
Approximate Dynamic Programming with
Gaussian Processes for Optimal Control of

Continuous-Time Nonlinear Systems

Hirofumi Beppu ∗ Ichiro Maruta ∗ Kenji Fujimoto ∗

∗ Department of Aeronautics and Astronautics, Graduate School of
Engineering, Kyoto University, Kyoto, 615-8540, Japan (e-mail:

beppu.hirofumi.36a@st.kyoto-u.ac.jp, maruta@kuaero.kyoto-u.ac.jp,
k.fujimoto@ieee.org).

Abstract: In this paper, a new algorithm for realization of approximate dynamic programming
(ADP) with Gaussian processes (GPs) for continuous-time (CT) nonlinear input-affine systems
is proposed to infinite horizon optimal control problems. The convergence for the ADP algorithm
is proven based on the assumption of an exact approximation, where both the cost function
and the control input converge to their optimal values, that is, the solution to the Hamilton-
Jacobi-Bellman (HJB) equation. The approximation errors, however, are unavoidable in almost
every case of applications. In order to tackle the problem, the proposed algorithm is derived
with the proof of convergence, where the cost function and the control input, which are both
approximated, converge to those of the ADP as the number of data points for GPs approaches
infinity. A numerical simulation demonstrates the effectiveness of the proposed algorithm.

Keywords: Approximate dynamic programming, heuristic dynamic programming, value
iteration, optimal control, Gaussian processes, nonparametric models.

1. INTRODUCTION

Approximate dynamic programming, or adaptive dynamic
programming (ADP) (Werbos, 1992; Sutton and Barto,
1998; Murray et al., 2002) is a set of techniques to
solve dynamic programming problems approximately and
to achieve the cost function and optimal control policy
by solving the Hamilton-Jacobi-Bellman (HJB) equation.
The cost function or control policy are approximated to
overcome the fundamental problem of classic dynamic
programming, called the curse of dimensionality (Powell,
2007). ADP has two types of well established methods:
value iterations and policy iterations. The control input
sequences in policy iterations can stabilize the systems at
every iteration although the initial control policy usually
needs to be found among stabilizing inputs. On the other
hand, in value iterations, the iteration can start with a
simple value function and no need to find a stabilizing
input. In this paper, the value iteration based ADP is
addressed for nonlinear input-affine systems to obtain the
solution to the HJB equation.

A number of policy iteration methods for both of discrete-
time (DT) and continuous-time (CT) systems have been
developed for the past few decades with proofs of the
convergence (Lewis and Vrabie, 2009; Vrabie et al., 2009;
Vamvoudakis and Lewis, 2010; Bian et al., 2014). The
convergence of value iteration methods for DT systems has
been proven in Al-Tamimi et al. (2008). In contrast to pol-
icy iteration methods, however, the value iteration meth-
ods have limited number of works for CT systems (Wu
and Luo, 2012) although physical phenomena are written
as CT differential equations. Since the discretization in

time cannot avoid numerical errors which influence on the
performance of controllers and theoretical properties, it is
difficult to apply the results of DT systems to CT systems
directly.

The approximation strategy for the control policy or value
function is important as well. Parameterized models, e.g.,
neural networks, are widely used for the approximation
(Vrabie and Lewis, 2009). This type of parametric methods
can convert the general problems into optimizations for pa-
rameters which are easier to solve, but there still remains a
problem of determining basis functions. It is hard to know
in advance the class of functions to which value functions
or control policies belong. Gaussian processes (GPs) (Ras-
mussen and Williams, 2005) are stochastic, data-driven,
and nonparametric models developed in machine learn-
ing communities. In GPs, overfitting to the given data
can be avoided based on a Bayesian inference framework.
These characteristics of GPs are suitable to approximate
unknown functions. Deisenroth et al. (2009) have applied
GPs successfully to the classic dynamic programming in
finite horizon problems for DT nonlinear systems although
the convergence has not been proved yet.

In this paper, a new algorithm, Gaussian process heuris-
tic dynamic programming (GPHDP), based on the value
iteration based heuristic dynamic programming (HDP)
(Werbos, 1992) combined with GPs is proposed to infinite
horizon optimal control problems for CT nonlinear input-
affine systems. Here, HDP is one of the varieties in ADP.
Firstly, the HDP algorithm extended to CT systems is
given with a proof of convergence which is based on the as-
sumption of an exact approximation for the value function.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 6797

However, the approximation errors exist in almost every
case where the guarantee of convergence breaks down.
Next, in order to deal with the problem, GPHDP, the
proposed algorithm, is derived by approximating the cost
function with the mean function of GPs. Then, it is shown
that both the cost function and the control input obtained
in GPHDP converge to those of the HDP as the number
of data points for GPs approaches infinity. Finally, the
effectiveness of GPHDP is demonstrated by a numerical
simulation.

2. NOTATION

The notations used in this paper are as follows.

• Sn+: the set of n× n positive semi-definite matrices.
• Sn++: the set of n× n positive definite matrices.
• (a)i: the i-th component of a ∈ Rn.
• ∥a∥: the Euclidean norm of a ∈ Rn.
• In: the n× n identity matrix.
• (A)ij : the i-th row and j-th column component of
A ∈ Rn×m.
• ⌊x⌋: the floor function of x ∈ R.
• diag(a): the n × n diagonal matrix whose diagonal
components are the components of a ∈ Rn.

3. PROBLEM SETTING

Consider a nonlinear dynamical system as

ẋ(t) = f(x(t)) + g(x(t))u(t), (1)

which is affine in inputs, where the state x(t) ∈ Rn,
f : Rn → Rn, g : Rn → Rn×m, and the control input
u(t) ∈ Rm. Assume that the state x = 0 is an equilibrium,
i.e., f(0) = 0 and u = 0 when x = 0. For the sake of
clarity, the solution of the equation (1) with an initial state
x0 := x(0) and a control input u for t ≥ 0 is defined as

x(t)ux0
:= x0 +

∫ t

0

f(x(τ)) + g(x(τ))u(τ)dτ.

The system (1) is supposed to be stabilizable on a compact
set X ⊂ Rn, i.e., there exists a control input u such that

lim
t→∞

x(t)ux0
= 0

for all initial state x0 ∈ X . The aim is to obtain a control
input which minimizes the cost function

V (x0) =

∫ ∞

0

x(t)ux0

T
Qx(t)ux0

+ u(t)TRu(t)dt

=:

∫ ∞

0

L
(
x(t)ux0

, u(t)
)
dt, ∀x0 ∈ X , (2)

where Q ∈ Sn+ and R ∈ Sm++. The controller u in (2) is
required to stabilize the system (1), to ensure the finiteness
of the cost function (2), and to be continuous with u = 0
when x = 0. This class of controllers are defined to
be admissible. Suppose that the cost function V in (2)
is continuously differentiable. According to the dynamic
programming, the right-hand side of (2) can be divided
into two parts as

∫ ∞

0

L
(
x(t)ux0

, u(t)
)
dt

=

∫ ∆t

0

L
(
x(t)ux0

, u(t)
)
dt+

∫ ∞

∆t

L
(
x(t)ux0

, u(t)
)
dt

=

∫ ∆t

0

L
(
x(t)ux0

, u(t)
)
dt+ V (x(∆t)ux0

).

The cost function V ∗ which satisfies the HJB equation

V ∗(x0) = min
u

(∫ ∆t

0

L
(
x(t)ux0

, u(t)
)
dt+ V ∗(x(∆t)ux0

)

)
(3)

is time invariant. This fact is known as Bellman’s principle
of optimality. If ∆t is sufficiently small, it follows from (3)
that

0 = min
u

lim
∆t→0

1

∆t

{∫ ∆t

0

L
(
x(t)ux0

, u(t)
)
dt

+
(
V ∗(x(∆t)ux0

)− V ∗(x0)
)}

= min
u

d

dt′

(∫ t′

0

L
(
x(t)ux0

, u(t)
)
dt+ V ∗(x(t′)ux0

)

)∣∣∣∣∣
t′=0

= min
u

(
L(x0, u(0)) +

∂V ∗

∂x
(x0)(f(x0) + g(x0)u(0))

)
.

(4)

The first-order necessary condition of the optimal control
input u∗ is derived by taking the partial derivative of the
right-hand side of (4) with respect to u as

2uTR+
∂V ∗(x)

∂x
g(x) = 0.

Thus the feedback control

u∗(x) = −1

2
R−1g(x)T

∂V ∗(x)

∂x

T

(5)

is obtained. Substituting (5) in (4), the HJB equation
turns into the nonlinear partial differential equation

∂V ∗(x)

∂x
f(x)− 1

4

∂V ∗(x)

∂x
g(x)R−1g(x)T

∂V ∗(x)

∂x

T

+ xTQx

= 0. (6)

In the case of linear systems, (6) becomes the Riccati
equation, which is solved efficiently. For general nonlinear
systems, however, it is difficult to solve (6) accurately.

The main objective of the proposed method is to obtain
the solution V ∗(x) in (6). In the following discussion, ∆t
is assumed to be sufficiently small.

4. HDP ALGORITHM FOR CT SYSTEMS

In this section, the HDP algorithm is extended to deal
with nonlinear input-affine CT systems and to solve the
HJB equation (3) with a proof of convergence.

4.1 Outline of HDP Algorithm

At the first step of HDP algorithm, the initial value is set

V0 : Rn → 0. (7)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6798

By using (7), u0 is obtained as

u0(x) = argmin
u

(∫ ∆t

0

L
(
x(t)ux0

, u(t)
)
dt+ V0(x(∆t)ux0

)

)

= −1

2
R−1g(x)T

∂V0(x)

∂x

T

. (8)

Then the cost function is updated with u0 in (8) as

V1(x0) = min
u

(∫ ∆t

0

L
(
x(t)ux0

, u(t)
)
dt+ V0(x(∆t)ux0

)

)

=

∫ ∆t

0

L
(
x(t)u0

x0
, u0(x(t)

u0
x0
)
)
dt+ V0(x(∆t)u0

x0
).

(9)

The computation of (8) and (9) is repeated until the
cost function converges. The summary of this procedure
is given in Algorithm 1.

Algorithm 1. HDP Algorithm for CT Systems
Step 1:
Set V0 : Rn → 0 and i← 0.
Step 2:
Update the control input ui(x) as

ui(x) = −
1

2
R−1g(x)T

∂Vi(x)

∂x

T

. (10)

Step 3:
Update the cost function Vi+1(x0) as

Vi+1(x0) =

∫ ∆t

0

L
(
x(t)ui

x0
, ui(x(t)

ui
x0
)
)
dt+ Vi(x(∆t)ui

x0
).

(11)

Step 4:
If Vi+1 converges, then stop and returns the cost function
Vi+1, otherwise set i ← i + 1, go back to Step 2, and
continue.

4.2 Proof of Convergence for HDP Algorithm

This section gives a proof of convergence of the HDP
algorithm based on the result of Al-Tamimi et al. (2008)
for DT systems. Here the system of interests is modified
to CT ones.

Lemma 1. Let ui(x) and Vi+1(x0) be the control input
and cost function defined by (10) and (11), respectively,
and a1, a2, . . . be a sequence of any arbitrary control
inputs. Define a sequence of value functions V a

i+1(x0) for
i = 0, 1, . . . as

V a
i+1(x0) :=

∫ ∆t

0

L
(
x(t)ai

x0
, ai(t)

)
dt+ V a

i (x(∆t)ai
x0
).

Then for all i, Vi(x0) ≤ V a
i (x0) holds if V0(x0) = V a

0 (x0) =
0.

Proof. Since the right-hand side of (11) is minimized by
ui(x) and V0(x0) = V a

0 (x0) = 0, for i = 1, it follows that

V1(x0) =

∫ ∆t

0

L
(
x(t)u0

x0
, u0(x(t)

u0
x0
)
)
dt+ V0(x(∆t)u0

x0
)

=

∫ ∆t

0

L
(
x(t)u0

x0
, u0(t)

)
dt

≤
∫ ∆t

0

L
(
x(t)a0

x0
, a0(t)

)
dt = V a

1 (x0).

Suppose Vi(x0) ≤ V a
i (x0) holds for i ≥ 1. Then by (10), it

follows that

Vi+1(x0) =

∫ ∆t

0

L
(
x(t)ui

x0
, ui(x(t)

ui
x0
)
)
dt+ Vi(x(∆t)ui

x0
)

≤
∫ ∆t

0

L
(
x(t)ai

x0
, ai(t)

)
dt+ Vi(x(∆t)ai

x0
)

≤
∫ ∆t

0

L
(
x(t)ai

x0
, ai(t)

)
dt+ V a

i (x(∆t)ai
x0
)

= V a
i+1(x0).

By mathematical induction, it is shown that Vi(x0) ≤
V a
i (x0) holds for all i. 2

Lemma 2. If the system (1) is controllable, there exits
an upper bound U(x0) such that Vi(x0) ≤ U(x0) holds
for i = 0, 1, . . ., where Vi+1(x0) is defined as (11) with
V0(x0) = 0.

Proof. Let s be any stabilizing and admissible control
input. Define a sequence of value functions V s

i+1(x0) for
i = 0, 1, . . . as

V s
i+1(x0) =

∫ ∆t

0

L
(
x(t)sx0

, s(t)
)
dt+ V s

i (x(∆t)sx0
), (12)

which satisfies V s
0 (x0) = V0(x0) = 0. Subtracting V s

i (x0)
from (12) yields

V s
i+1(x0)− V s

i (x0)

= V s
i (x(∆t)sx0

)− V s
i−1(x(∆t)sx0

)

= V s
i−1(x(2∆t)sx(∆t))− V s

i−2(x(2∆t)sx(∆t))

...

= V s
1 (x(i∆t)sx((i−1)∆t))− V s

0 (x(i∆t)sx((i−1)∆t)).

Then it follows from V s
0 (x0) = 0 that

V s
i+1(x0)

= V s
1 (x(i∆t)sx((i−1)∆t)) + V s

i (x0)

= V s
1 (x(i∆t)sx((i−1)∆t)) + V s

1 (x((i− 1)∆t)sx((i−2)∆t))

+ V s
i−1(x0)

...

= V s
1 (x(i∆t)sx((i−1)∆t)) + · · ·+ V s

1 (x0)

=

i∑
ni=0

∫ (ni+1)∆t

ni∆t

L
(
x(t)sx(ni∆t), s(t)

)
dt

≤
∞∑

ni=0

∫ (ni+1)∆t

ni∆t

L
(
x(t)sx(ni∆t), s(t)

)
dt

=

∫ ∞

0

L
(
x(t)sx0

, s(t)
)
dt.

Since the admissibility of s guarantees the finiteness of cost
functions, it follows that

V s
i+1(x0) ≤

∫ ∞

0

L
(
x(t)sx0

, s(t)
)
dt = U(x0).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6799

In Lemma 1, set ai = s for all i, then V a
i (x0) = V s

i (x0).
This leads to Vi(x0) ≤ V s

i (x0) ≤ U(x0) for all i by using
Lemma 1, which completes the proof. 2

Lemma 3. If the condition in Lemma 2 holds and the HJB
equation (3) has a unique solution, then there exists a
minimum upper bound V ∗(x0) ≤ U(x0) such that V ∗(x0)
solves (6) with Vi(x0) ≤ V ∗(x0) ≤ U(x0) for i = 0, 1,

Proof. Let s be any stabilizing and admissible control
input defined in the proof of Lemma 2. Then it follows
that

V ∗(x0) =

∫ ∞

0

L
(
x(t)u

∗

x0
, u∗(x(t)u

∗

x0
)
)
dt

≤
∫ ∞

0

L
(
x(t)sx0

, s(t)
)
dt = U(x0).

Therefore, it follows from Lemma 2 that

Vi(x0) ≤ V s=u∗
i (x0) ≤ V ∗(x0) ≤ U(x0),

and Lemma 3 is proved. 2

The convergence of Algorithm 1 is shown in the following.

Theorem 4. Let ui(x) and Vi+1(x0) be defined in (10) and
(11), respectively. It follows that Vi(x0) ≤ Vi+1(x0) for all
i if V0(x0) = 0. When i → ∞, Vi and ui converge to V ∗,
the solution to the HJB equation (6), and u∗, respectively.

Proof. Let ai and V a
i+1 be defined in Lemma 1. If

V0(x0) = V a
0 (x0) = 0, then from Lemma 1, Vi(x0) ≤

V a
i (x0) holds for all i. Because the control input ai can

be chosen arbitrarily, set ai = ui+1 and

V a
i+1(x0) =

∫ ∆t

0

L
(
x(t)ui+1

x0
, ui+1(x(t)

ui+1
x0

)
)
dt

+ V a
i (x(∆t)ui+1

x0
). (13)

Now it will be shown that V a
i (x0) ≤ Vi+1(x0) for all i if

V0(x0) = V a
0 (x0) = 0. When V0(x0) = V a

0 (x0) = 0, it
follows from (11) that

V1(x0)− V a
0 (x0) =

∫ ∆t

0

L
(
x(t)ui

x0
, ui(x(t)

ui
x0
)
)
dt ≥ 0.

Next suppose that V a
i−1(x0) ≤ Vi(x0) for i ≥ 1. Then it

follows from (11) and (13) that

Vi+1(x0)− V a
i (x0) = Vi(x(∆t)ui

x0
)− V a

i−1(x(∆t)ui
x0
) ≥ 0.

By mathematical induction, it is shown that Vi(x0) ≥
V a
i+1(x0) for all i. Combining this with the result of Lemma

1, it follows that Vi(x0) ≤ Vi+1(x0) for all i.

From Lemma 3, it follows that V∞(x0) ≤ V ∗(x0). In order
to see whether V∞(x0) is V

∗(x0), (11) can be rewritten for
i→∞ as

V∞(x(∆t)u∞
x0

)− V∞(x0)

= −
∫ ∆t

0

L
(
x(t)u∞

x0
, u∞(x(t)u∞

x0
)
)
dt ≤ 0.

Thus V∞(x0) is a Lyapunov function for u∞ which is
stabilizable and admissible. This means that V∞(x0) is a
candidate for the solution to the HJB equation (6). Since
by Lemma 2, Vi(x0) ≤ V∞(x0) holds for all i, it also follows
from Lemma 2 that V∞(x0) = U(x0). Moreover, from
Lemma 3 it follows that V ∗(x0) ≤ V∞(x0) = U(x0). This
suggests that V ∗(x0) ≤ V∞(x0) ≤ V ∗(x0). Therefore, it
follows that limi→∞ Vi(x0) = V ∗(x0) and limi→∞ ui = u∗,
which completes the proof. 2

5. GPHDP ALGORITHM

In order to implement Algorithm 1 in Section 4.1 practi-
cally, Vi can be approximated with some basis functions
whose coefficients are updated instead. Since, however, it
is unknown which classes of functions Vi belong to, it is
difficult to determine the basis functions in advance. In ad-
dition, the convergence of the algorithm may break down
because the proof of convergence in Section 4.2 is derived
under the assumption that each step of the algorithm can
be computed exactly. In this section, a new algorithm,
GPHDP, is proposed based on the HDP algorithm for CT
systems incorporated with GPs to overcome the problems
mentioned above.

GPs are a tool for estimating functions generating data
as probability distributions. There are two main reasons
to apply GPs to implement the HDP algorithm. One of
them is that since GPs are nonparametric, if data are
given properly, and the kernel functions and hyperparam-
eters are set appropriately, they can output any smooth
continuous functions. Another is that GPs can interpolate
with uncertainties due to lack of data. This can help with
avoiding overconfidence of the evaluations of estimated
functions using discrete points.

5.1 Outline of GPHDP Algorithm

In the following, suppose that the given data set {X, V̂i}
is composed of the state vectors xd for d = 1, . . . , D and
the corresponding measurement

V̂id = Vi(xd) + e, e ∼ N (0, σ2
e),

where X and V̂i are defined as

X := [x1, . . . , xD],

V̂i := [V̂i1, . . . , V̂iD]T.

The aim here is to estimate the latent function Vi based
on the data set. In a framework of Bayesian inference, the
estimate of Vi is computed probabilistically by

p(Vi|X, V̂i) =
p(V̂i|Vi, X)p(Vi)

p(V̂i|X)
,

where p(V̂i|Vi, X), p(Vi), p(V̂i|X) are a likelihood function,
a prior distribution, and a marginal likelihood function,
respectively. In estimating the latent function with GPs,
it is possible to put a prior distribution directly on the
function space without explicit parametrization. This prior
assumes a smoothness of the function Vi. GPs are specified
fully with the mean functionm and the covariance function
or kernel function k. Thus GPs are regarded as probability
distributions on functions. When the latent function Vi

follows a GP, the notation

Vi ∼ GP(m, k)

is used. For simplicity, set m ≡ 0 in the following without
loss of generality. In GP modeling based on the data set
{X, V̂i}, the probability distribution of Vi corresponding
to any state x is expressed with the mean function and
covariance function as

mi(x) = EVi [Vi] = k(x,X)(KXX + σ2
eIn)

−1V̂i, (14)

ki(x, x) = varVi
[Vi]

= k(x, x)− k(x,X)(KXX + σ2
eIn)

−1k(x,X)T,

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6800

respectively, where k(x,X) and KXX are defined as

k(x,X) = [k(x, x1), . . . , k(x, xD)],

(KXX)jj′ = k(xj , xj′), j, j′ = 1, 2, . . . , D

respectively. For the covariance function, a Gaussian kernel

k(xj , xj′) = exp

(
− 1

2h2
p

(xj − xj′)
T(xj − xj′)

)
(15)

is one of the common choices where hp is a hyperparameter
(or a set of hyperparameters) which can be determined by
given data. In GPHDP algorithm, the mean function mi

is used to approximate Vi in (10) and (11). The outline of
the algorithm is given in Algorithm 2 where ϵ is a constant
for the convergence judgment.

Algorithm 2. GPHDP Algorithm
Step 1:
Set V̂0d ← 0 for all d ∈ {0, 1, . . . , D} and i← 0.
Step 2:
Update the control input ûi(x) as

ûi(x) = −
1

2
R−1g(x)T

∂mi(x)

∂x

T

, (16)

where mi(x) is computed by using (14) based on the value

of V̂i.
Step 3:
For all d, update the data of the cost function V̂(i+1)d

V̂(i+1)d =

∫ ∆t

0

L
(
x(t)ûi

xd
, ûi(x(t)

ûi
xd
)
)
dt+mi(x(∆t)ûi

xd
),

(17)

wheremi(x(∆t)ûi
xd
) is computed by using (14) based on the

value of V̂i. If V̂(i+1)d − V̂id < 0, then set V̂(i+1)d ← V̂id.
Step 4:
If it follows that

∥V̂i+1 − V̂i∥ < ϵ,

then stop and returns the mean function mi+1, otherwise
set i← i+ 1, go back to Step 2, and continue.

Remark 5. At Step 3 in Algorithm 2, V̂(i+1)d is replaced

by V̂id if V̂(i+1)d − V̂id < 0 to avoid the contradiction in
Theorem 4. The reason why this case happens occasionally
is that mi is influenced by stochastic factors.

5.2 Proof of Convergence for GPHDP Algorithm

In this section, the proof of convergence for the GPHDP
algorithm is given. That is, the convergence in terms
of the number of data points for (16) and (17), i.e.,

limD→∞ V̂id = Vi(xd) and limD→∞ ûi(x) = ui(x), is
proven.

For simplicity, a hyperrectangle X is considered here and
let

(x)n := min
x∈X

(x)n, (x̄)n := max
x∈X

(x)n.

Now X is supposed to be arranged on the n-dimensional
grid points, that is,

{[
(x)1 +

(x̄)1 − (x)1
N − 1

c1, (x)2 +
(x̄)2 − (x)2

N − 1
c2, . . . , (x)n

+
(x̄)n − (x)n

N − 1
cn

]∣∣∣∣c1, c2, . . . , cn ∈ {0, 1, . . . , N − 1}
}
.

Thus the total number of data points becomes D = Nn.
For the discussion below, the following assumption is
made.

Assumption 6. Given a data set {X, V̂i}, there exist a
kernel function k and a set of hyperparameters hp such
that

mi(xd) = k(xd, X)(KXX + σ2
eIn)

−1V̂i = V̂id (18)

holds for all i and d.

Remark 7. In GPs, output functions can be expressed
by infinite-dimensional feature vectors with some specific
kernels, e.g., a Gaussian kernel in (15), which return any
smooth continuous functions (Rasmussen and Williams,
2005). Assumption 6 is based on this characteristic. In fact,
if σ2

e = 0, then (18) holds strictly.

Firstly, the lemma which is necessary to prove the conver-
gence of û(x(t)) is given in the following.

Lemma 8. Given a data set {X,Vi} for the system (1). If
Assumption 6 holds, then for all ε > 0, there exists an
N̄ > 0 such that for all N > N̄ , x ∈ X , and i, it follows
that

∥ûi(x)− ui(x)∥ < ε.

Here Vi is defined as

Vi := [Vi1, . . . , ViD]T

:= [Vi(x1), . . . , Vi(xD)]T.

Proof. Choose xd from X such that

(xd)ν =

⌊
(x)ν

(∆(N))ν

⌋
(∆(N))ν , ν ∈ {1, 2, . . . , n}, (19)

where

(∆(N))ν :=
(x)ν − (x̄)ν

N − 1
> 0.

Suppose that xd is reselected depending on N . Since
limN→∞(∆(N))ν = 0 and limN→∞ xd = x, it follows that

lim
N→∞

Vi(xd + (∆(N))νbν)− Vi(xd)

(∆(N))ν

= lim
(∆(N))ν→0

Vi(xd + (∆(N))νbν)− Vi(xd)

(∆(N))ν
=

∂Vi(x)

∂(x)ν
,

where bν denotes a standard basis defined as

bν := [0, . . . , 0, 1︸︷︷︸
ν-th

, 0, . . . , 0].

Thus it follows that

lim
N→∞

∥∥∥∥[Vi(xd + (∆(N))1b1)− Vi(xd)

(∆(N))1
, . . . ,

Vi(xd + (∆(N))nbn)− Vi(xd)

(∆(N))n

]T
− ∂Vi(x)

∂x

T
∥∥∥∥∥ = 0.

The derivative of the mean function can be written as
∂mi

∂(x)ν
(x) =

Vi(xd + (∆(N))νbν)− Vi(xd)

(∆(N))ν
+ (Ei(x))ν ,

where Ei(x) denotes an error. Since from Assumption 6,
the data set is interpolated exactly, limN→∞ |(Ei(x))ν | =

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6801

0. Therefore, for all ε > 0, there exist δ1, δ2, and N̄ > 0
such that for all N > N̄ , it follows that∥∥∥∥[Vi(xd + (∆(N))1b1)− Vi(xd)

(∆(N))1
, . . . ,

Vi(xd + (∆(N))nbn)− Vi(xd)

(∆(N))n

]T
− ∂Vi(x)

∂x

T
∥∥∥∥∥ < δ1,

∥Ei(x)∥ < δ2

and

∥ûi(x)− ui(x)∥

=

∥∥∥∥∥−1

2
R−1g(x(t))T

(
∂mi(x)

∂x

T

− ∂Vi(x)

∂x

T
)∥∥∥∥∥

≤
∥∥∥∥−1

2
R−1g(x)T

∥∥∥∥ ·∥∥∥∥[Vi(xd + (∆(N))1b1)− Vi(xd)

(∆(N))1
, . . . ,

Vi(xd + (∆(N))nbn)− Vi(xd)

(∆(N))n

]T
− ∂Vi(x)

∂x

T

+ Ei(x)

∥∥∥∥∥
≤
∥∥∥∥−1

2
R−1g(x)T

∥∥∥∥{∥∥∥∥[Vi(xd + (∆(N))1b1)− Vi(xd)

(∆(N))1
, . . . ,

Vi(xd + (∆(N))nbn)− Vi(xd)

(∆(N))n

]T
− ∂Vi(x)

∂x

T
∥∥∥∥∥

+ ∥Ei(x)∥
}

<

∥∥∥∥−1

2
R−1g(x)T

∥∥∥∥ (δ1 + δ2) < ε.

This completes the proof of Lemma 8. 2

Next define Ṽ(i+1)d as

Ṽ(i+1)d :=

∫ ∆t

0

L
(
x(t)ui

xd
, ui(x(t)

ui
xd
)
)
dt+mi(x(∆t)ui

xd
).

(20)

Then the following lemma about the relationship between
V̂(i+1)d and Ṽ(i+1)d is derived.

Lemma 9. If Lemma 8 holds, then for all ε > 0, there
exists an N̄ > 0 such that for all N > N̄ , xd ∈ X, d, and
i, it follows that

|V̂(i+1)d − Ṽ(i+1)d| < ε.

Proof. By subtracting (20) from (17), it follows that

V̂(i+1)d − Ṽ(i+1)d

=

∫ ∆t

0

L
(
x(t)ûi

xd
, ûi(x(t)

ûi
xd
)
)
− L

(
x(t)ui

xd
, ui(x(t)

ui
xd
)
)
dt

+mi(x(∆t)ûi
xd
)−mi(x(∆t)ui

xd
).

Since it follows that limN→∞ ûi = ui from Lemma 8,

lim
N→∞

(
L
(
x(t)ûi

xd
, ûi(x(t)

ûi
xd
)
)
− L

(
x(t)ui

xd
, ui(x(t)

ui
xd
)
))

= 0

holds from the continuity of L, and

lim
N→∞

(mi(x(∆t)ûi
xd
)−mi(x(∆t)ui

xd
)) = 0

also holds from the continuity of mi. Therefore, for all
ε > 0, there exist δ3, δ4, and N̄ > 0 such that for all
N > N̄ , it follows that∣∣L (x(t)ûi

xd
, ûi(x(t)

ûi
xd
)
)
− L

(
x(t)ui

xd
, ui(x(t)

ui
xd
)
)∣∣ < δ3,∣∣mi(x(∆t)ûi

xd
)−mi(x(∆t)ui

xd
)
∣∣ < δ4,

and

|V̂(i+1)d − Ṽ(i+1)d|

=

∣∣∣∣∣
∫ ∆t

0

L
(
x(t)ûi

xd
, ûi(x(t)

ûi
xd
)
)
− L

(
x(t)ui

xd
, ui(x(t)

ui
xd
)
)
dt

+mi(x(∆t)ûi
xd
)−mi(x(∆t)ui

xd
)

∣∣∣∣
≤

∣∣∣∣∣
∫ ∆t

0

L
(
x(t)ûi

xd
, ûi(x(t)

ûi
xd
)
)
− L

(
x(t)ui

xd
, ui(x(t)

ui
xd
)
)
dt

∣∣∣∣∣
+
∣∣mi(x(∆t)ûi

xd
)−mi(x(∆t)ui

xd
)
∣∣

≤
∫ ∆t

0

∣∣L (x(t)ûi
xd
, ûi(x(t)

ûi
xd
)
)
− L

(
x(t)ui

xd
, ui(x(t)

ui
xd
)
)∣∣dt

+
∣∣mi(x(∆t)ûi

xd
)−mi(x(∆t)ui

xd
)
∣∣

<

∫ ∆t

0

δ3dt+ δ4 = ∆tδ3 + δ4 < ε.

Thus Lemma 9 is proven. 2

By using the two lemmas proven above, the proof of
convergence for GPHDP algorithm is derived as follows.

Theorem 10. Given V̂0 = 0 for the system (1). Then under
Assumption 6, for all ε > 0, there exists an N̄ > 0 such
that for all N > N̄ , x ∈ X , xd ∈ X, d, and i, it follows
that

|ûi(x)− ui(x)| < ε,

|V̂(i+1)d − Vi+1(xd)| < ε.

Proof. Since V̂0 = 0, from (14), it follows that

m0(x) = 0 = V0(x). (21)

Substituting (21) into (16) yields

û0(x) = −
1

2
R−1g(x)T

∂m0(x)

∂x

T

= 0 = u0(x).

Then it follows from (17) that

V̂1d =

∫ ∆t

0

L
(
x(t)û0

xd
, û0(x(t)

û0
xd
)
)
dt+m0(x(∆t)û0

xd
)

=

∫ ∆t

0

L
(
x(t)u0

xd
, u0(x(t)

u0
xd
)
)
dt+ V0(x(∆t)u0

xd
)

= V1(xd). (22)

In the following, it is shown that for all i,

lim
N→∞

ûi(x) = ui(x), lim
N→∞

V̂(i+1)d = Vi+1(xd),

by mathematical induction. Firstly, it is proved that

lim
N→∞

û1(x) = u1(x), lim
N→∞

Ṽ2d = V2(xd),

lim
N→∞

V̂2d = V2(xd)

hold. By (22) and Lemma 8, it follows that

lim
N→∞

û1(x) = u1(x)

for all x ∈ X . Since now Lemma 8 holds, from Lemma 9,

lim
N→∞

V̂2d = Ṽ2d (23)

holds. Next choose xd′ from X such that (xd′)n is defined
in (19) by replacing x with x(∆t)u1

xd
. Denote m1(x(∆t)u1

xd
)

with an error term E′
i(xd′) as

m1(x(∆t)u1
xd
) = m1(xd′) + E′

1(xd′)

= V̂1d′ + E′
1(xd′)

= V1(xd′) + E′
1(xd′). (24)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6802

Since limN→∞ xd′ = x(∆t)u1
xd

and limN→∞ E′
1(xd′) = 0

from Assumption 6, it follows from (24) that

lim
N→∞

m1(x(∆t)u1
xd
) = V1(x(∆t)u1

xd
).

Therefore, it follows that

lim
N→∞

|Ṽ2d − V2(xd)|

= lim
N→∞

∣∣∣∣∣
∫ ∆t

0

L
(
x(t)u1

xd
, u1(x(t)

u1
xd
)
)
dt+m1(x(∆t)u1

xd
)

−
∫ ∆t

0

L
(
x(t)u1

xd
, u1(x(t)

u1
xd
)
)
dt− V1(x(∆t)u1

xd
)

∣∣∣∣∣
= lim

N→∞
|m1(x(∆t)u1

xd
)− V1(x(∆t)u1

xd
)| = 0,

that is,

lim
N→∞

Ṽ2d = V2(xd). (25)

Moreover, from (23) and (25), it is shown that

lim
N→∞

V̂2d = V2(xd). (26)

Next assume that for i ≥ 1,

lim
N→∞

ûi(x) = ui(x), lim
N→∞

Ṽ(i+1)d = Vi+1(xd),

lim
N→∞

V̂(i+1)d = Vi+1(xd)

hold. Then because the data set {X,Vi+1} is given, from
Lemma 8, it follows that

lim
N→∞

ûi+1(x) = ui+1(x).

By combining this with Lemma 9, it follows that

lim
N→∞

V̂(i+2)d = Ṽ(i+2)d.

Taking the same procedure as in deriving (26), it is shown
that

lim
N→∞

Ṽ(i+2)d = Vi+2(xd), lim
N→∞

V̂(i+2)d = Vi+2(xd).

By induction, it is proved that for all i,

lim
N→∞

ûi(x) = ui(x), lim
N→∞

V̂(i+1)d = Vi+1(xd),

and this completes the proof of Theorem 10. 2

6. EVALUATION OF GPHDP

In order to see the effectiveness of GPHDP, the algorithm
is applied to swinging up a pendulum, which is known as
a nonlinear and challenging optimal control problem.

6.1 Example

Consider a CT pendulum system with x = [θ, θ̇]T as

ẋ = f(x) + g(x)u =

(
θ̇

mgrl

ml2
sin θ

)
+

(
0
1

ml2

)
u, (27)

where θ (rad) and θ̇ (rad/s) are angle and angular velocity
of the pendulum, respectively, and m = 1kg is the mass of
pendulum, gr = 9.8m/s2 is the gravitational acceleration,
and l = 1m is the length of pendulum. The goal is to swing
up the pendulum and balance it in the inverted position at

[θ, θ̇]T = 0 with an arbitrary initial state. The cost function
is chosen as

V (x0) =

∫ ∞

0

x(t)ux0

T
Qx(t)ux0

+ u(x(t)ux0
)TRu(x(t)ux0

)dt,

(28)

where Q = diag([1, 0.01]T) and R = 1.

For the parameters of GPHDP, set ∆t = 0.1 s, X to be
on D = 31 × 31 = 961 uniform grids in a region of
[−2π, 2π]× [−10× 10], k to be a Gaussian kernel in (15),
hp = 1, σ2

e = 0 at the origin, otherwise σ2
e = 1×10−6, and

ϵ = D × 10−5.

6.2 Results

The iteration of Algorithm 2 stopped at the i+1 = 100th
step. The mean function m100(x) in (14) corresponding to
the cost function obtained by GPHDP is shown in Fig.
1, where the blue circles denote the positions of data set
{X, V̂100}. Figure 2 shows the two-dimensional mapping
of the mean value.

From Fig. 3, it is observed that the norm ∥V̂i+1 − V̂i∥
converges well by the end of the iteration as ∥V̂100 −
V̂99∥ = 8.1× 10−3.

Fig. 1. Mean value of the cost function in GPHDP.

Fig. 2. The 2D mapping of the mean value in GPHDP.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6803

Fig. 3. The iteration history of the norm ∥V̂i+1 − V̂i∥.

The results of numerical simulation with the initial state
[θ0, θ̇0]

T = [π, 0]T where the position of pendulum is the
bottom are given in Figs. 4 and 5, where for comparison,
the results of the linear quadratic regulator (LQR) for
the pendulum system (27) are shown together. As seen
in these figures, the controller obtained by GPHDP swing
up the pendulum to the top position and stabilize it with
a smaller actuator input although the LQR directly lift
up the pendulum with a bigger input. The finite horizon
costs in (28) for 10 s by the controller of GPHDP and LQR
are 58.42 and 253.36, respectively. This result shows that
GPHDP could achieve the better performance in terms of
the cost (28).

Fig. 4. The time history of the states of pendulum.

Fig. 5. The time history of the control input.

7. CONCLUSION

This paper has proposed a new algorithm, GPHDP, for
realization of the HDP algorithm for CT nonlinear input-
affine systems whose convergence is guaranteed. The con-
vergence of the cost function and the controller obtained
by GPHDP in the sense of the number of data points has
been also proven under the reasonable assumption based
on the GPs property. The effectiveness of the proposed
method is demonstrated for the inverted pendulum.

ACKNOWLEDGEMENTS

This work was supported by JSPS KAKENHI Grant
Number JP19J23306.

REFERENCES

Al-Tamimi, A., Lewis, F.L., and Abu-Khalaf, M. (2008).
Discrete-time nonlinear hjb solution using approxi-
mate dynamic programming: Convergence proof. IEEE
Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), 38(4), 943–949.

Bian, T., Jiang, Y., and Jiang, Z.P. (2014). Adaptive
dynamic programming and optimal control of nonlinear
nonaffine systems. Automatica, 50(10), 2624–2632.

Deisenroth, M.P., Rasmussen, C.E., and Peters, J. (2009).
Gaussian process dynamic programming. Neurocomput-
ing, 72(7), 1508–1524.

Lewis, F.L. and Vrabie, D. (2009). Reinforcement learning
and adaptive dynamic programming for feedback con-
trol. IEEE Circuits and Systems Magazine, 9(3), 32–50.

Murray, J.J., Cox, C.J., Lendaris, G.G., and Saeks, R.
(2002). Adaptive dynamic programming. Trans. Sys.
Man Cyber Part C, 32(2), 140–153.

Powell, W.B. (2007). Approximate Dynamic Program-
ming: Solving the Curses of Dimensionality (Wiley Se-
ries in Probability and Statistics). Wiley-Interscience.

Rasmussen, C.E. and Williams, C.K.I. (2005). Gaussian
Processes for Machine Learning (Adaptive Computation
and Machine Learning). The MIT Press.

Sutton, R.S. and Barto, A.G. (1998). Reinforcement
Learning: An Introduction. MIT Press.

Vamvoudakis, K.G. and Lewis, F.L. (2010). Online ac-
tor–critic algorithm to solve the continuous-time infinite
horizon optimal control problem. Automatica, 46(5),
878–888.

Vrabie, D., Pastravanu, O., Abu-Khalaf, M., and Lewis, F.
(2009). Adaptive optimal control for continuous-time
linear systems based on policy iteration. Automatica,
45(2), 477–484.

Vrabie, D. and Lewis, F. (2009). Neural network approach
to continuous-time direct adaptive optimal control for
partially unknown nonlinear systems. Neural Networks,
22(3), 237–246.

Werbos, P. (1992). Approximate dynamic programming
for realtime control and neural modelling. Handbook
of intelligent control: neural, fuzzy and adaptive ap-
proaches, 493–525.

Wu, H.N. and Luo, B. (2012). Heuristic dynamic pro-
gramming algorithm for optimal control design of linear
continuous-time hyperbolic pde systems. Industrial &
Engineering Chemistry Research, 51(27), 9310–9319.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6804

