users per station.

a smaller number of parameters while exploring local structure
in the underlying communication network, allowing us to scale
simulations to higher dimension settings. Numerical results
show strong performance of the proposed approach when com-
pared with baseline solutions. Moreover, the allocation policy
parameterized with GNNs performed as good as or even better
than a policy parameterized with standard neural networks,
especially in very large scale settings. It is worth pointing out
that the problems described here might be more adequate to a
distributed setting, where local agents share some information
structure but decide locally how to distribute resources among
the plants in their vicinity. That is a problem that we plan
to explore next, with graph neural networks making a natural
candidate to learn resource allocation policies in that distributed
setting.
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