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Abstract: In order to realize the automatic identification of pressure vessel defects, an
improved adaptive defect recognition feature extraction algorithm through ECPT (Eddy current
pulsed thermography) is proposed. The proposed feature extraction algorithm consists of five
elements: thermal image data segmentation, variable interval search, probability density function
modeling, data classification, and reconstructed image acquisition. The combination of data
block selection and variable interval search can reduce the double counting. And the KG-EM
(Kmeans-GMM-EM) algorithm is proposed to obtain the Gaussian mixture model corresponding
to the classification, and thus the corresponding probability is obtained to classify the TTRs
(Transient Thermal Response). The reconstructed thermal image is obtained by the classified
TTRs. This method can extract the main information of the image accurately and efficiently.
Experimental results are provided to demonstrate their effectiveness.

Keywords: Defect recognition, Eddy current pulsed thermography, Transient thermal response,
GMM clustering, Nondestructive testing, Defect detection, Pressure Vessels

1. INTRODUCTION

For the space shuttle’s fuel storage, life support, and wind
tunnel equipment, the power supply to the pressure vessel
plays an important role. However, under high load and
complicated use environment, pressure vessels are prone to
a series of damages such as micro-cracks, fatigue cracks,
and tank corrosion. At the same time, the flexibility of
pressure vessel specifications increases the complexity of
detecting this important device and identifying defects. In
recent years, researchers have studied methods for char-
acterizing pressure vessel characteristics. Lee et al. (2017)
presented a method for evaluating the design pressure of a
liquefied natural gas cylindrical tank. Al-Gahtani et al.
(2014) studied the partial pressure test of a spherical
container with a nozzle. Proczka et al. (2013) proposed
the effective design and classification criteria for Small
Scale Compressed Air Energy Storage (SS-CAES) pres-
sure vessels . Blanc-Vannet (2017) studied the residual
detonation pressure of composite cylinders after mechan-
ical shock.Many researchers have studied the effects of
defects caused by the continuous use of pressure vessels
made of different materials in a wide range of operating
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environments. van der Burg et al. (1998) refers to the
continuous damage analysis of hydrogen attack in pressure
vessels. Kim et al. (2011) proposed the effect of composite
damage on the fatigue life of natural gas vehicle high
pressure vessels. Therefore, detecting potential defects in
pressure equipment is very important. Non-destructive
testing and evaluation (NDT&E) is an important means
of ensuring the safe operation of the production environ-
ment and equipment (Maldague (2001), Marinetti et al.
(2004), Cheng et al. (2016a)). Huang et al. (2016)proposed
some non-destructive testing methods for concrete and
fiber cement boards.

Eddy current pulsed thermography (ECPT) has become
a non-destructive test with great development potential
alternative method (Huang et al. (2016),Schabowicz and
Gorzelaczyk (2010)). Pulsed eddy current thermal imag-
ing can quickly and efficiently measure the conductivi-
ty, permeability and thermal conductivity distribution of
metal components online, which combines the advantages
of pulsed eddy current and thermal imaging (Tantichat-
tanont et al. (2007)Francesco et al. (2018)). At present, it
has been successfully applied in the nondestructive test-
ing of composite materials, multilayer plate debonding,
coagulation, steel, gear and other materials(Yin et al.
(2019)). Therefore, ECPT imaging technology is applied to
the defect detection of pneumatic equipment. Researchers
such as Lim et al. (2016), Liu et al. (2015) have also
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Fig. 1. The experimental schematic diagram

made valuable contributions to the processing of infrared
camera data, which can be applied to NDT&E. used the
normalized fuzzy weighting function to process the records
of the experiment. Zhu et al. (2018) proposed an improved
defect recognition feature extraction algorithm based on
ECPT imaging. The algorithm in this paper uses ECPT
to perform non-destructive testing on pressure vessels. The
experimental schematic diagram is displayed in Fig. 1.

The algorithm firstly divides the TTRs contained in the
thermal image into several parts by thermal image seg-
mentation technology, and finds the low correlation T-
TRs through the variable interval search method. Specific
criteria for variable spacing are given to reduce double
counting while retaining the typical TTRs. Secondly the
KG-EM algorithm is used to classify the acquired TTRs,
and these TTRs are placed into categories that satisfy
the highest probability of corresponding GMM models
of each type. Thirdly, each type of model is applied to
satisfy the maximum value of the probability to find a
typical TTR. Finally, a typical TTR can form a matrix to
linearly transform the initial image sequence, and then the
discriminant features of the infrared image sequence can
be extracted by a typical TTR.

2. BACKGROUND: PRESSURE VESSELS

The detection of pressure vessels which show in Fig. 2
is complex. The special fuel pressure vessel used in this
experiment is a special equipment for storing and trans-
porting rocket fuel in space launching field. Its operating
conditions are harsh, and it has the dangers of leakage,
explosion and other accidents. It mainly has the following
characteristics.

Fig. 2. Various types of pressure vessels

(1) Big effect: The transfer pipeline is mainly responsible
for the mission of transporting fuel from tank trucks

to special fuel storage tanks, and the refill pipeline is
the life channel for transporting energy to rockets and
other spacecraft. Special fuel pressure vessels are one
of the most important ground equipment for storing
fuel.

(2) Variety specifications: Material types are mainly di-
vided into carbon steel, low alloy steel and a small
amount of stainless steel.

(3) Special working conditions: special medium such as
N2O4 and dimethyl hydrazine is transported, which
has stress corrosion and fatigue corrosion conditions,
corrosion perforation, fluid scour, bearing corrugated
perforations and corrosion cracks are likely to occur
due to structural vibration damage .

(4) Destructive consequences of defects: Accidents not
only endanger the safety of personnel and equipment
, but also lead to delays and failures in test tasks.

In this paper, aiming at solving the above problems and
exploring the application of infrared detection in scientific
research test pressure vessel defects inspection.

3. METHOD STATEMENT

Due to the depth of the defects and the different shapes,
different thermal excitation regions have different temper-
ature change rates, and the spatial temperature response
of all these samples is recorded by the infrared camera
as an infrared image sequence. These thermal responses
cannot be directly identified by the infrared sensor and
can be viewed as several different feature regions with
different typical thermal response characteristics, which
will help us extract the corresponding infrared reconstruct-
ed image. The general ICA method has a relatively high
calculation cost. To improve the processing speed, Huang
et al. (2018) proposed a K-means-based defect recognition
and segmentation algorithm, and defined TTRs (transient
thermal responses).

Mathematical model of object function

KMeans FCM

Where there is overlap between different 

data, clusters obtained using distance as 

a similarity measure may overlap.

GMM

According to the probability that each 

sample satisfies each classification model, 

the type to which it belongs is determined.

GGMM

cording to the probability that 

Fig. 3. Transformation selection of data processing meth-
ods

In the above algorithm, the Kmeans algorithm is used
to classify the obtained TTRs. In addition, the fuzzy c-
means (FCM) algorithm is also a widely used clustering
algorithm. The above algorithm is used to divide the
sample into a certain group according to the similarity of
distance metrics. The algorithm regards each category as a
separate data set for clustering operation. This clustering
method will make the samples in different classes. Fig. 3
clears that when the data overlaps, the cluster clusters
within the class will also overlap, and the points at the
class boundaries are easily misclassified. In this case, a
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valid clustering algorithm is needed to distinguish the
data of the overlapping regions, and the probability is
more abundant than the distance and easier to compare.
Therefore, if a data point is located in the middle of two
overlapping clusters, we can simply define its category,
the probability of classifying it as class 1 is x percent,
and the probability of class 2 is y percent. In order to
use the probability to correctly classify the data set, this
paper proposes a TTR classification method based on the
Kmeans-GMM-EM model (KG-EM model for short).

3.1 KG-EM Algorithm

In this paper, the KG-EM algorithm is first used to initial-
ly cluster the sampled sample data O(:, al), l = 1, 2, ...G
using K-Means. In this algorithm, G is the number of
TTRs contained in O. The original sample set O(:, ol)
is represented as O(:, ol) = {a1, a2, ..., ai, ..., aG}, i =
1, 2, ..., G, and αk, k ∈ {1, 2, ...K} represents the Gaus-
sian mixture component coefficient of the sample, where
i, k(1 ≤ i ≤ G, 1 ≤ k ≤ K). For each class of the initial
classification results obtained by the K-means method,
a Gaussian distribution is assumed, and the probabili-
ty density function of the following formula is satisfied:

fk(ai |ϕk,Υk) = 1

(2π)
n
2 |Υk|

1
2
e−

1
2 (ai−ϕk)

TΥk
−1(ai−ϕk). Spe-

cific steps as follows:

(1) K vectors O(:, o1
′), ..., O(:, oK

′) denoted as Cen1
′, ...,

CenK
′ and as the initial mean vector as the cluster

center, which selected from O(:, ol) randomly. Up-
date the cluster center iteratively in order to satisfy
the stop condition. Then, class K sample data is
obtained. The cluster center Cen′

1
new

, ..., Cen′
K

new

finally obtained is used as the initial value ϕk =
Cen′

K
new

, k = 1, ...,K of the GMM-EM enhanced
clustering mean vector.

(2) Install p(xi|Λ old
) =

K∑
k=1

xikfk(ai |ϕk,Υk) ,
K∑

k=1

xik =

1, i = 1, 2, ..., G which is a function of Gaussian
mixture probability density. The initial value of ϕk

is ϕk = Cen′
k
new

, k = 1, 2, ...K.
(3) EM-step

Find the ith O (:, oi) is the posterior probability vik =

p
(
k
∣∣ai,Λold

)
= xikfk(ai|ϕk,Υk)

K∑
j=1

xijfj(ai|ϕj ,Υj)

, i = 1, 2, ..., z, k =

1, 2, ...,K from the kth Gaussian distribution. Get
Λnew = argmax

Λ
S
(
Λ,Λold

)
by S

(
Λ,Λold

)
=

E
[
log p (O,X |Λ)

∣∣O,Λold
]
,S(Λ,Λold) =

K∑
k=1

G∑
i=1

p(k |ai,

Λold) log xik+
K∑

k=1

G∑
i=1

p(k
∣∣xi,Λ

old) log fk(xi |ϕk,Υk) ,

that is, use the following formula to update the pa-
rameters to get Λnew.

Figure up the new mixing factor: xk
new = 1

G

G∑
i=1

vik

Figure up the new mean vector:ϕk
new =

∑
G
i=1vikxi∑
G
i=1

vik

Figure up the new covariance matrix: Υk
new =∑

G
i=1vik(ai−ϕk)(ai−ϕk)

T∑
G
i=1

vik

(4) Among them, the gradient method is used to solve the
extreme value of S

(
Λ,Λold

)
condition, and the equa-

tion

{
grad(S) = λgrad(x1 + x2 + ...+ xK − 1)

x1 + x2 + ...+ xK = 1
can

be listed as
N∑

i=1

p(1|ai,Λ
old)

x1
, ...,

N∑
i=1

p(K|ai,Λ
old)

xK
= λ(1, 1, ..., 1)

x1 + x2 + ...+ xK = 1

. Be-

cause
K∑

k=1

N∑
i=1

p(k
∣∣ai,Λold) = G can obtain λ = G, the

revaluation formula of the mixture coefficient is xk =

1
G

G∑
i=1

vik, where vik = p
(
k
∣∣ai,Λold

)
, for S

(
Λ,Λold

)
,

the derivative of ϕk,Υk is 0. The revaluation formula

ϕk =

∑
G
i=1vikai∑
G
i=1

vik
of the mean value, the variance

revaluation formula is Υk =

∑
G
i=1vik(ai−ϕk)(ai−ϕk)

T∑
G
i=1

vik
.

(5) When Snew − Sold ≤ η is satisfied, outputting
the model parameters of GMM , else, take xik =
xik

new,ϕk = ϕk
new, Υk = Υk

new and carry on with
steps (5).

(6) The GMM is determined by the model parameters.
Then the cluster marks of each sample ai are deter-
mined by the following formula: λi = argmax vik

k∈{1,2...,K}
, λ =

1, 2...,K. Then ai is drawn enter the corresponding
cluster Cλi = Cλi ∪ {ai}: to get the cluster partition
C = {C1, C2, ..., Ck, ..., CK}.

GMM (Reynolds et al. (2000)) can effectively capture dif-
ferences in temperature-based features. Thereby obtaining
an effective classification of TTRs. Since the GMM needs
to give the initial mean vector and the initial covariance
and needs to solve the iterative parameters repeatedly, the
algorithm complexity is high.Steps (1) use the distance
metric to make the faster K-means method to find the
cluster center. Step (2) constructs the GMM and uses the
cluster center value as the mean value of the mean vector.
This increases the speed of the algorithm without losing
accuracy. (3) and (4) use the EM algorithm to determine
the parameters of the model. (5) is used to judge whether
the iteration stops. (6) uses the data corresponding mod-
el probability to classify accordingly. Through the KG-
EM algorithm, the TTRs data sets of all the tempera-
ture variation features sampled are constructed into each
corresponding GMM, and the probability that each data
satisfies each feature is obtained, and the data set has a
probability feature.

4. ALGORITHM DESCRIPTIONS

The classification result of the TTR data set can be
obtained by section 3. In this part we will develop a feature
extraction algorithm method with KG-EM algorithm for
defect recognition to automatically obtain the defect part
temperature variation curve and the defect reconstruction
image.The algorithm is arranged as follows: Step 1 gives
the basic notation of the algorithm . Steps 2-5 to obtain the
classification data set. Step 6 uses the KG-EM algorithm
to classify the TTRs. Step 7 select the typical TTR for the
probability. Step 8 obtain infrared reconstructed image.
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Step1 Notation: SM×N×Z is the infrared video stream.
S(i, j, :) contains the transient thermal response for each
pixel in the sequence of thermal images. K is the number

of classes. PCC is calculated as PCCA,B = D(A,B)√
ν(A)•ν(B)

.

Step2 MP = maxm=1,...,Mn=1,...,Nr=1,...,d
[S(m,n, r)] the

ordinate, abscissa and tcoordinate of MP are IMP ,JMP

and TMP .The PCCs of S(IMP , LMP , :) and S(IMP , j, :)
, j = 1, ..., JMP − 1, JMP + 1, ..., N) are calculated until
the PCC < RefCL . Then, the PCC and S(IMP , LMP , :)
of the vector S(IMP , j, :) are larger than RefCL and are
recorded as the column interval value CL .

Step3 Design time series
∑

(k), k = 1, 2, ...K,K =
1, 2, 3, ... in descending order. Γi

pk, i = 1, 2, ...,M ∗ N is

the time of ithTTR which has the peak value. TTR is
divided into K + 1 data block by comparing

∑
(k), k =

1, 2, ...K,K = 1, 2, 3, ....and Γi
pk, i = 1, 2, ...,M ∗ N .The

TTRof the data block of the kth , the mth row, and
thenthcolumn is recorded as Sk(m,n, :).

Step4 Calculate P k
n = maxm=1,...,Mn=1,....,Nr=1,...,d

[
Sk

(m,n, r)] , get (Ikn, J
k
n , T

k
n ) as coordinates of P

k
n Calculate

the PCC of Sk(Ikn, J
k
n , :) and Sk(i, Jk

n , :), i = 1, 2, ...,M
constantly until PCC < RFRk, k = 1, 2, ...,K. RLk

n is the
row interval value of the nth column of the kth data block.
Index that the PCC of vector Sk(i, Jk

n , :), i = 1, 2, ...,M is
greater than the amount of RFRk by use RLk

n .

Step5 ee is a threshold . Choose O(:, o1) as the starting
point of the loop calculation function. In Fig. 4 shows the
detailed calculation process :

(1) Sk(i, j, :) andO(:, ol) of PCC, whereO(:, ol) indicates
that the PCC of TTR and O(:, ol−1) are smaller than
the threshold EE.

(2) If PCC < ee , then, let l = l+ 1 ,O(:, ol) = Sk(i, j, :)
,(save new features). Otherwise ( ie.PCC ≥ EE),
let i = i + RLk

n , if k or horizontal coordinate n in

Sk(i, j, :) changes, RLk
n should change. Further, the

PCC of the next TTR is calculated using O(:, ol).
(3) If i > M , set i = i−M . If the line number exceeds the

total line number, change to the j = j +CL column.
(4) If j > N , complete the specific calculation process.

Step6 We know O(:, ol), l = 1, 2, ...G contains represen-
tative temperature profiles for all representative features
in the image sequence through the previous steps. This
step uses the KG-EM algorithm (see Section 3 for specific
steps) to get the probability that each TTR meets each
type of GMM to get the corresponding cluster division
C = {C1, C2, ..., Ck, ..., CK}.

Step7 Choose the Zek = maxwik , k = 1, 2, ...K final
representative TTRs which as the representation TTR of
Kth classification in the cluster C = {C1, C2, ...CK}. The
TTR with ZEK is contained into A1(:, k), k = 1, 2, ...,K.

Step8 A new matrix P (x, y)a×b, a = d, b = N × M is
constructed from a frame image vector and a row vector
as a matrix. From U = Â′

1 ∗ P get access to a 2D image

matrix U , where Â′
1 is a K×d-dimensional pseudo-inverse

matrix of the matrix A1. The U is further divided into rows
to obtained infrared reconstructed images of size N ×M
with a amount of K.

5. EXPERIMENTAL RESULTS

The defect in subsurface

Excitation coil Infrared video stream 

acquisition surface

Detection surface

No visible 

defects on 

the surface

Defect 

width 

2mm

Fig. 5. Pressure vessel sample A

Fig. 6. Experimental set-up
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In this experiment, the pressure vessel samples provided by
the China Aerodynamics Research Institute were selected.
Sample A is a circular device for a pressure vessel, as shown
in Fig. 5. The width of the defect is 2mm, and the defect
of sample A is on the subsurface and cannot be directly
observed from the surface. And the sample is very small
on a huge pressure vessel and difficult to observe.

In the experiment, the ECPT was used to detect defects
by eddy currents in the material, that is, the sample
was subjected to eddy current induction while the surface
temperature was recorded. The experimental schematic
diagram is shown in Fig. 6 .

Comparison of classification results In this comparative
experiment, the O(:, ol), l = 1, 2, ..., 213 obtained by the
same sampling uses different clustering methods for TTRs
classification. And set K to 3. From Table 1(1) and (2),
it can be seen that the KMeans and FCM algorithms
corresponding to the same data set using distance as
the metric have repeated divisions. Table 1(1) shows
the repeated division due to the equal distance between
different cores of some data. It can be seen from the
point P1P2 in the Table 1(2) that the corresponding
three types of membership degrees in the overlapping
classification data portion are ϕ1=ϕ2=ϕ3=0.333 to cause
repeated division. At the same time, due to the inaccurate
division of overlapping regions, the correct classification
will be affected. For example, in the middle point of
the circle in Table 1(2), the corresponding three types of
membership degrees of P3 and P4 are very close. For the
circled part of Table 1(2), the corresponding clear division
is obtained by KG-EM as shown in Table 1(3). The two
TTRs curves of the midpoint of the circle are extracted
separately. The temperature change rates of the two TTRs
curves shown in Table 1(3) are different, which proves that
the circled area can be divided into two categories. This
shows the correctness of the KG-EM division.

Table 2. Experimental parameter setting

Sample time: ReCL : 0.92 K:3

REFR: REFR1
A = 0.91, REFR2

A = 0.93, REFR3
A = 0.95

Sample A In this experiment, the heating time is set
to 1s, and the infrared camera is used for 12s. Taking
sample A as an example, the obtained infrared video
stream S512×640×273 has a total of 273 images , and there
are 327680 pixel points per image. According to Step 2 -
Step 5, data block selection is first performed, and pixel
points are divided into three data blocks. Secondly, for
these three parts, we set the parameters shown in Table 2
to perform variable step search, and then sample 213 pixel
points containing typical TTR features are obtained which
show in table 4.

Table 4. Video stream data classification result

Data type number

Original TTRs 327680

Sampling TTRs 213

Classification TTRs CA
1 = 26, CA

2 = 175, CA
3 = 12

According to Step 6, the TTRs are classified by the KG-
EM algorithm,the specific parameters are shown in table 3.
Use Step 7 to select three TTRs that satisfy the highest

probability of GMM to form a linear matrix A1(:, k), k =

1, 2, 3 with dimensions 273× 3. Obtain UA = Â′
1 ∗PA and

recalculate UA by row values to form a two-dimensional
image with the original image size of 512× 640. That is, 3
reconstructed infrared images are obtained. The image and
the corresponding TTRs curves are shown in the Fig. 7.
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Fig. 7. Algorithm result for Sample A

The TTR curves classified as shown in Fig. 7 can be
observed that the TTR of different classifications has d-
ifferent differences in temperature rise rate and temper-
ature decrease rate, and the type of expression region in
the reconstructed image can be judged according to the
difference. The type of region is (a) Subsurface defect (b)
Background (c) Excitation coil as shown in Fig. 7.

6. CONCLUSION

In this study, a GMM-based automatic defect recognition
algorithm is proposed for defect recognition in eddy cur-
rent pulse thermal imaging. This method can extract the
main features of the thermal image sequence. At the same
time, the main features are used to reconstruct the infrared
image. Defect detection can be performed on both surface
defects and subsurface defects. The experimental results
demonstrate the effectiveness of the method.
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