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Abstract: This work characterizes the asymptotic behavior that results from switching among
asymptotically stable systems with distinct equilibria when the switching frequency satisfies an
average dwell-time constraint with a small average rate. The asymptotic characterization is in
terms of the Ω-limit set of an associated ideal hybrid system containing an average dwell-time
automaton with the rate parameter set equal to zero. This set is globally asymptotically stable
for the ideal system. The actual switched system, including small disturbances, constitutes a
small perturbation of this ideal system, resulting in semi-global, practical asymptotic stability.
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1. INTRODUCTION

Various authors have studied the robust stability proper-
ties of switched systems with distinct equilibria. See, for
example, the pioneering results of Alpcan and Basar (2010)
and the recent studies (Veer and Poulakakis, 2019c), (Veer
and Poulakakis, 2019a) and (Veer et al., 2017). Study-
ing this class of switched systems is motivated by many
applications, including game theory (Basar and Olsder,
1999), where the system switches between different games
containing distinct Nash equilibria, and in robotics (Gregg
et al., 2012),(Veer and Poulakakis, 2019b) for motion esti-
mation of legged robots. The control of multi-cell wireless
networks with mobile switching between cells (Alpcan,
2006) and modeling of non-spiking neurons in neurophysi-
ology (Makarenkov and Phung, 2018) are other interesting
applications of switched systems with distinct equilibria.

Typically, in the literature, a Lyapunov function with
certain properties is assumed and boundedness of solutions
is established under a sufficiently small average dwell-time
switching constraint, where the dwell-time rate can be
computed from the properties of the Lyapunov function.
In this work, we eschew a Lyapunov-based approach,
aiming to give a more precise characterization of the
set to which trajectories converge while giving a more
qualitative description of the required dwell-time rate. We
approach the problem using a hybrid systems modeling
framework (Goebel et al., 2012). We employ the notion
of an Ω-limit set from a compact set of initial conditions
for a hybrid system, as considered in Cai et al. (2008a).
We characterize this Ω-limit set for an associated, ideal
hybrid system that uses an average dwell-time switching
automaton from Vu et al. (2007) or Cai et al. (2008a)
with the switching rate set to zero so that only a finite
number of switches is allowed. In turn, we draw conclusions
for the switched system under small average dwell-time
switching by using results developed on robust (semi-
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global, practical) asymptotic stability of a compact set for
a hybrid system.

2. PRELIMINARIES

2.1 General notation

We use Rn to denote n-dimensional Euclidean space,
R≥0 for the nonnegative real numbers, and Z≥0 for the
nonnnegative integers. We use |x| for the Euclidean norm
of x ∈ Rn. For a closed set K ⊂ Rn and a vector x ∈ Rn,
the symbol |x|K denotes the distance of x to K, i.e.,
|x|K := infy∈K |x− y|. Given r > 0, we use rB for the set
{x ∈ Rn : |x| ≤ r} and rB◦ for the set {x ∈ Rn : |x| < r}.
For a set S ⊂ Rn, the symbol S denotes its closure. The
closure of the convex hull of S is written as coS. We
say that α ∈ K+ if α : R≥0 → R≥0 is continuous and
strictly increasing. Given α1, α2 ∈ K+, the symbol α1 ◦α2

denotes their composition, i.e., α1 ◦ α2(s) := α1(α2(s)).
We say that α ∈ K if α ∈ K+ and α(0) = 0. A function
β : R≥0 ×R≥0 → R≥0 is of class KL if β(., t) is of class K
for each fixed t ≥ 0 and t 7→ β(r, t) is nonincreasing and
decreases to zero as t→∞ for each fixed r ≥ 0.

2.2 Hybrid systems

We use the hybrid systems framework described in Goebel
et al. (2012). A hybrid system is written formally as

x ∈ C, ẋ ∈ F (x) (1a)

x ∈ D, x+ ∈ G(x) (1b)

where x ∈ Rn is the state, C ⊂ Rn is the flow set, D ⊂ Rn
is the jump set, F : Rn ⇒ Rn is the flow map, and
G : Rn ⇒ Rn is the jump map. The data (C,F,D,G)
is said to satisfy the hybrid basic conditions if C and D
are closed, the graphs of F and G are closed, F and G
are locally bounded, the values of F are nonempty and
convex on C and the values of G are nonempty on D. A
solution of the hybrid system (1) is a hybrid arc satisfying
the constraints in (1); a hybrid arc is defined through the
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following concepts. A compact hybrid time domain is a set
of the form

∪Jj=0 ([tj , tj+1]× {j}) ⊂ R≥0 × R≥0
for some real numbers 0 = t0 ≤ t1 ≤ · · · ≤ tJ+1. A hybrid
time domain is a set E ⊂ R≥0 × R≥0 having the property
that, for each (T, J) ∈ E, the set E∩([0, T ]× {0, . . . , J}) is
a compact hybrid time domain. A hybrid arc is a function
x : E → Rn where E is a hybrid time domain and x(·, j) is
locally absolutely continuous for each nonnegative integer
j. We typically use dom(x) to denote the domain of the
hybrid arc x. A hybrid arc is a solution of (1) if it satisfies
the constraints implicit in (1), i.e.,

• If (t1, j), (t2, j) ∈ dom(x) and t1 < t2 then, for almost
all t ∈ [t1, t2],

x(t, j) ∈ C, ẋ(t, j) ∈ F (x(t, j));

• If (t, j), (t, j + 1) ∈ dom(x) then

x(t, j) ∈ D, x(t, j + 1) ∈ G(x(t, j)).

The solution x to (1) is maximal if it cannot be extended,
that is, the hybrid system has no solution x′ whose domain
x′ contains domx as a proper subset and x′ agrees with x
on domx; the solution x is complete if domx is unbounded.
Every complete solution is maximal.

Given K ⊂ Rn, we use S(K) to denote the set of solutions
to (1) that start in K. Given K ⊂ Rn, we use R(K) to
denote the reachable set from K, i.e.,

R(K) :={z ∈ Rn : z = x(t, j), x ∈ S(K), (t, j) ∈ dom(x)}.
Given K ⊂ Rn, we use Ω(K) to denote the Ω-limit set
from K, i.e.,

Ω(K) :=
{
z ∈ Rn : z = lim

i→∞
xi(ti, ji), xi ∈ S(K),

(ti, ji) ∈ dom(xi), lim
i→∞

ti + ji =∞
}
.

A sequence of hybrid arcs {xi}∞i=1 is said to be locally
eventually bounded if for any m > 0, there exists i0 > 0
and a compact set K ⊂ Rn such that for all i > i0, all
(t, j) ∈ domφi with t+ j < m, xi(t, j) ∈ K.

Fundamental to our analysis are results derived from the
properties of the solutions to (1) for the solutions of the
inflated system

x ∈ Cδ, ẋ ∈ Fδ(x) (2a)

x ∈ Dδ, x+ ∈ Gδ(x) (2b)

where δ > 0 and

Cδ := {x ∈ Rn : (x+ δB) ∩ C 6= ∅} (3a)

Fδ(x) := coF ((x+ δB) ∩ C) + δB (3b)

Dδ := {x ∈ Rn : (x+ δB) ∩D 6= ∅} (3c)

Gδ(x) := G((x+ δB) ∩D) + δB. (3d)

We use Sδ(K) to denote the solutions of (2) starting in K.

2.3 Stability concepts

We state several stability concepts for hybrid systems.
They apply just as well to ordinary differential equations.
The hybrid system (1) is said to be Lagrange stable if there
exists α ∈ K+ such that, for each x◦ ∈ Rn, each x ∈ S(x◦),
and (t, j) ∈ dom(x), we have that |x(t, j)| ≤ α(|x◦|).
A compact set A ⊂ Rn is said to be (Lyapunov) stable for
the hybrid system (1) if, for each ε > 0, there exists δ > 0

such that |x◦|A ≤ δ, x ∈ S(x◦) and (t, j) ∈ dom(x) imply
that |x(t, j)|A ≤ ε.
A compact set A ⊂ Rn is said to be attractive for (1) if
there exists δ > 0 such that each solution x ∈ S(A+δB) is
bounded and, if complete, satisfies limt+j→∞ |x(t, j)|A =
0. The basin of attraction for an attractive set A is the set
of initial conditions from which each solution is bounded
and, if complete, satisfies limt+j→∞ |x(t, j)|A = 0.

A compact set A ⊂ Rn is said to be asymptotically stable
for (1) if it is stable and attractive. It is said to be globally
asymptotically stable for (1) if it is asymptotically stable
with Rn as its basin of attraction.

The set A ⊂ Rn is said to be semiglobally practically
asymptotically stable in the parameter δ > 0 for the system
(2) if there exists β ∈ KL and, for each ε > 0 and ∆ > 0,
there exists δ > 0 such that each x ∈ Sδ(A+ ∆B) satisfies

|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j) + ε ∀(t, j) ∈ dom(x).

2.4 Some useful preliminary results

The first preliminary result is contained in Exercise 4.3(b)
of (Rockafellar and Wets, 1998).

Lemma 1. If the convergent sequence {zi}∞i=1 satisfies zi ∈
Si for all i, where {Si}∞i=1 is a decreasing sequence of
closed subsets of Rn, i.e., Si+1 ⊂ Si ⊂ Rn for all i, then
limi→∞ zi ∈

⋂
i

Si.

The next result is Corollary 7.7 from (Goebel et al., 2012).

Lemma 2. Suppose (C,F,D,G) satisfy the hybrid basic
conditions. Let K be compact and suppose that R(K)
is bounded and Ω(K) is nonempty and contained in the
interior of K. Then Ω(K) is asymptotically stable with
basin of attraction containing K.

The next result is Lemma 7.20 from (Goebel et al., 2012).

Lemma 3. Suppose (C,F,D,G) satisfy the hybrid basic
conditions. If the compact set A is globally asymptotically
stable for (1) then that set is semiglobally practically
asymptotically stable in the parameter δ > 0 for the
system (2).

3. PROBLEM SETTING

Let M be a positive integer and define

Q := {1, . . . ,M} . (4)

For each q ∈ Q, let fq : Rn → Rn. Let δ > 0. We analyze
the asymptotic behavior of the solutions of the differential
inclusion

ż ∈ cofq(z + δB) + δB (5)

where q : R≥0 → Q is any switching signal that satisfies
an average dwell-time switching constraint parametrized
by δ. In particular, letting N0 be a positive integer, and
letting N(s, t) denote the number of switches of q in the
interval [s, t], we assume that

N(s, t) ≤ δ(t− s) +N0 ∀ 0 ≤ s ≤ t. (6)

Our other assumption pertains to the family of differential
equations

ż = fq(z) (7)

where q ∈ Q is constant.
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Assumption 1. For each q ∈ Q, fq is continuous and the
point z∗q ∈ Rn is globally asymptotically stable for (7). �

At times, we may also impose the following assumption,
a sufficient condition for which is that the continuity in
Assumption 1 is strengthened to local Lipschitz continuity.

Assumption 2. For each q ∈ Q, the solution of the initial
value problem

ż = −fq(z) , z(0) = z∗q (8)

is unique. �

Our goal is to characterize the asymptotic behavior of (5)
under the switching signal constraint (6) when δ > 0
is small. To make progress toward this goal, we cast
the combination of (5) and (6) as an equivalent hybrid
system that employs an automaton to capture the average
dwell-time switching constraint. That is, we consider the
behavior of the hybrid system Hδ given by

Hδ



(z, q, τ) ∈ Rn×Q×[0, N0]


ż ∈ cofq(z+δB)+δB
q̇ = 0

τ̇ ∈ [0, δ]

(z, q, τ) ∈ Rn×Q×[1, N0]


z+ = z

q+ ∈ Q\{q}
τ+ = τ − 1.

(9)

According to Cai et al. (2008b), the solutions to (9) are in a
one-to-one correspondence with the solutions of (5) under
the switching constraint (6). Also, under Assumption 1,
the data of the hybrid system (9) satisfies the hybrid basic
conditions spelled out in (Goebel et al., 2012, Assumption
6.5). Finally, since we pursue qualitative results, there is
no loss of generality in using δ > 0 to describe both the
size of the perturbations to the differential equation and
the maximum flow rate of the timer τ .

4. ANALYSIS OF AN IDEAL SYSTEM

4.1 The model

To characterize the asymptotic behavior of the solutions
of Hδ in (9), we first characterize the asymptotic behavior
of the the ideal system H0 that results from setting δ = 0
in (9), i.e.,

H0



(z, q, τ) ∈ Rn×Q×[0, N0]


ż = fq(z)

q̇ = 0

τ̇ = 0

(z, q, τ) ∈ Rn×Q×[1, N0]


z+ = z

q+ ∈ Q\{q}
τ+ = τ − 1.

(10)

We will see that the asymptotic behavior of the solutions
of this system will give an indication of the asymptotic
behavior of the solutions to the system (9).

4.2 Boundedness

In this section, we establish a boundedness property for
the solutions of H0 in (10) under Assumption 1. We start
with such a boundedness result under a relaxation of
Assumption 1.

Proposition 1. If, for each q ∈ Q, the system (7) is
Lagrange stable then the hybrid system H0 in (10) is
Lagrange stable.

Proof. According to the assumption of the proposition,
there exists a family of functions {αq}q∈Q with αq ∈ K+

for each q ∈ Q, such that each solution x = (z, q, τ) of the
flow dynamics in (10), i.e., of

(z, q, τ) ∈ Rn×Q×[0, N0]


ż = fq(z)

q̇ = 0

τ̇ = 0

(11)

satisfies

|x(t)| ≤ αq(0)(|x(0)|) ∀t ∈ dom(x). (12)

Let N denote the family of functions obtained from k
compositions of the functions αq for any k ∈ {1, . . . , N0}
without composing the same function with itself, i.e.,

N :=
{
α : α = αqk ◦ · · · ◦ αq1 , k ∈ {1, . . . , N0} ,

qj ∈ Q ∀j ∈ {1, . . . , k} ,

qj+1 6= qj ∀j ∈ {1, . . . , k − 1}
}
. (13)

Since the composition of continuous, nondecreasing func-
tions is continuous and nondecreasing, it follows that
N ⊂ K+. Note that the number of functions in the set
N is finite. Thus we can define

α̃(s) := max
α∈N

α(s) ∀s ≥ 0, (14)

and α̃ ∈ K+ since the pointwise maximum of continuous,
nondecreasing functions is continuous and nondecreasing.

Let x = (z, q, τ) be a complete solution of H0 in (10)
and define J := max

(t,j)∈dom(x)
j. Note that J is well-

defined and satisfies J ∈ {0, . . . , N0}; it denotes the
number of switches experienced by the solution x. Using
this definition, we can write dom(x) as

dom(x) =

J−1⋃
j=0

([tj , tj+1]× {j})

 ∪ ([tJ ,∞)× {J}
)
(15)

where 0 = t0 ≤ t1 ≤ · · ·≤ tJ < ∞. For notational
convenience, we let tJ+1 > tJ denote an arbitrarily large
positive number.

It follows from the assertion in (12) for the solutions of
the system (11) that, for each j ∈ {0, . . . , J} and each
t ∈ [tj , tj+1],

|x(t, j)| ≤ αq(tj ,j)(|x(tj , j)|). (16)

By concatenating these bounds, it follows that, for all
k ∈ {0, . . . , J} and each t ∈ [tk, tk+1],

|x(t, k)| ≤ αq(tk,k) ◦ αq(tk−1,k−1) ◦ . . . ◦ αq(0,0)(|x(0, 0)|).
(17)

By the definition of the flow map and jump map in
(10), it follows that q(tk, k) 6= q(tk−1, k − 1) for each
k ∈ {1, . . . , J}. Hence, for each k ∈ {0, . . . , J}, we have

αq(tk,k) ◦ αq(tk−1,k−1) ◦ . . . ◦ αq(0,0) ∈ N . (18)

It follows from the definition of α̃ in (14) that, for each
k ∈ {0, . . . , J} and each t ∈ [tk, tk+1],

|x(t, k)| ≤ α̃(|x(0, 0)|). (19)
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Since tJ+1 is arbitrary, it follows that

|x(t, k)| ≤ α̃(|x(0, 0)|) ∀(t, k) ∈ dom(x). (20)

Thus, the hybrid system (10) is Lagrange stable. �

Since global asymptotic stability of a compact set implies
Lagrange stability, the following corollary is a consequence
of Proposition 1.

Corollary 2. Under Assumption 1, the hybrid system H0

defined in (10) is Lagrange stable.

4.3 The Ω-limit set for H0

Let K ⊂ Rn+2. For the system H0 defined in (10), we use
Ω0(K) to denote the Ω-limit set from K and we use R0(K)
to denote the reachable set from K. We define

Sq :=
⋂

j∈Z≥0

R0

(({
z∗q
}

+
1

j + 1
B
)
× {q} × [0, N0]

)
(21a)

S :=
⋃
q∈Q

Sq. (21b)

The next lemma is a result of Corollary 2 and the con-
struction of S in (21).

Lemma 3. Under Assumption 1, the set S defined in (21)
is compact.

The rest of this section is devoted to establishing that
Ω0(K) = S for sufficiently large compact sets K.

Proposition 4. If Assumptions 1 and 2 hold then, for each
compact set K ⊂ Rn+2 containing the set⋃

q∈Q

{
z∗q
}
× {q}

× [0, N0]

in its interior, Ω0(K) = S.

Proposition 4 follows from the subsequent two lemmas.

Lemma 5. If Assumption 1 holds then, for each compact
set K ⊂ Rn+2, Ω0(K) ⊂ S.

Proof. Let p ∈ Ω0(K) and let the sequence of solutions
φi ∈ S(K) and times (ti, ki) ∈ dom(φi) satisfy

lim
i→∞

ti + ki =∞ (22a)

lim
i→∞

φi(ti, ki) = p. (22b)

Since K is compact and the system H0 is Lagrange stable
(due to Corollary 2) the sequence {φi}∞i=1 is locally even-
tually bounded. Consequently, it contains a subsequence
converging to a complete solution φ ∈ S(K) (Goebel et al.,
2012, Theorem 6.1). Henceforth, we use {φi}∞i=1 for the
converging subsequence. Define J := max

(t,j)∈dom(φ)
j.

Note that J is well-defined and satisfies J ∈ {0, . . . , N0}; it
denotes the number of switches experienced by the solution
φ. Using this definition, we can write dom(φ) as

dom(φ) =

J−1⋃
j=0

([tj , tj+1]× {j})

 ∪ ([tJ ,∞)× {J}
)
(23)

where 0 = t0 ≤ t1 ≤ · · · tJ <∞. Moreover, with (z, q, τ) =
φ, since q and τ are constant during flows, there exists

(q∗, τ∗) ∈ Q× [0, N0] such that (q(t, J), τ(t, J)) = (q∗, τ∗)
for all t ∈ [tJ ,∞). Also, due to Assumption 1,

lim
t→∞

|z(t, J)− z∗q∗ | = 0. (24)

Thus, there exists an increasing, unbounded sequence of
times {sj}j∈Z≥0

such that, for each j ∈ Z≥0,

tJ ≤ sj , |z(sj , J)− z∗q∗ | ≤
1

2(j + 1)
. (25)

For each j ∈ Z≥0, let i∗(j) ∈ Z≥0 be such that, for all
i ≥ i∗(j), we have

ti + ki ≥ sj + J + 0.5 (26)

and there exists t̂i such that (t̂i, J) ∈ dom(φi) satisfying

|t̂i − sj | ≤
1

2(j + 1)
(27a)

|φi(t̂i, J)− φ(sj , J)| ≤ 1

2(j + 1)
. (27b)

By combining (25)-(27), it follows that

ti + ki ≥ t̂i + J (28a)

|zi(t̂i, J)− z∗q∗ | ≤
1

j + 1
. (28b)

It follows that

φi∗(j)(ti∗(j), ki∗(j)) ∈ (29)

R0

(({
z∗q∗
}

+
1

j + 1
B
)
× {q∗} × {τ∗}

)
.

Without loss of generality, we may assume that

i∗(j + 1) ≥ i∗(j) + 1 (30)

so that i∗(j) grows unbounded in j, and hence, using (22),

lim
j→∞

ti∗(j) + ki∗(j) =∞ (31a)

lim
j→∞

φi∗(j)(ti∗(j), ki∗(j)) = p. (31b)

It follows from Lemma 1 that

p ∈
⋂

j∈Z≥0

R0

(({
z∗q∗
}

+
1

j + 1
B
)
× {q∗} × {τ∗}

)
⊂ Sq∗ ⊂

⋃
q∈Q

Sq = S. (32)

This containment establishes the result. �

Lemma 6. If Assumptions 1 and 2 hold then, for each
compact set K ⊂ Rn+2 containing the set

K0 :=

⋃
q∈Q

{
z∗q
}
× {q}

× [0, N0] (33)

in its interior, S ⊂ Ω0(K).

Proof. Since K0 belongs to the interior of K, there exists
ε > 0 such that K0 + εB ⊂ K. Let p ∈ S. According to
(21b), we have

p ∈
⋃
q∈Q

Sq . (34)

Thus, there exists a q∗ ∈ Q such that

p ∈ Sq∗ (35)

=
⋂

j∈Z≥0

R0

(({
z∗q∗
}

+
1

j + 1
B
)
× {q∗} × [0, N0]

)
.
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As a result we have that, for all j ∈ Z≥0,

p ∈ R0

(({
z∗q∗
}

+
1

j + 1
B
)
× {q∗} × [0, N0]

)
. (36)

It follows that there exist a solution φ∗j and (t∗j , l
∗
j ) ∈

domφ∗j such that

φ∗j (0, 0) ∈
(({

z∗q∗
}

+
1

j + 1
B
)
× {q∗} × [0, N0]

)
(37)

and

|φ∗j (t∗j , l∗j )− p| ≤
1

j + 1
. (38)

Let z∗j and τ∗ be such that φ∗j (0, 0) = (z∗j , q
∗, τ∗j ). Let zj

be a solution to the system ż = −fq∗(z) with the initial
condition zj(0) = z∗j . Define

h(j) := min{j, inf{t ∈ dom zj : |zj(t)− z∗q | = ε}}. (39)

It follows from Assumptions 1 and 2 that

lim
j→∞

h(j) =∞. (40)

Next, we define a hybrid arc φj with the domain

domφj :=
(
[0, h(j)]× {0}

)⋃(
domφ∗j + ({h(j)} × {0})

)
,

(41)

given by

φj(t, k) := (42){
(zj(h(j)− t), q∗, τ∗j ) ∀(t, k) ∈ [0, h(j)]× {0}
φ∗j (t− h(j), k) ∀(t, k) ∈ domφ∗j + ({h(j)} × {0}).

It can be verified that φj is a solution of system (10)
starting at (zj(h(j)), q∗, τ∗j ). This point belongs to K, due
to (39) and the definition of ε.
Next, we define

tj := t∗j + h(j), lj := l∗j (43)

so that, due to (40),

lim
j→∞

tj + lj =∞. (44)

It follows from (43), (42) and (38) that

|φj(tj , lj)− p| = |φj(tj∗ + h(j), lj∗)− p|

= |φ∗j (t∗j , l∗j )− p| ≤
1

(j + 1)
. (45)

As a result, we have that

lim
j→∞

φj(tj , lj) = p. (46)

Now follows from (44) and (46) that p ∈ Ω0(K). �

5. MAIN RESULT

We are now ready to state our main results.

Theorem 7. Under Assumptions 1 and 2, the set S defined
in (21) is semiglobally, practically asymptotically stable in
the parameter δ > 0 for the system Hδ defined in (9).

Proof. Let the compact set K ⊂ Rn+2 be such that
the set S defined in (21), which is compact according to
Lemma 3, is contained in the interior of K. According
to Proposition 4, Ω(K) is contained in the interior of
K. According to Lemma 2, the compact set Ω(K) is
asymptotically stable with basin of attraction containing
K for the system H0 defined in (10). Since K can be

taken to be arbitrarily large, it follows that S is globally
asymptotically stable for the system H0 defined in (10). It
then follows from Lemma 3 that the set S is semiglobally
practically asymptotically stable in δ > 0 for the system
Hδ defined in (9). �

In the case where Assumption 2 does not hold, we still
have the following result:

Theorem 8. Let Assumption 1 hold and let r > 0 be such
that S ⊂ rB0. Then the set Ω0 (rB) is compact, contained
in S, and semiglobally, practically asymptotically stable in
the parameter δ > 0 for the system Hδ defined in (9).

Proof. According to Lemma 5, Ω0 (rB) ⊂ S. Then, since
S ⊂ rB◦, we get Ω0 (rB) ⊂ rB◦. It follows from Lemma
2 that the set Ω0 (rB) is asymptotically stable with basin
of attraction containing rB. We claim that the basin of
attraction is Rn+2. Indeed, for any value r′ > r, we
again have that Ω0 (r′B) ⊂ S is asymptotically stable
with basin of attraction containing r′B. It follows from
the containment S ⊂ rB◦ that each complete solution from
r′B reaches rB in finite time, and thus each point in r′B
belongs to the basin of attraction of the asymptotically
stable set Ω0 (rB). []In fact, Ω(r′B) = Ω(rB) for each
r′ > r, though this is not needed for the proof.] Since
r′ > r was arbitrary, this observation establishes that the
set Ω0 (rB) is globally asymptotically stable for the system
H0 defined in (10). It then follows from Lemma 3 that the
set S is semiglobally practically asymptotically stable in
δ > 0 for the system Hδ defined in (9). �

6. EXAMPLES

In this section, we consider an example with N0 = 1, to
ease the visualization of the ideal Ω-limit set. Consider the
following linear time-invariant systems

ẋ = A1x+ b1 (47a)

ẋ = A2x+ b2, (47b)

where x ∈ R2 and

A1 =

[
0 1
−10 −1

]
; A2 =

[
0 10
−1 −1

]
b1 =

[
−20

4

]
; b2 =

[
−1
4

]
.

The matrices A1 and A2 are invertible, yielding the unique
equilibrium points for (47a) and (47b), respectively, at
x∗1 = [−1.6, 20]T and x∗2 = [3.9, 0.1]T . Each equilibrium
is exponentially stable since A1 and A2 are Hurwitz.

Figure 1 shows the Ω-limit set for the ideal hybrid system.
In Figure 2, we allow for a small dwell-time parameter
and switches at random times that are compatible with
the average dwell-time constraint. A small disturbance
has been added to both subsystems. The simulations are
consistent with the fact, established in Theorem 7, that the
solutions converge to a small neighborhood of the ideal Ω-
limit set illustrated in Figure 1 under persistent switching.

7. CONCLUSION

This paper provides a characterization of the asymptotic
behavior of a perturbed, switched system with distinct
equilibria under average dwell-time switching with a small
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Fig. 1. The Ω-limit set corresponding to the ideal system
(10) for the example (47)
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Fig. 2. “Steady-state” behavior near the ideal Ω-limit set
for dwell-time switching with δ = 1

10 and disturbances

rate parameter. The asymptotic behavior of an ideal hy-
brid system without disturbances and without persistent
switching was analyzed first. It was shown that the solu-
tions of such a system are bounded if each subsystem is
Lagrange stable. Subsequently, the Ω-limit for the ideal
hybrid system was characterized and was shown to be
semiglobally practically asymptotically stable in the aver-
age dwell-time parameter for the switched system. Finally,
an example for a system with two equilibria was provided.
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