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Abstract: In this paper, we present vehicle velocity control based on stochastic model predictive
control applied to an actual automobile near other vehicles with uncertain motion. Modern
external sensors can measure the pose and velocity of transportation participants, whose motion
can be predicted utilizing a model; however, observation and process noise results in uncertainty.
Thus, near other vehicles, the velocity of the ego vehicle should be reduced to account for the
variance of nearby vehicle motion while suppressing the reduction of speed. In this paper, we
utilize stochastic model predictive control to reduce the expectation of relative velocity with
respect to nearby vehicles during passing. We evaluate the proposed control using numerical
simulation and an experiment with an automobile developed for self-driving and equipped with
GNSS, radar, and LiDAR. The results show that the vehicle velocity is automatically reduced
based on the expectation of relative velocity calculated from its probabilistic distribution.

Keywords: Self-driving vehicle, Automobile, Stochastic model predictive control, Velocity
control, Kalman filter, Relative velocity, Expectation, Risk prediction

1. INTRODUCTION

Automatic driving assistance systems have been exten-
sively studied. Although automatic driving on highways
has been implemented with systems such as adaptive
cruise control and lane tracking control, it is difficult to
implement in urban areas because nearby traffic partic-
ipants must be considered. For example, on a narrow
two-lane road, skilled drivers avoid oncoming vehicles by
decelerating and steering because they predict a possi-
bility of collision (Akagi and Raksincharoensak, 2015a).
Such predictive driving reduces the possibility of traffic
accidents and makes passengers feel safe. Thus, prediction
and reduction of potential risk are important for automatic
driving in urban areas.

Obstacle avoidance has been extensively studied. For ex-
ample, the artificial potential field (APF) method (Khatib,
1990; Park et al., 2001), model predictive control (MPC)
(Okawa and Nonaka, 2018), and the combination of APF
and MPC (Yoon et al., 2009; Shibata et al., 2018) have
been proposed. MPC is a kind of real-time optimal control
that optimizes motion behavior on the prediction horizon
under various constraints. Thus, MPC is suitable for de-
signing an optimal path that guarantees collision avoid-
ance. For speed control, methods such as APF (Akagi and
Raksincharoensak, 2015b), the combination of MPC and
APF (Hasegawa et al., 2015), and the combination of MPC
and constraints (Li et al., 2011; Mizushima et al., 2019)
have been proposed. However, the physical meaning of the
APF is obscure and for other methods it is sometimes

difficult to obtain the proper control parameter that fits
a given situation. The position and velocity of the ego
vehicle and those of nearby transportation participants
vary with time and thus the probabilistic uncertainty of
their dynamics should be considered. Therefore, speed
control should quantitatively evaluate the collision risk
and account for these probabilistic uncertainties.

An MPC-based stochastic method for the prevention of
collisions that utilizes a chance constraint (Moser et al.,
2017) and a probabilistic method (Shimizu et al., 2016) for
evaluating the risk of collision with a pedestrian running
out onto a street have been proposed. To account for
velocity uncertainty, stochastic MPC, which minimizes the
expectation of the relative velocity to reduce collision risk,
has been proposed (Shibata et al., 2019). This method was
verified to be suitable for collision avoidance in a narrow
corridor and applied to an electric wheelchair moving at
low speed. The application of this method to self-driving
automobiles, which have far larger inertia, higher speed,
and stricter safety requirements, is challenging.

This paper presents a velocity control method that reduces
collision risk for automobiles considering the uncertainties
in the positions and velocities of nearby vehicles. We val-
idate the proposed method through experiments in which
a vehicle avoids a moving obstacle (i.e., another vehicle).
The positions of the moving obstacles are observed by
sensors and thus contain uncertainty. We estimate the
positions and velocities using a Kalman filter, from which
the posterior covariance matrix is simultaneously obtained
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Ego vehicleParking vehicle

Fig. 1. Ego vehicle passing a parked vehicle.

Ego vehicle Oncoming vehicle

Fig. 2. Ego vehicle passing an oncoming vehicle.

and the expected position and variance of obstacles are
predicted. Next, we build a probability density function
of the velocity to evaluate the expectation of the relative
velocity with respect to the obstacles. MPC minimizes the
evaluation function, which comprises the expected relative
velocity, the error from the target state, and the amount
of input. The proposed MPC generates a jerk input or a
velocity input to reduce the risk of collision. We verify
the proposed method using simulations where the ego
vehicle passes a parking vehicle or an oncoming vehicle. In
experiments, we use an experimental self-driving vehicle
to validate the real-time feasibility and robustness against
sensor measurement error and motion model uncertainty.

2. ASSUMPTIONS AND TEST SITUATIONS

In this paper, we consider the situations depicted in Fig. 1,
where the ego vehicle attempts to pass a parked vehicle,
and Fig. 2, where the ego vehicle attempts to pass an
oncoming vehicle on a narrow road. We assume that the
position and orientation of the ego vehicle can be localized,
and that nearby objects are observed by sensors with
measurement error. We also assume that each obstacle
moves at a constant velocity along the road and that its
motion is disturbed by random noise with a given variance.

3. CONTROLLED OBJECT

In this section, we describe a controller model and a plant
model of the ego vehicle. Because the focus is on velocity
control, we only consider the longitudinal direction in the
model. The controller model is described as the following
triple integrator system with jerk input (Mizushima et al.,
2019):

ζk+1 =

1 ∆ ∆2/2
0 1 ∆
0 0 1

 ζk +

∆3/6
∆2/2
∆

 jk, (1)

where ζ := [s v a]T , where s is the travel distance, v is the
speed, a is the acceleration, j is the jerk input, and ∆ is
the control cycle.

The plant model used to represent the actual vehicle in the
simulation is a bicycle model (Okajima and Asai, 2004)
that considers tire force due to slip and the dynamics of
tire rotation speed, described as:

fx :=Ks
rω − v

max(rω, v)
, (2)

mv̇ = 4fx − dv, (3)

Iwω̇ = Kmain − rfx, (4)

where fx is the longitudinal tire force, Ks is the longitudi-
nal tire stiffness, r is the tire radius, ω is the tire rotation
speed, Iw is the inertia moment, a is the input acceleration,
Km is the torque coefficient for input acceleration, and d
is the vehicle resistance coefficient.

4. MODEL PREDICTIVE CONTROLLER

In this section, to achieve automatic driving at a safe
velocity considering the probabilistic uncertainty of nearby
vehicles, we propose a velocity controller that takes into
account the expectations of the relative velocities of nearby
vehicles in the evaluation function. To suppress excessive
acceleration, we impose constraints on the state.

4.1 Velocity trajectory generation

We first impose constraints on the vehicle. The constraints
comprise the controller model in Eq. (1) and the initial
state, defined as follows:

ζ0 = ζ. (5)

where ζ is the current state. Furthermore, to comply
with the velocity limitation and to explicitly consider
the limitations of acceleration and braking performance,
the constraints for velocity, acceleration, and jerk are
represented by

v ≤ vi ≤ v, (6)

a ≤ ai ≤ a, (7)

j ≤ ji ≤ j. (8)

We set the rate limit between the previous control input
and the input of the first horizon as follows:

j
b
δ ≤ j0 − j−0 ≤ jbδ, (9)

where δ is the step size of prediction, by which we can
obtain the jerk input that suppresses sudden changes. To
decelerate considering the uncertainty of nearby vehicle
movement, the following evaluation function is used:

Jjerk =

H∑
i=0

eTi Qei

+

H−1∑
i=0

{
jTi Rji +

N∑
n=1

Qoi,nmi,n(si, zi, vi)

}
, (10)
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Fig. 3. Simulation scenario: a vehicle near the center line
approaches from the opposite direction.

where the error between the actual velocity and the desired
velocity is ei = vi − vr and Q, R, and Qoi,n are weights.
mi,n(·) is the expected relative velocity between the vehicle
and the n-th nearby vehicle on the i-th horizon, which is
calculated by integrating the product of relative velocity
vi − Vxi,n and probability density function p(Vxi,n|si, zi).
zi is the deviation of the vehicle from the target path.
Because the vehicle is less likely to collide with other
vehicles after passing nearby cars, we set the expectation
to zero as follows:

mi,n(si, zi, vi) =
∫ +∞

−∞
(vi − Vxi,n) p(Vxi,n|si, zi)dVxi,n, (si < Xi,n)

0. (si ≥ Xi,n)

(11)

By assuming that the system follows a Gaussian process,
we set p(Vxi,n|si, zi) ∼ N (xoi,n, P

−
i|k), where the covari-

ance matrix is obtained using the following prediction step
of the Kalman filter:

P−
i|k = AoP

−
i−1|kA

T
o +BoΣnB

T
o (i = 1, 2, · · · ,H), (12)

where Ao and Bo are the system matrices for a nearby
vehicle. We assume the model for nearby vehicles to be
a double integrator for the position described in Carte-
sian coordinates with respect to the position and velocity
driven by Gaussian noise with the covariance Σn imposed
on the acceleration channel. The predicted state is calcu-
lated by the prediction step of the Kalman filter. To reflect
the uncertainty of motion and observation of obstacles, the
optimization problem is represented as follows:

minimize Jjerk,

with respect to ji,

subject to (1), (5), (6), (7), (8), and (9).

For the vehicle, there is modeling error, such as that
caused by actuator delay, which deteriorates performance.
To address this issue, the optimal state obtained in the
optimization problem is used as the target state of velocity
and acceleration, which is tracked by the actual vehicle
controlled by a feedback controller.

5. SIMULATION

5.1 Simulation conditions

In this section, we show the simulation results for veloc-
ity control and verify the effectiveness of the proposed

Table 1. Simulation parameters

Parameter Value Parameter Value

δ 0.1 ∆ 0.1
H 30 vr 5.556

Qoi,n 910− qoi qo 0.333

Q 1.0 R 1.0
v 11.111 v 1.389
a 1.962 a -1.962

j 2.0 j -2.0

jb 5.0 j
b

-5.0

Table 2. Vehicle parameters

Parameter Value Unit Parameter Value Unit

m 1500 kg I 3429 kg m2

d 10.0 N/(m/s) Iw 2.0 kg m2

r 0.35 m Km 500 (Nm)/(m/s2)
Ks 3394 N/-

method. We assume the situation depicted in Fig. 3, where
a vehicle near the center line approaches from the oppo-
site direction. In this simulation, the ego vehicle should
decelerate according to the collision risk when passing
the oncoming vehicle. The target path is a curved road
with a curvature radius of 150m. The ego vehicle and the
oncoming vehicle, whose widths are both 1.85m, move at
20 km/h in the center of their respective lanes. The oncom-
ing vehicle is 2.35m from the target path . In this simu-
lation, the lateral gap between the sides of the ego vehicle
and the nearby vehicle is 0.5m. In addition, the ego-vehicle
follows the target path using proportional steering control
with respect to the lateral deviation and angular error.
In the simulation, the predicted state of the oncoming
vehicle is transformed from the inertial coordinate system
to the coordinate system along the path (Okajima and
Asai, 2004). The parameters for the numerical simulation
are shown in Table 1. The vehicle parameters are shown
in Table 2. The observation noise Σn used for the Kalman
filter is Σn = diag(0.07522, 0.07522, 0.14972, 0.14972), and
the system noise Σw is Σw = diag(7.8482, 7.8482). The
observation noise and the system noise were estimated
by analyzing the measurement data obtained from the
experimental system.

5.2 Simulation results and discussion

Figure 7 shows a bird’s-eye view at several moments of
the simulation. The green rectangle is the ego vehicle. The
blue asterisks and dotted circles are the predicted position
and error covariance, respectively. The position and length
of the orange arrow is the target state on the prediction
horizon. Figure 8 depicts the simulation results of velocity,
acceleration, and jerk. The red line represents the vehicle
model and optimal input and the blue line represents
the state calculated by the plant model in Eqs. (2) (3)
and (4). In Fig. 8(a), the right axis indicates the relative
distance from the nearby vehicle. When it is zero, the ego
vehicle has passed the oncoming vehicle. Furthermore, the
dotted line in each graph represents the constraints of the
controller.

Figure 7 shows that the ego vehicle decelerated as it ap-
proached the oncoming vehicle along the curved road.
Thus, deceleration control was realized in the path coor-
dinate system. Figure 8(a) shows that the vehicle deceler-
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Fig. 4. Experimental vehicle equipped with high-precision
GNSS, LiDAR, radar, and cameras.

ated at around t = 5 s. Thus, we realized the deceleration
of an automobile considering the risk of collision. Because
the vehicle dynamics are considered in constraints, velocity
and acceleration changed smoothly, as shown in Fig. 8(b).
Figure 8(c) confirms that excessive jerk input was sup-
pressed by the constraints. In addition, Fig. 7 depicts that
the optimal velocity decreased ahead of the prediction
horizon when the ego vehicle approaches the oncoming ve-
hicle, and that the optimal velocity began to increase when
the ego vehicle passed the oncoming vehicle. Therefore, the
vehicle was decelerated considering the future state and
uncertainty of the nearby vehicle.

6. EXPERIMENT

6.1 Experimental system

In this section, we show the results of an experiment
conducted using an experimental vehicle to verify the
effectiveness of the proposed method. In the simulation,
a controller with jerk input was used; however, the calcu-
lation time is limited for a real-time implementation, and
thus it is necessary to reduce the computational load of
the controller. We built a controller with velocity input
for the experiment based on the proposed method. We
took the optimization variable to be vi and set the con-
troller model to be a single integrator with velocity input
sk+1 = sk + v∆, instead of Eq. (1). The constraints are
the same as those for Eqs. (5),(6), but Eqs. (7),(8),(9) are
removed. We added the rate constraint for the velocity
Sx∆ ≤ vi − vi−1 ≤ Sx∆, and the rate constraint between
the current input and the input of the previous control
cycle Svδ ≤ vi − v−i ≤ Svδ. The evaluation function is
Eq. (10) without the jerk term ji. The experimental vehicle
tracks the target velocity and acceleration; however, we
need to calculate the target acceleration because only
optimal velocity can be determined. The target accelera-
tion is calculated by numerically differentiating the target
velocity and calculating the moving average in the past
four control cycles.

In the experiment, we used the experimental vehicle shown
in Fig. 4. The position of the vehicle was measured us-
ing high-precision GNSS with a measurement error of
several centimeters. The velocity and acceleration of the
vehicle were measured using a vehicle speed sensor and
an acceleration sensor, respectively. The position of the
oncoming vehicle was measured by radar, LiDAR, and a
camera mounted on the vehicle. Estimation and control
were performed every 100ms using an onboard computer.
We used a sequential quadratic programming algorithm for
optimization. The code of this solver was generated using
the MATLAB function fmincon and a C code generator.

Fig. 5. Experimental situation 1: ego vehicle approaches
parked vehicle near the ego lane.

Fig. 6. Experimental situation 2: a vehicle near the center
line approaches from the opposite direction.

Table 3. Experimental parameters

Parameter Value Parameter Value

δ 0.1 ∆ 0.1
H 30 vr 5.556

Qoi,n 310− qoi qo 0.333

R 0.8 Oy 0.85
v 11.111 v 0

Sv 1.177 Sv -1.472

Sx 2.943 Sx -2.943

6.2 Experimental conditions

To verify that the vehicle decelerated according to the
collision risk, we considered two cases, namely passing a
parked vehicle (Situation 1) depicted in Fig. 5, and pass-
ing an oncoming vehicle (Situation 2) depicted in Fig. 6,
respectively. The target path was a straight road. In both
situations, the vehicle moved along the center of the target
path at a speed of 20 km/h. In Situation 1, another vehicle
was parked on the side of the road 2.35m to the left of the
target path. In Situation 2, another vehicle approached
from the opposite direction 2.35m to the right of the target
path at a speed of 20 km/h. The distance between the sides
of the vehicles was 0.5m in both situations. In the experi-
ment, for safety, an additional virtual offset Oy was added
to the estimated position of the nearby vehicle. In other
words, the experiment was conducted assuming that the
vehicle was closer than the actual nearby vehicle position.
The experimental parameters are shown in Table 3. The
observation noise and system noise used for estimation are
the same as those used in the simulation.

6.3 Experiment results and discussion

Figure 9 shows a bird’s-eye view of several moments in
Situation 2. The predicted positions of the nearby vehicle
are displayed with offset Oy in the left-right direction.
The original position of the nearby vehicle is indicated
by a light blue broken line. Figures 10 and 11 show the
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(a) Approaching oncoming vehicle (b) Near deceleration peak (c) Passing the oncoming vehicle

Fig. 7. Bird’s-eye view of simulation results with jerk input model.

(a) Velocity (b) Acceleration (c) Jerk

Fig. 8. Simulation results with jerk input model.

(a) Approaching oncoming vehicle (b) Near deceleration peak (c) Passing oncoming vehicle

Fig. 9. Bird’s-eye view of experimental results with oncoming vehicle (Situation 2).

(a) Velocity (b) Acceleration (c) Calculation time

Fig. 10. Experimental results with parked vehicle (Situation 1).

(a) Velocity (b) Acceleration (c) Calculation time

Fig. 11. Experimental results with oncoming vehicle (Situation 2).
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experimental results for the velocity, acceleration, and cal-
culation time in Situation 1 and Situation 2, respectively.
The red, blue, and yellow lines respectively represent the
vehicle model, actual vehicle state, and optimal input. In
Figs. 10(a) and 11(a), the right axis shows the relative
distance with respect to the nearby vehicle. The blue line
represents the actual vehicle state and the yellow line
represents the optimal input. The experimental results for
Situation 2 are similar to those in the simulation although
the tracking delay is larger in the experiment.

The experimental results show that the vehicle was able to
pass along the side of the nearby vehicle while decelerating.
A target velocity similar to that in the simulation was
generated and tracked by the real vehicle. The gener-
ated acceleration satisfied the constraints. Furthermore,
Figs. 10(c) and 11(c) show that the calculation time was
within the range of a control cycle (100ms), indicating that
real-time control was achieved. The above results indicate
that the proposed method achieved deceleration control
despite limited computation time and the presence of sen-
sor noise. The bird’s-eye view results show that the vehicle
was about 1 m away from the target path. This occurred
because the reference coordinate system was shifted due to
GNSS errors. There was a delay of about 1 s in the response
of the actual vehicle velocity with respect to the target
velocity. In addition, the minimum velocity of the actual
vehicle was about 0.5m/s faster than the minimum target
velocity. The delay and error result from the inertia of the
actual vehicle and the tracking controller used in the actual
vehicle. Although they were not taken into account in the
model, the experimental vehicle successfully decelerated,
which indicates the robustness of the proposed method.

7. CONCLUSION

In this paper, a velocity controller that reduces the risk
of collision considering the uncertainty of nearby vehicle
motion was proposed. We quantified the risk of collision
using the expectation of relative velocity with respect
to nearby vehicles. Then, we realized velocity control
considering collision risk as model predictive control that
calculates the expectation of relative velocity. In addition,
a velocity controller using a jerk input model was built.
The effectiveness of the proposed method was verified by
a numerical simulation and an experiment with an actual
vehicle. Real-time velocity control was achieved in the
experiment. In future work, we will conduct experiments
based on a controller model with a jerk input model on a
curved road with steering control. We will also consider
various kinds of transportation participants, including
pedestrians and bicycles, with different motion models.
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