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Abstract: Newton’s method is a classical iterative algorithm for the numerical computation of
isolated roots of algebraic equations and stationary points of functions. While its application
is ubiquitous in a plethora of fields, questions concerning its robust stability to uncertainties
in problem data and numerical accuracy often arise in practice. This paper seeks to provide
sufficient conditions for practical stability, input-to-state-stability (ISS), integral ISS (iISS) and
incremental ISS (δISS) of Newton’s method in the presence of such uncertainties, and provide
illustrative examples of their application.
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1. INTRODUCTION

Newton’s method is a classical iterative algorithm for
solving algebraic equations, see for example Nocedal and
Wright (2006). It finds widespread application across a
broad range of disciplines, and is of particular utility where
numerical optimization is required. A typical problem con-
cerns the numerical computation of an isolated stationary
point of some sufficiently regular function f : Rn → R, i.e.
finding an x∗ ∈ X ⊂ Rn (possibly non-unique) such that

0 = ∇f(x∗), (1)

in which ∇f : X → Rn is the gradient of f .

An iterative algorithm, such as Newton’s method, is a
discrete time dynamical system. Using a suitably defined
state transition mapping g : Rn×U → Rn, its kth iteration
step is given by

xk+1 = g(xk, uk), k = 0, 1, 2, . . . , (2)

in which xk ∈ Rn describes the algorithm state, as evolved
from some initial state x0 ∈ Rn, in the presence of an
exogenous input uk ∈ U to the algorithm, drawn from a
bounded exogenous input sequence. Mapping g describes
the algorithm, while a generated trajectory {xk}k=0,1,2,···
describes an execution of the algorithm in the presence of
an exogenous input sequence {uk}k=0,1,2,···, given an initial
state x0.

A classical Newton’s method for solving (1) is an iterative
algorithm described by the discrete-time dynamical system
(2), evolving on Rn, with g : Rn × U → Rn defined by

g(x, u)
.
= x−H(x)−1∇f(x), (3)

for all x ∈ Rn, u ∈ U , with ∇f : Rn → Rn and H
.
=

D∇f : Rn → Rn×n denoting the gradient and Hessian
? Partially supported by the US Air Force Office of Scientific
Research and the Australian Government, through grants FA2386-
16-1-4066 and AUSMURIB000001 / ONR MURI N00014-19-1-2571.

of f , and D the (Fréchet) derivative (see Long (2009))
(noting that the input space U is unused for (3)). Using
representation (2), (3), Newton’s method can be studied
within the framework of systems theory, and in particular
the well-developed tools of robust stability theory may be
applied. For example, (2), (3) may be interpreted as a
feedback interconnection of a linear dynamical system and
a static nonlinear map, as per Figure 1, and its behaviour
analyzed using control systems analysis and design tools.

Fig. 1. Newton’s method (2), (3) as a feedback system.

In the literature, there are many results concerning the
stability of Newton’s method (2), (3), and related itera-
tive algorithms, with respect to an exact stationary point
x∗ ∈ Rn in the absence of uncertainty; see for exam-
ple Luenberger and Ye (2007); Kelley (1999); Bertsekas
(2015). In implementation, Newton’s method is subject to
uncertainties in problem data, numerical approximations,
computation errors, etc. Collectively, these uncertainties
can be regarded as disturbances that impact algorithm be-
haviour. Such disturbances can substantially degrade the
qualitative convergence properties of Newton’s method,
compared with the disturbance-free case, via changes to
the domain of attraction, convergence rate, limit set, etc.
Consequently, analysis of the robust stability of Newton’s
method is a key theoretical consideration that should
underpin its practical implementation. Moreover, in view
of the nonlinear feedback interconnection representation
of Figure 1, and the plethora of robust stability concepts
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and tools available for nonlinear dynamical systems, it is
reasonable to frame this analysis in a nonlinear dynam-
ical systems context. Existing analysis in this direction
includes the development of Lipschitz-like sufficient condi-
tions on the step-size for convergence of Newton’s method
applied to nonlinear equations of a single variable, see for
example Kashima and Yamamoto (2007), etc.

The focus of this paper is the development of sufficient
conditions for ensuring practical stability, input-to-state
stability (ISS), and related robust stability properties, for
Newton’s method; see for example Sontag (1989), Jiang
and Wang (2001), Tran et al. (2017), Tran et al. (2018),
Guiver and Logemann (2020), and Hasan et al. (2013),
Coughlan et al. (2007), Sarkens and Logemann (2016)
for recent related results. Section 2 provides a practical
stability result that takes into account disturbances in the
iteration step of Newton’s method (2), (3), and guarantees
convergence of its state xk to a ball centred on the
stationary point x∗. Results for guaranteeing input-to-
state stability (ISS), integral ISS (iISS), and incremental
ISS (δISS) are provided for Newton’s method (2), (3) in
Section 3, for similarly restricted classes of functions f .

In terms of notation, the sets of naturals, integers, and
real numbers are denoted by N, Z, and R. The sets of
nonnegative integers and non-negative reals are likewise
denoted by Z≥0 and R≥0. Similarly, n-dimensional Eu-
clidean space and the space of n × m matrices on R are
denoted respectively by Rn and Rn×m, for n,m ∈ N. The
associated Euclidean and induced norms are both denoted
by ‖·‖. An open ball of radius r ∈ R>0 centred at x ∈ Rn is
denoted by B(x; r), and the distance of x ∈ Rn from a set
X ⊂ Rn is d(x,X)

.
= infy∈X ‖y−x‖. The space of bounded

sequences in Rm is denoted by `m∞, n,m ∈ N, while the
corresponding norm of u ∈ `m∞ is denoted by ‖u‖∞. The
space of bounded linear operators between Banach spaces
X and Y is denoted by L (X ;Y). A continuous function
γ : R≥0 → R≥0 is positive definite if γ(0) = 0 and γ(r) > 0
for all r > 0. The class of all positive functions is denoted
by P. If, in addition, γ is strictly increasing then it is
said to be of class K. If γ ∈ K and limr→∞ γ(r) = ∞,
then γ is said to be of class K∞. Meanwhile, a strictly
decreasing continuous function γ : R≥0 → R≥0 satisfying
limr→∞ γ(r) = 0 is said to be of class L, and a continuous
function β : [0, a)×R≥0 → R≥0, a ∈ R>0, is said to belong
to class KL if β(·, t) ∈ K for each fixed t and β(r, ·) ∈ L for
each fixed r. For the discrete-time dynamical system (2),
a trajectory evolving in Rn from initial condition x0 ∈ Rn,
and driven by input u ∈ `m∞, is denoted at time step
k ∈ Z≥0 by x(k, x0, u).

2. PRACTICAL STABILITY OF NEWTON’S
METHOD

2.1 Quadratic convergence and asymptotic stability

Under the reasonable conditions, see for example (Nocedal
and Wright, 2006, Theorem 3.5), Newton’s method (2), (3)
applied to the stationary point problem of (1) converges
to an x∗ ∈ Rn, i.e. limk→∞ xk = x∗ (and x∗ may depend
on the choice of x0 ∈ Rn). Here, it is convenient to assume
that f : Rn → R, g : Rn × U → Rn in (1), (2) satisfy

∃ simple, connected, open X ⊂ Rn and c ∈ [0, 1), s.t.

? f ∈ C3(X ;R);

? ∃ x∗ ∈ X s.t. (1) holds; and (4)

? x 7→ H(x)
.
= D∇f(x) ∈ Rn×n satisfies

sup
x∈X

max(‖H(x)‖, ‖H(x)−1‖, ‖DH(x)‖L (Rn;Rn×Rn)) ≤ c.

In view of (4), it is useful to define X0 ⊂ X by

X0
.
= B(x∗; δHX ), (5)

δHX
.
= sup{r ∈ (0, 1

c2 ) | B(x∗; r) ⊂ X}.
The following statements are then standard.

Lemma 1. Let f , x∗ ∈ X , c ∈ [0, 1) satisfy (4). Then,
‖g(x, 0) − x∗‖ ≤ c2 ‖x − x∗‖2 for all x ∈ X , in which g is
as per (3).

Proof. Fix x∗ ∈ X as per (1), (4), and x ∈ X . By
the asserted regularity of f , note further by (4) that
H(x), H(x)−1 ∈ Rn×Rn and R(x, x∗) ∈ L (Rn×Rn;Rn),

where H(x)
.
= D∇f(x), R(x, x∗)

.
=
∫ 1

0
(1−t)DH(x+t(x∗−

x)) dt. Applying Taylor’s theorem yields 0 = ∇f(x∗) =
∇f(x) +H(x) (x∗−x) +R(x, x∗) (x∗−x) (x∗−x), so that
by (4), x∗ − g(x, 0) = −H(x)−1R(x, x∗) (x∗ − x) (x∗ − x).
Taking the norm, applying the triangle inequality and (4),
‖x∗−g(x, 0)‖ ≤ ‖H(x)−1‖ ‖R(x, x∗)‖ ‖x∗−x‖2 ≤ c2 ‖x∗−
x‖2. As x ∈ X is arbitrary, the assertion follows. �
Theorem 2. Given x∗ ∈ X and c ∈ [0, 1) satisfying (1),
(4), and any x0 ∈ X0 ⊂ X , c.f. (5), Newton’s method (2),
(3) is quadratically convergent to x∗, i.e.

‖xk+1 − x∗‖ ≤ c2 ‖xk − x∗‖2, (6)

for all k ∈ N, with limk→∞ xk = x∗.

Proof. Fix x∗ ∈ X and c ∈ [0, 1] as per (1), (4), and note
that x∗ ∈ X0 by (5). Fix any x0 ∈ X0, k ∈ N. Let xk

.
=

x(k, x0, 0) be as per (2), (3), and suppose that xk ∈ X0.
Let xk+1

.
= g(xk, 0), and observe by Lemma 1 and (5)

that ‖g(xk, 0)− x∗‖ ≤ c2 ‖xk − x∗‖2 < c2(δHX )2 < δHX , i.e.
xk+1 ∈ X0. Hence, xk ∈ X0 ⊂ X for all k ∈ Z≥0, so that
(6) follows by Lemma 1, and the asserted limit follows. �

2.2 Additive uncertainties and practical stability

The convergence property provided by Theorem 2 is not
guaranteed in the presence of bounded round-off and other
additive approximation errors. Indeed, the numerical ap-
proximation xk may instead converge to some neighbour-
hood of x∗, or it may diverge. Sufficient conditions that
guarantee the former case, referred to here as practical
stability, along with quantifiable bounds on the size of the
ω-limit set obtained, are thus of interest.

Two sources of additive uncertainty are considered, due
to the numerical evaluation of H(x)−1 and ∇f(x). These
uncertaintiess are assumed uniformly bounded a priori, via
the pair δ

.
= (δH , δf ) ∈ R2

≥0 for H(·)−1 and ∇f(·). The

corresponding generalization of Newton’s method (2), (3)
is defined via g : X × Uδ → X by

g(x, u)
.
= x−

(
H(x)−1 + uH

) (
∇f(x) + uf

)
, (7)

for all x ∈ X .
= Rn, u ∈ Uδ, in which

Uδ .
=

{
u
.
= (uH , uf ) ∈ Rn×n × Rn

∣∣∣∣ ‖uH‖ ≤ δH‖uf‖ ≤ δf
}
, (8)

A space of bounded disturbance (input) sequences is
defined via (8) by U δ .

= {u : Z≥0 → Uδ} ⊂ `m∞ × `m∞.
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A feedback representation corresponding to Figure 1 for
the perturbed Newton’s method (2), (7) is illustrated in

Figure 2, in which uk
.
= (uHk , u

f
k) ∈ Uδ for all k ∈ Z≥0.

Fig. 2. Perturbed Newton’s method (2), (7).

In view of (4), and using (5), it is convenient to further
define

X1
.
= B(x∗; min(δHX , δ

f
X )) ⊂ X0, (9)

δfX
.
= sup

{
δ1 > 0

∣∣∣∣ ‖∇f(x)‖ ≤ 2 ‖H(x∗)‖ ‖x− x∗‖
∀ x ∈ B(x∗; δ1)

}
,

Practical stability for a perturbed Newton’s method (2),
(7) may be asserted via the following lemma and theorem.

Lemma 3. Given g as per (7), x∗ ∈ X , c ∈ [0, 1) as per
(4), and any δ

.
= (δH , δf ) ∈ R2

≥0,

‖g(x, u)− x∗‖ ≤ c2 ‖x− x∗‖2 + 2 δH c ‖x− x∗‖
+ (c+ δH) δf , (10)

for all x ∈ X1, u ∈ Uδ.

Proof. Fix x∗ ∈ X , c ∈ [0, 1) as per (1), (4), and x ∈ X1.
Note by (9) that x∗ ∈ X1. Fix any δ

.
= (δH , δf ) ∈ R2

≥0,

u ∈ Uδ. By inspection of (2), (7), observe that

g(x, u)− x∗ = x−H(x)−1∇f(x)− x∗

−H(x)−1 uf − uH ∇f(x)− uH uf

= g(x, 0)− x∗ −H(x)−1 uf − uH ∇f(x)− uH uf ,
so that by the triangle inequality and Lemma 1,

‖g(x, u)− x∗‖ ≤ ‖g(x, 0)− x∗‖+ ‖H(x)−1‖ δf

+ ‖∇f(x)‖ δH + δH δf

≤ c2 ‖x− x∗‖2 + 2 δH c ‖x− x∗‖+ (c+ δH) δf ,

as required by (10). �

Theorem 4. Let x∗ ∈ X , c ∈ (0, 1) satisfy (1), (4), and
δ
.
= (δH , δf ) ∈ R2

≥0 satisfy

δH < 1
2 c , δ

f < (1−2 δH c)2

4 c2 (c+δH)
, εc−(δ) ≤ min(δHX , δ

f
X ), (11)

with εc−(δ)
.
= inf{ε > 0 | pcδ(ε) < 0}, εc+(δ)

.
= sup{ε >

0 | pcδ(ε) < 0}, and pcδ(ε)
.
= c2 ε2+(2 δH c−1) ε+(c+δH) δf

for all ε ∈ R. Then, for any x0 ∈ X1∩B(x∗; εc+(δ)), u ∈ U δ,
the perturbed Newton’s method (2), (7) converges to X1∩
B(x∗; εc−(δ)), i.e. limk→∞ d(xk,X1 ∩ B(x∗; εc−(δ)) = 0.

Proof. Fix x∗ ∈ X as per (1), (4), and note that x∗ ∈ X1

by (9). Fix any δ
.
= (δH , δf ) ∈ R2

≥0 such that the first two

inequalities in (11) hold. Note that

εc−(δ) =
1−2 δH c−

√
(1−2 δH c)2−4 c2 (c+δH) δf

2 c2 > 0, δ > 0,

εc−(0) = 0, and εc− : R2
≥0 → R≥0 is continuous by

inspection. Hence, it is always possible to choose δ such

that all three inequalities in (11) hold. Fix any u ∈ Uδ,
x0 ∈ X1 ∩ B(x∗; εc+(δ)), k ∈ N. Define xk

.
= x(k, x0, u)

as per (2), (7), and suppose that xk ∈ X1 ∩ B(x∗; εc+(δ)).
Let v(y)

.
= ‖y − x∗‖ for all y ∈ Rn, xk+1

.
= g(xk, uk),

and observe by Lemma 3 that v(xk+1) = ‖g(xk, uk) −
x∗‖ ≤ c2 v(xk)2 + 2 δH c v(xk) + (c+ δH) δf , i.e. v(xk+1)−
v(xk) ≤ pcδ(v(xk)). Hence, xk+1 ∈ X1 ∩ B(x∗; εc+(δ)), and
k 7→ v(xk) decreases for all k s.t. xk 6∈ X1 ∩ B(x∗; εc−(δ)),
yielding the stated convergence. �
Remark 5. Theorem 4 may be specialized to three cases,
corresponding to knowledge of the exact inverse of the Hes-
sian, or the exact gradient, or both. With δ

.
= (δH , δf ) ∈

R2
≥0, these cases correspond to selecting δH = 0, δf = 0,

or δH = 0 = δf , respectively.

δH = 0: Let ∆c .
= 2 c2 min(δHX , δ

f
X ), with δHX , δfX as per

(5), (9). Note that 2 c2 εc±(δ) = 1 ±
√

1− 4 c3 δf , and the

third inequality in (11) is 1 −
√

1− 4 c3 δf ≤ ∆c. Hence,
selecting δf such that

δf <

{
1

4 c3 , if ∆c ≥ 1,

1−(1−∆c)2

4 c3 , if ∆c < 1,

implies that the conditions (11) required for Theorem 4
to hold are satisfied. Hence, given any x0 ∈ B(x∗; εc+(δ)),
Theorem 4 implies that limk→∞ d(xk,B(x∗; εc−(δ))) = 0.

δf = 0: With δH < 1
2 c , note that εc−(δ) = 0, εc+(δ) =

1−2 δH c
c2 , and that the conditions (11) of Theorem 4 are

satisfied. Hence, given any x0 ∈ B(x∗; εc+(δ)), Theorem 4
implies that limk→∞ d(xk, {x∗}) = 0, i.e. convergence to
x∗ is guaranteed.

δH = 0 = δf : εc−(δ) = 0, εc+(δ) = 1
c2 , and the con-

ditions of (11) of Theorem 4 are automatically satisfied.
Hence, given any x0 ∈ B(x∗; 1

c2 ), Theorem 4 implies that
limk→∞ d(xk, {x∗}) = 0. This recovers the statement of
Theorem 2 for the unperturbed Newton’s method (2), (3).

Example 6. The perturbed Newton’s method (2), (7) is
applied to the function f : R2 → R given by

f(x, y)
.
= 100 (y − x2)2 + (x− 1)2,

for all (x, y) ∈ R2. Figure 3 illustrates the convergence of
an ensuing iteration to a neighbourhood of its minimum at
(x, y) = (1, 1), for the case where δH

.
= 0 and δf

.
= 10−7.

An a priori convergence bound is illustrated by the red
circle of radius 5× 10−7.

2.3 A local Hessian approximation and practical stability

Where a invertible local approximation x 7→ H̃(x) ∈
Rn×n for the Hessian of f is available, and a uniformly
bounded iteration uncertainty is present, an alternative
to the generalization (2), (3) may be more appropriate.
In particular, with an uncertainty bound δv ∈ R≥0, the
corresponding generalization of Newton’s method (2), (3),
is defined via g : X × Vδ → X by

g(x, v)
.
= x− H̃(x)−1∇f(x) + v, (12)

for all x ∈ X .
= Rn, v ∈ Vδ, in which

Vδ .
= {v ∈ Rn | ‖v‖ ≤ δ}, (13)

and the corresponding space of bounded disturbance se-
quences is V δ .

= {v : Z≥0 → Vδ} ⊂ `m∞. Given µ ∈ R≥0,
µ < 1, and ω ∈ R>0 fixed, it is convenient to define
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Fig. 3. Practical stability for Newton’s Method.

X2
.
= B(x∗; δ̃HX ) ⊂ Rn, (14)

δ̃HX
.
= sup

δ̃ > 0

∣∣∣∣∣∣
‖H̃(x)−1 (H(y)−H(x))‖ ≤ ω‖y − x‖
‖H̃(x)−1 (H̃(x)−H(x))‖ ≤ µ

∀ x, y ∈ B(x∗; δ̃)


in which H(·), H̃(·) are as per (12).

Theorem 7. Let g be as per as (12), x∗ ∈ X satisfy (4),
and δ ∈ R≥0 such that

δ < (1−µ)2

2ω . (15)

Then, for any x0 ∈ X2 ∩ B(x∗; εµ,ω+ (δ)), v ∈ V δ, with

εµ,ω− (δ)
.
= inf {ε > 0 | pµ,ωδ (ε) < 0} ,

εµ,ω+ (δ)
.
= sup {ε > 0 | pµ,ωδ (ε) < 0} ,

pµ,ωδ (ε)
.
= 1

2 ω ε
2 + (µ− 1) ε+ δ, (16)

the perturbed approximate Newton’s method (2), (12)
convergences to X2∩B(x∗; εµ,ω− (δ)), i.e. limk→∞ d(xk,X2∩
B(x∗; εµ,ω− (δ))) = 0.

Proof. Fix x∗ ∈ X as per (1), (4), and note that x∗ ∈ X2 by
(14). Fix any δ ∈ R≥0 such (15) holds, x0 ∈ X2∩B(x∗; 1

ω ),

and v ∈ V δ. Recalling (12),

g(x, v)− x∗ = x− H̃(x)−1∇f(x) + v − x∗

= H̃(x)−1 H̃(x) (x− x∗)− H̃(x)−1∇f(x) + v

= H̃(x)−1 (H̃(x)−H(x)) (x− x∗) + v

− H̃(x)−1
(∫ 1

0
H(x∗ + t(x− x∗))−H(x) dt

)
(x− x∗).

By the triangle inequality,

‖g(x, v)− x∗‖ ≤ ‖H̃(x)−1 (H̃(x)−H(x))‖ ‖x− x∗‖+ ‖v‖
+
∫ 1

0
‖H̃(x)−1 (H(x∗ + t(x− x∗))−H(x))‖ dt ‖x− x∗‖

≤ µ ‖x− x∗‖+ δ +
∫ 1

0
ω (1− t) ‖x− x∗‖ dt‖x− x∗‖

= 1
2 ω ‖x− x

∗‖2 + µ ‖x− x∗‖+ δ . (17)

Let xk
.
= x(k, x0, v) as per (2), (12), and suppose that

xk ∈ X2∩B(x∗; εµ,ω+ (δ)). Let v(y)
.
= ‖y−x∗‖ for all y ∈ Rn,

xk+1
.
= g(xk, vk), and observe by (17) that

v(xk+1) = ‖g(xk, vk)− x∗‖ ≤ 1
2 ω v(xk)2 + µ v(xk) + δ

=⇒ v(xk+1)− v(xk) ≤ pµ,ω(v(xk)),

with pµ,ω(·) as per (16). Hence, xk+1 ∈ X2∩B(x∗; εµ,ω+ (δ)),
and k 7→ v(xk) decreases for all k s.t. xk 6∈ X2 ∩
B(x∗; εµ,ω− (δ)), yielding the required convergence. �

Remark 8. Observe that in the absence of an additive
uncertainty, i.e. δ = 0, (15) is automatically satisfied,

while (16) yield εµ,ω− (0) = 0 and εµ,ω+ (0) = 2 (1−µ)
ω . In

that case, Newton’s method (2), (12) converges to {x∗},
as per Theorem 2 and Remark 5. Alternatively, where the

Hessian is known exactly, i.e. H̃(·) = H(·), µ .
= 0 may be

selected in (14) and Theorem 7, yielding practical stability
similarly to Theorem 4 with δH

.
= 0, see Remark 5.

3. ROBUST STABILITY OF NEWTON’S METHOD

3.1 Input-to-state stability

It is convenient to again consider Newton’s method in the
presence of an additive disturbance, i.e. as per (2), (12),

with H̃ ≡ H. In particular, consider

g(x, u)
.
= x−H(x)−1∇f(x) + u, (18)

for all x, u ∈ Rn. For convenience, define U∞
.
= `n∞.

Input-to-state stability (ISS) is a robust stability property
for nonlinear dynamical systems, first introduced by Son-
tag (1989). ISS provides a trajectory bound that scales
with the norm of the initial state and input sequence.
Specifically, a system (2) is input-to-state stable (ISS) if
there exist β ∈ KL and γ ∈ K such that

‖x(k, ξ, u)‖ ≤ β(‖ξ‖ , k) + γ(‖u‖∞)

for all ξ ∈ Rn, u ∈ U δ, δ ∈ R2
≥0, k ∈ Z≥0. ISS is

compatible with Lyapunov theory, insofar as a Lyapunov
characterization exists. In particular, system (2) is ISS if
and only if there exists a continuous function V : Rn 7→
R≥0, called an ISS Lyapunov function, and α1, α2, α3 ∈
K∞, σ ∈ K such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (19)

V (g(x, u))− V (x) ≤ −α3(‖x‖) + σ(‖u‖), (20)

for all x ∈ Rn, u ∈ U . This Lyapunov characterization can
be used to demonstrate ISS of Newton’s method (2), (18).

Theorem 9. Suppose there exist ψ,ϕ ∈ K∞, κ ∈ (0, 1) s.t.

? ψ − id ∈ K∞;

? ϕ(λ ‖x‖) ≤ λϕ(‖x‖) ∀ λ ∈ (0, 1), x ∈ Rn;

? ψ(‖g(x, 0)‖) ≤ κ ‖x‖ ∀ x ∈ Rn. (21)

Then, x 7→ V (x)
.
= ϕ(‖x‖) is an ISS-Lyapunov function

for Newton’s method (2), (18), and hence it is ISS.

Proof. Fix ψ,ϕ ∈ K∞, κ ∈ (0, 1), as per the theorem
statement, and fix any x0 ∈ Rn, u ∈ U∞. Define V (x)

.
=

ϕ(‖x‖) for all x ∈ Rn, and note that (19) holds with
α1 = ϕ = α2. Define σ

.
= ϕ ◦ ψ ◦ (ψ − id)−1 ∈ K∞.

With xk
.
= x(k, x0, u), observe by (18) that

V (xk+1)− V (xk) = ϕ(‖g(xk, 0) + uk‖)− ϕ(‖xk‖)
≤ ϕ ◦ ψ(‖g(xk, 0)‖) + ϕ ◦ ψ ◦ (ψ − id)−1(‖uk‖)− ϕ(‖xk‖)
≤ ϕ(κ ‖xk‖) + σ(‖uk‖)− ϕ(‖xk‖)
≤ −(1− κ) ‖xk‖+ σ(‖uk‖),
using the generalized triangle inequality for comparison
functions, see (Kellett, 2014, Lemma 10, p. 347). Hence,
(20) holds with α3(s)

.
= (1− κ) s, s ∈ R≥0, as required. �

Remark 10. In the one dimensional case, i.e. n
.
= 1,

consider polynomials of the form f(x)
.
=
∑N
i=0 ai x

2 i,
x ∈ R, given ai > 0, N ∈ Z≥0 fixed. Straightforward

calculations yield ∇f(x) =
(

2 a1 +
∑N
i=2 2 i ai x

2i−2
)
x,
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H(x) = 2 a1 +
∑N
i=2 2 i (2 i− 1) ai x

2i−2, so that g(x, 0) =

µ(x)x, in which µ(x)
.
=

∑N

i=2
2 i (2 i−2) ai x

2i−2

2 a1+
∑N

i=2
2 i (2 i−1) ai x2i−2

. Note

further that there exists a κ0 ∈ (0, 1) such that |µ(x)| ≤
κ0 < 1 for all x ∈ R, i.e. ‖g(x, 0)‖ ≤ κ0 ‖x‖ for all x ∈ R.
Moreover, with ψ(s)

.
= (1 + 1−κ0

2κ0
) s, s ∈ R≥0, note that

ψ− id ∈ K∞, and ψ(‖g(x, 0)‖) ≤ κ ‖x‖ for all x ∈ R, with
κ
.
= κ0 (1 + 1−κ0

2κ0
) = 1+κ0

2 ∈ (0, 1). That is, the first and

third conditions in (21) hold.

Example 11. The polynomial on R defined by

f(x)
.
= x4 + x2 + 3

for all x ∈ R falls within the class defined by Remark 10.
Select ϕ,ψ ∈ K∞ with ϕ(s)

.
= s2, ψ(s)

.
= ( 11

10 ) s, s ∈ R≥0.
By inspection, the first and second conditions in (21) hold.
Meanwhile, as per Remark 10,

ψ
(
‖x−H−1(x)∇f(x)‖

)
= 11

10 (1− 2x2+1
6x2+1 )‖x‖ < 11

15 ‖x‖,
for all x ∈ R, so that the third condition in (21) holds.
Hence, Theorem 9 implies that Newton’s method (2), (18)
is ISS.

Remark 12. There exist polynomials outside the class con-
sidered in Remark 10 for which Newton’s method of (2),
(18) remains ISS. For example, f(x)

.
= x4 +4x3 +9x2 +1,

x ∈ R, contains a cubic term that renders it inconsistent
with Remark 10. However, x 7→ V (x)

.
= ‖x‖2 is an ISS

Lyapunov function for (2), (18).

3.2 Integral input-to-state stability

The type of robust stability implied by ISS may be too
strong in specific applications of Newton’s method, for
example, where the disturbances involved are summable
rather than uniformly bounded. Consequently, it is rea-
sonable to consider weaker robust stability properties that
may encapsulate the behaviour of Newton’s method in the
presence of such disturbances, where ISS does not hold.
One such weaker robust stability property is integral ISS
(iISS). A system (2) is iISS if there exist α, σ ∈ K∞ and
β ∈ KL such that

α(‖xk‖) ≤ β(‖x0‖, k) +

k−1∑
j=0

σ(‖uj‖)

for all x0 ∈ Rn, u ∈ U δ .
= {u : Z≥0 → R |

∑k−1
j=0 σ(‖uj‖) ≤

δ ∀ k ∈ Z≥0}, δ ∈ R≥0, k ∈ Z≥0.

As was the case with ISS, iISS is compatible with Lya-
punov theory, i.e. a Lyapunov characterization exists. In
particular, (2) is iISS if and only if there exists a continuous
function V : Rn → R≥0, called an iISS Lyapunov function,
and α1, α2, σ ∈ K∞ and ρ ∈ P such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (22)

V (g(x, u))− V (x) ≤ −ρ(‖x‖) + σ(‖u‖), (23)

for all x ∈ Rn, u ∈ U . This Lyapunov characterization
can be used to demonstrated iISS of Newton’s method
(2), (18). It is emphasized that iISS is a strictly weaker
property than ISS, i.e. every system that is ISS is iISS,
but not vice-versa. In particular, Newton’s method may
be iISS but not ISS.

Theorem 13. Suppose there exists ρ ∈ P such that

‖x‖ − ‖g(x, 0)‖ ≥ ρ(‖x‖) (24)

for all x ∈ Rn. Then, Newton’s method (2), (18) is iISS.

Proof. Let ρ ∈ P be as per the theorem statement, and
define V (x)

.
= ‖x‖ + arctan(‖x‖) for all x ∈ Rn. Define

α1, α2 ∈ K∞ by α1(s)
.
= s, α2(s)

.
= s+arctan(s), s ∈ R≥0,

so that (22) holds. Fix any x ∈ Rn, u ∈ Rn. By definition
of V , (18), and (24), note further that

V (g(x, u))− V (x)

= ‖g(x, u)‖ − ‖x‖+ arctan(‖g(x, u)‖)− arctan(‖x‖)
≤ ‖g(x, 0)‖ − ‖x‖+ ‖u‖

+ arctan(‖g(x, 0)‖+ ‖u‖)− arctan(‖x‖)
≤ −ρ(‖x‖) + ‖u‖+ ∆(‖x‖, ‖u‖), (25)

in which ∆(s, t)
.
= arctan(s + t − ρ(s)) − arctan(s),

s, t ∈ R≥0. There are two cases involved in over-bounding
∆(s, t), namely t− ρ(s) ≥ 0 and t− ρ(s) < 0. In the first
case, Taylor’s theorem implies that

t− ρ(s) ≥ 0 =⇒ ∆(s, t) ≤ t− ρ(s),

which implies via (25) that for ‖u‖ − ρ(‖x‖) ≥ 0,

V (g(x, u))− V (x) ≤ −ρ(‖x‖) + ‖u‖+ ‖u‖ − ρ(‖x‖)
= −2 ρ(‖x‖) + 2 ‖u‖ ≤ −ρ(‖x‖) + 2 ‖u‖. (26)

Meanwhile, in the second case, arctan(s + t − ρ(s)) <
arctan(s), as arctan(·) is strictly increasing, so that

t− ρ(s) < 0 =⇒ ∆(s, t) < 0,

which implies via (25) that for ‖u‖ − ρ(‖x‖) < 0,

V (g(x, u))− V (x) < −ρ(‖x‖) + ‖u‖ ≤ −ρ(‖x‖) + 2 ‖u‖.
which is as per (26). Hence, with σ ∈ K∞ defined by
σ(s)

.
= 2 s, s ∈ R≥0, combining (25), (26) yields (23).

That is, V satisfies (22), (23), yielding the claim. �
Example 14. Consider a function f : R → R implicitly

defined via ∇f(x) = exp
(
−
√
x2+1+1

2x2

)
x3/2√√
x2+1+1

, x ∈ R,

and f(0) = 0. The Hessian may be computed as H(x) =

exp
(
−
√
x2+1+1)

2x2

) √√
x2+1+1
x3/2

√
x2 + 1, x ∈ R. Hence,

‖x‖ − ‖g(x, 0)‖ = ‖x‖ − ‖x−H−1(x)∇f(x)‖

= ‖x‖ − ‖x− x+ x√
x2+1
‖ ≥ ‖x‖

x2+1

(
1− 1√

x2+1

)
.

That is, (24) in Theorem 13 holds, with ρ ∈ P given by

ρ(s)
.
= s

s2+1

(
1− 1√

s2+1

)
, for all s ∈ R≥0. Consequently,

Newton’s method (2), (18) is iISS by Theorem 13. More-
over, as ρ ∈ P \ K, note that it is not ISS.

Remark 15. Observe in Theorem 13 that if (24) holds with
ρ(s)

.
= 1

2 s, s ∈ R≥0, i.e.

‖x−H(x)−1∇f(x)‖ ≤ 1
2 ‖x‖, (27)

for all x ∈ Rn, then V (x)
.
= log (‖x‖+ 1), x ∈ Rn,

is an iISS-Lyapunov function. Since ρ ∈ K∞, it follows
immediately that Newton’s method (2), (18) is also ISS.

Example 16. Consider f : R3 7→ R defined by

f(x)
.
= 3

5 x
5
3
1 + 1

2 x
2
2 + 4

7 x
7
4
3 ,

for all x ∈ R3. The gradient and Hessian are given by

∇f(x) =

x
2
3
1
x2

x
3
4
3

 , H(x) =

 2
3 x
− 1

3
1 0 0

0 1 0

0 0 3
4 x
− 1

4
3

 .

Consequently,∥∥x−H−1(x)∇f(x)
∥∥ =

∥∥∥(− 1
2 x1 0 − 1

3 x3

)′∥∥∥ ≤ 1
2 ‖x‖ ,

so that (27) holds. Hence, following Remark 15, Newton’s
method (2), (18) is ISS.
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3.3 Incremental input-to-state-stability

Incremental input-to-state stability (δISS) describes a ro-
bust closeness of solutions property for dynamical systems
that is consistent with ISS. It provides a means to assess
sensitivity to initial conditions and controls. (It may be
noted that a corresponding definition for incremental iISS
is also available, but that property is not considered here.)

A system (2) is incrementally input-to-state stable (δISS)
if there exist β ∈ KL, γ ∈ K∞ such that any pair
of trajectories of (2) satisfy ‖x(k, x0, u)−x(k, y0, v)‖ ≤
β(‖x0 − y0‖, k) + γ(‖u − v‖∞) for all x0, y0 ∈ Rn, any
u, v ∈ U δ, δ ∈ R≥0, k ∈ Z≥0. Sufficient conditions for δISS
for Newton’s method (2), (7) follow using trajectory based
arguments similar to those used for practical stability of
(2), (7). To this end, given L1, L2 ∈ R>0 fixed, define

X3
.
= B(x∗; δLX ), (28)

δLX
.
= sup

δ̂ > 0

∣∣∣∣∣∣
‖H(x)−H(y)‖ ≤ L1 ‖x− y‖

‖∇f(x)‖ ≤ L2

∀ x, y ∈ B(x∗; δ̂)

 .

Theorem 17. Given c ∈ (0, 1), L1, L2 ∈ R≥0 as per (4),
(28), let δ

.
= (δH , δf ) ∈ R2

≥0 satisfy

δH + δf ≤ ( 1−K(δ)
K(δ) ) δLX , K(δ) < 1,

K(δ)
.
= max(c2 L1 L2 + max(c2 L1, c) (δH + δf ),

L2 + δH , c+ δf ).

Then, Newton’s method (2), (7) satisfies the δISS property
for all x0, y0 ∈ X3, u, v ∈ U δ.

Proof. Fix c ∈ (0, 1), L1, L2 ∈ R≥0 as per (4), (28), let
δ
.
= (δH , δf ) ∈ R2

≥0 as per the theorem statement.

Observe that g : Rn × Uδ → Rn of (7) is Fréchet differ-
entiable by the chain rule, using the norms ‖(h, v)‖]

.
=

‖h‖ + ‖v‖U and ‖v‖U
.
= ‖vH‖ + ‖vf‖ for all h ∈ Rn,

v
.
= (vH , vf ) ∈ Uδ, and

Dg(x, u) (h, v) = Dxg(x, u)h+Dug(x, u) v,

Dxg(x, u)h = h− (DxH(x)−1 h) (∇f(x) + uf )

− (H(x)−1 + uH)Dx∇f(x)h

= −(DxH(x)−1 h) (∇f(x) + uf )− uH H(x)h

= −H(x)−1(DxH(x)h)H(x)−1(∇f(x) + uf )− uHH(x)h,

Dug(x, u) v = −vH ∇f(x)−H(x)−1 vf − 2vHvf ,

for all h ∈ Rn, v
.
= (vH , vf ) ∈ Uδ. By (4), (28),

‖Dxg(x, u)h‖ ≤ c2 L1 ‖h‖ (L2 + δf ) + δH c ‖h‖,
= (c2 L1 L2 + max(c2 L1, c) (δH + δf )) ‖h‖

‖Dug(x, u) v‖ ≤ ‖vH‖L2 + c ‖vf‖
≤ max(L2 + δH , c+ δf ) ‖v‖U ,

so that ‖Dg(x, u)(h, v)‖ = ‖Dxg(x, u)h + Dug(x, u) v‖ ≤
‖Dxg(x, u)h‖ + ‖Dug(x, u) v‖ ≤ K ‖(h, v)‖], where K

.
=

K(δ)
.
= max(c2 L1 L2 + max(c2 L1, c) (δH + δf ), L2 +

δH , c + δf ) as per the theorem statement. Hence, by the
mean value theorem,

‖g(y, v)− g(x, u)‖ ≤ ‖(y − x, v − u)‖] ×∫ 1

0
‖Dg((x, u) + t(y − x, v − u))‖L (Rn×Uδ;Rn) dt

≤ K (‖y − x‖+ ‖v − u‖U ). (29)

Fix arbitrary x0, y0 ∈ X3, u, v ∈ U δ, and xk
.
= x(k, x0, u),

yk
.
= x(k, y0, v), suppose that xk, yk ∈ X3, and set εk

.
=

‖xk − yk‖, xk+1
.
= g(xk, uk), yk+1

.
= g(yk, vk). By (29),

εk+1 ≤ K (εk + ‖vk − uk‖U ) ≤ K εk +K ‖v − u‖∞.
Note in particular that for u = 0, y0 = x∗, yk = x∗, and

‖xk+1 − x∗‖ ≤ K(‖xk − x∗‖) +K (δH + δf )

≤ K δLX +K (δH + δf ) ≤ δLX
and so xk+1 ∈ X3. Similarly yk+1 ∈ X3. Hence,

‖xk − yk‖ ≤ Kk ‖x0 − y0‖+ 1
1−K ‖v − u‖∞

for all k ∈ Z≥0, which is the required δISS property. �

4. CONCLUSION

Sufficient conditions for practical stability, input-to-state-
stability (ISS), iISS and incremental ISS were derived, and
illustrated via simple examples.
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