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Abstract: It is necessary to perform the system identification under severe numerical conditions
in many practical applications. When less external test signals are available for parameter
estimation from experimental data, the identification performance often suffers from numerical
problems in the optimization procedure due to the less independent informative components,
the influence of complicated noise, or the local minima problem. In this paper, a multi-point
search based identification algorithm is investigated for system identification under severe
numerical conditions. It introduces the output over-sampling scheme to collect the experimental
input-output data, and extracts the information in time and space domains to complement
information criterion for numerical optimization. Furthermore, the multi-point search is utilized
to decrease the influence of local minima. The numerical simulation examples illustrate that the
identification performance has been improved in the proposed algorithm.
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1. INTRODUCTION

System identification is an important data-driven ap-
proach to construct a mathematical model for a practical
system, and a large number of parametric and nonpara-
metric identification approaches have been developed over
several decades, see Ljung (1999); Söderström and Stoica
(1989). Most of parametric identification approaches uti-
lize information criterion functions to evaluate how well
the parametric model approximates the dominant dynamic
characteristics of the system, then the model parame-
ters are estimated by optimizing the information criteria
through numerical optimization algorithms. For exam-
ple, the information criterion in prediction error method
(PEM) is a quadratic function of the prediction error,
which is often a nonlinear function of the model param-
eters. The numerical optimization uses Gauss-Newton or
Levenberg-Marquardt methods, which are gradient based
search algorithms to estimate the parameters.

The informativeness of the experimental data and opti-
mization algorithm are the crucial factors in identifica-
tion algorithms. In order to provide sufficient information,
many conventional methods design external test signals to
complement the information deficiency, see Van den Hof
and Schrama (1995); Eckhard et al. (2013). However, some
systems are subject to rigid restrictions for the system
safety, operating performance or economical reasons. For
example, the unstable industrial processes are required to
be stabilized by the feedback controllers, and the large
external test signals are not allowed since the external

signals interfere the process operation. As a result, the
information extracted from the experimental data may be
too weak to deal with the influence of disturbance and
model uncertainty. Moreover, the numerical conditions are
so poor that the numerical optimization becomes unstable
and fails to obtain satisfactory parameter estimates, see
Wang et al. (2003); Sun et al. (2018).

It has been illustrated that the output over-sampling
scheme, where the sampling rate for the output signals
is multiple times higher than the input rate of input,
can offer informative data for blind channel identification,
see Moulines et al. (1995), and closed-loop identification,
see Sun et al. (2001) when the external signals are not
available. They use the space or the time domain in-
formation of cyclo-stationarity extracted from the data
in output over-sampling to complement the information
deficiency, thus make the system be possibly identifiable.
However, when the system operating restrictions lead to
severe numerical conditions, or the system is disturbed by
a complicated noise, the numerical optimization will suffer
from severely ill-conditioned problem, and the identifica-
tion performance degrades dramatically, see Wang et al.
(2003); Sun et al. (2018). In order to deal with the ill-
conditioned problem, regularization terms are introduced
into the optimization algorithm to stabilize the numerical
computation, as shown in Pillonetto (2018); Chen (2018),
but the determination of regularization terms are exper-
tise, see Nelles (2001). In Sun and Sano (2017), some cyclo-
stationarity based spatial information is extracted from
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the experimental data, and is used to develop a temporal-
spatial algorithm that regularizes the ill-conditioned Hes-
sian matrix. The temporal-spatial algorithm has been
successfully used in the closed-loop identification of an
unstable magnetic levitation system, see Sun et al. (2018).

Generally the gradient based local search is used for nu-
merical optimization in system identification. Under severe
numerical conditions where the attraction region of the
global optimal estimates is very narrow, the numerical op-
timization is easily influenced by the initial values and the
estimation of noise model, accordingly, some metaheuris-
tics such as iterated local search are developed to reduce
the affection of initial values, see Talbi (2009). On the
other hand, some global search algorithms such as genetic
algorithms (GA), ant colony optimization (ACO), particle
swarm optimization (PSO) use multi-point scheme for
better global convergence in scheduling problems. Inspired
the idea of multi-point search, this paper investigates a
new identification algorithm that has better convergence
performance under the severe numerical conditions. Com-
pared with the existing methods, the proposed algorithm
considers the following issues: it betters the numerical
conditions by combining the cyclo-stationary information
in time and space domains; the influence of local minima is
decreased by updating multiple estimates parallelly. Fur-
thermore, the search efficiency is improved by merging the
estimates that are close to each other, while the random
walk scheme moves the estimates from the local minima
toward to a new attraction region.

The rest of the paper is organized as follows. In the next
section, the main description of the identification problem,
the system models and signals are summarized. In Section
3, the information complementation by introducing the
cyclo-stationary in time and space domains extracted in
the output over-sampling are investigated, then the multi-
point search based identification algorithm is illustrated
in Section 4, and the results of numerical simulation are
shown in Section 5. Finally, the conclusion and the future
research work are given in Section 6.

2. PROBLEM STATEMENT

The system model and signals are discussed in this section.

2.1 Model description

ZOH 
T

Input u(t)
Gc(s)

Noise e(t)

y(t) Sampling 
Δ = T / P

yΔ(k)

Fig. 1. Illustration of a system model

Consider an nth order linear system Gc(s) as shown in
Fig.1, where the input is added to the system through
a zero-order holder (ZOH), whose holding period is T .
Correspondingly, the signal u(t) is a piece-wise signal. The
noise e(t) is often approximated as a stationary stochastic
process, and y(t) is the system output, which is sampled
at an sampling interval Δ = T /P . When P = 1, the
experimental data of input and output are obtained at the
same sampling rate, which are denoted as u(KT ), y(KT ),
K = 0, 1, 2, · · ·. The data {u(KT ), y(KT )} are used in

many conventional identification methods. With respect
to the interval T , the system model can be described by a
discrete-time model as follows

y(KT )=G(z−1)u(KT )+e(KT ), for K = 0, 1, 2, · · · (1)
whereG(z−1) is an nth order discrete-time model of Gc(s),
z−1 is a backwards shift operator corresponding to interval
T . For P ≥ 2, i.e., the output is sampled at a higher rate
than the input signal, then the experimental data of u(t),
y(t) at the instant t = kΔ are recorded as uΔ(k), yΔ(k),
respectively. When P is an integer P ≥ 2, the system can
also be described by the following discrete-time model

yΔ(k) = GΔ(q−1)uΔ(k) + eΔ(k), k = 0, 1, 2, · · · (2)
where GΔ(q−1) is a discrete-time transfer function model
with respect to the interval Δ, while q−1 is the corre-
sponding backwards shift operator, q−P = z−1. It has
been illustrated that the model GΔ(q−1) determines the
discrete-time model G(z−1) uniquely. Hence, in the output
over-sampling scheme, the identification problem can be
solved by modelling GΔ(q−1) from the experimental data
of uΔ(k), yΔ(k).

eΔ(k) is considered as the sample of e(t) at kΔ, and the
stochastic process is approximated by

eΔ(k) = HΔ(q−1)wΔ(k), (3)
where HΔ(q−1) is an nHth order stable transfer function
with minimum phase, and wΔ(k) is a white i.i.d stochastic
process with N (0, σ2

wΔ
).

2.2 Signals in over-sampling

It is noticed that the input u(t) holds the same value
uΔ(KP ) = u(KT ) within the interval KPΔ, (KP + 1)Δ,
· · ·, ((K+1)P−1)Δ, while the system’s transient response
contains some information different from the noise terms.
Fig.2 illustrates the data examples of P = 2 and P = 3 in
Sun et al. (2018).
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Fig. 2. Illustration of experimental input-output data.
From the top: input u(t); Output yΔ(k) for P = 2
(dashed) and P = 3 (solid).

Suppose x1(k) and x2(k), k = 0, 1, · · ·, are the data
of stochastic processes. Let their correlation function be
defined as follows

Rx1,x2(k, τ) := E {x1(k + τ)x2(k)} , (4)
where E{·} indicates the expectation, and τ is the
shift time. Then, for the stationary noise term eΔ(k)
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at an arbitrary instant kΔ, the auto-correlation function
ReΔ,eΔ(k, τ) is a constant for a fixed shift time τ . For
u(KT ), K = 0, 1, · · ·, if it can be approximated as a wide-
sense stationary process, i.e.,

Ru,u(K, τ) = Ru,u(K ±K1, τ) (5)
holds for arbitrary K and K1. On the other hand, due to
the input’s holding property with respect to the interval Δ,
the auto-correlation function of RuΔ,uΔ(k, τ) is a periodic
function rather than a constant,

RuΔ,uΔ(k, τ) = RuΔ,uΔ(k ± P, τ) (6)
whereas the following inequality generally holds that

RuΔ,uΔ(k, τ) �= RuΔ,uΔ(k ± k1, τ), 1 ≤ k1 ≤ P − 1. (7)
The same properties also hold for the system output yΔ(k)
since it is a response of uΔ(k) in a causal system. There-
fore, if x1(k) or x2(k) is uΔ(k) or yΔ(k), the correlation
function Rx1,x2(k, τ) satisfies that

Rx1,x2(k, τ) = Rx1,x2(k + Pk1, τ) (8)
for an arbitrary integer k1, and the property of periodic
correlation functions in (8) is called cyclo-stationarity,
see Gardner (1994). Furthermore, let the cyclo-stationary
correlation function be given by Fourier transform of the
periodic correlation functions with respect to k

Cx1,x2(α, τ) = lim
N→∞

1
N

N−1∑
k=0

Rx1,x2(k, τ)e
−iαk, (9)

where 0 ≤ α < 2π. Then following (8), the cyclo-stationary
correlation functions satisfy

Cx1,x2(α, τ)

=

⎧⎪⎨
⎪⎩

1
P

(m+1)P−1∑
k=mP

Rx1,x2(k, τ)e
−iαpk, α = αp

0, others

, (10)

where αp ∈ {
αp|αp =

2π
P
p, p = 0, 1, · · · , P − 1

}
. On the

other hand, if both x1(k) and x2(k) are stationary sig-
nals, for example, the cyclo-stationary correlation function
CeΔ,eΔ(α, τ) becomes to

CeΔ,eΔ(α, τ)

=

{ReΔ,eΔ(k, τ), α = 0, k is an arbitrary
integer

0, 0 < α < 2π
. (11)

It is seen that the properties on cyclo-stationarity of
uΔ(k), yΔ(k) are quite different from that of the noise term
eΔ(k) at α = α1, · · · , αP−1, hence the cyclo-stationarity
could offer a possibility to deal with the noise influence.

2.3 Information criterion

Let the prediction error εΔ(k, θ̂Δ) for the system model
be defined as follows:

εΔ(k, θ̂Δ) =
1

ĤΔ(q−1)

(
yΔ(k) − ĜΔ(q−1)uΔ(k)

)
,(12)

where ĜΔ(q−1) and ĤΔ(q−1) are the estimated models of
the system model GΔ(q−1) and the noise model HΔ(q−1),
and their orders are determined by detecting whether any
cyclo-stationary component is contained in εΔ(k, θ̂) as
shown in Sun and Sano (2017). The definition of prediction
error can be easily extended to the other model structures
such as ARMAX models, BJ models, the model of unstable
process, see Forssell and Hjalmarsson (1999); Sun et al.
(2018). Then, the information criterion in time domain
for estimation of model parameters in the identification
algorithm such as PEM is defined as a quadratic function
of the prediction error

JT(θ̂Δ) =
1

2N

N−1∑
k=0

ε2Δ(k, θ̂Δ), (13)

when N is the data number, θ̂Δ is the estimate vector of
ĜΔ(q−1) and ĤΔ(q−1).

The estimation of model parameters in PEM are obtained
through minimizing the information criterion of (13) by
Gauss-Newton or Levenberg-Marquardt methods, which
are gradient based search algorithms. The gradient and
Hessian matrix are given by

gT(θ̂Δ) =
dJT(θ̂Δ)
dθ̂Δ

=
1
N

N−1∑
k=0

dε(k, θ̂Δ)
dθ̂Δ

ε(k,Δ), (14)

Hess,T =
1
N

N−1∑
k=0

dε(k, θ̂Δ)

dθ̂Δ

(
dε(k, θ̂Δ)

dθ̂Δ

)H

. (15)

Then, the model parameter estimates are updated by

θ̂
(l+1)

Δ = θ̂
(l)

Δ − μH−1
ess,TgT

(
θ̂

(l)

Δ

)
, (16)

in Gauss-Newton method, or Levenberg-Marquardt method
applied a regularization factor α as follows

θ̂
(l+1)

Δ = θ̂
(l)

Δ − μ
(
Hess,T + αI

)−1
gT

(
θ̂

(l)

Δ

)
, (17)

where 0 ≤ μ ≤ 1 is a step size, α ≥ 0 is the regularization
factor, and I is an identity diagonal matrix. Nevertheless,
if the numerical conditions are poor, the condition number
of Hessian matrix becomes very large and its inverse may
cause computation error while the numerical optimization
will be largely influenced by the noise term and fall into
the local minima. This problem must be remedied in order
to obtain an effective model.

3. INFORMATION COMPLEMENTATION

The time domain information can be complemented by the
spatial information deduced from the cyclo-stationarity of
the input-output data, see Sun and Sano (2017). Consider
the noise vector and input-output data vector

φe(k) =

⎡
⎢⎢⎢⎢⎣

eΔ(k + τ)
eΔ(k + τ − 1)
eΔ(k + τ − 2)

...
eΔ(k + τ − n1)

⎤
⎥⎥⎥⎥⎦ , (18)
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φ(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yΔ(k)
yΔ(k − 1)

...
yΔ(k − n2)
−uΔ(k − 1)

...
−uΔ(k − n2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (19)

where n1 > n2 + n + nH , n2 > n. Following the cyclo-
stationary property of uΔ(k) and yΔ(k), Rφe,φ(k, τ)

Rφe,φ(k, τ) = E
{
φe(k + τ)φT (k)

}
(20)

is periodic in k. Let the following cyclo-stationary correla-
tion matrix Cφ

e
,φ(α, τ)

Cφ
e
,φ(α, τ)

=
1
K1

K1−1∑
K=0

(P−1∑
p=0

e−ipαRφe,φ(KP + p, τ)
)

(21)

be arranged as

Cφe,φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Cφe,φ(α1, 0)
...

Cφ
e
,φ(α1, n)

...
Cφe,φ(αP−1, n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(22)

with respect to α = α1, · · · , αP−1, τ = 0, · · · , n, then its
orthogonal vector ψ = [ψ0, · · · , ψn2 , ψn2+1, · · ·, ψ2n2 ]T

Cφe,φψ = 0 (23)

is a non-zero vector whose parameters are the coefficients
of the following polynomials

Ψ1(q−1) = ψ0 + ψ1q
−1 + · · · + ψn2q

−n2

=AΔ(q−1)XΔ(q−1), (24)

Ψ2(q−1) = ψn1+1q
−1 + · · · + ψ2n2q

−n2

=BΔ(q−1)XΔ(q−1), (25)
where AΔ(q−1) and BΔ(q−1) are the denominator, numer-
ator polynomial of GΔ(q−1), XΔ(q−1) is a common factor
of Ψ1(q−1) and Ψ2(q−1), as shown in Sun and Sano (2017);
Söderström and Stoica (1981); Åström and Söderstrom
(1974). (24) and (25) imply that no cyclo-stationary com-
ponent is contained in φ(k)ψ if vector ψ satisfies (24)
and (25), then Cφe,φ(αp, τ)ψ = 0 since Cφe,φ(αp, τ)
are the cyclo-stationary correlation functions of the sta-
tionary signals. Furthermore, parameters of AΔ(q−1) and
BΔ(q−1) can be determined by removing the common
factor XΔ(q−1) from Ψ1(q−1) and Ψ2(q−1).

In identification problem, the true values of eΔ(k) are
unknown. They are replaced by yΔ(k) − ĜΔ(q−1)uΔ(k)
or the prediction error εΔ(k, θ̂Δ).

Let the matrix V l be defined by

V l =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−ψl,n2+1 −ψl,n2+2 · · · −ψl,2n2 0 · · · 0

0
. . .

. . .
0 · · · 0 −ψl,n2+1 · · · −ψl,2n2

ψl,0 ψl,1 · · · ψl,n2 0 · · · 0

0
. . .

. . .
0 · · · 0 ψl,0 ψl,1 · · · ψl,n2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

H

(26)

where ψl,0, ψl,1, · · ·, ψl,2n2 are the components of the lth

orthogonal vector of
(
CH
φe,φCφ

e
,φ

)
. Then, the parame-

ters of θGΔ = [aΔ,1, · · · , aΔ,n, bΔ,1, · · · bΔ,n]T can be
estimated by minimizing the following function as shown
in Moulines et al. (1995)

JS(θ̂GΔ) =
1
2

[
1 θ̂

T

GΔ

]
Ω

[
1
θ̂GΔ

]
, (27)

where Ω =
∑

l

(
V H

l V l

)
are calculated from the orthogo-

nal vectors of cyclo-stationary relation matrix Cφe,φ(αp, τ).

Introducing the spatial information into the information
criterion leads to a new criterion

J(θ̂Δ) = JT(θ̂Δ) + λJS(θ̂GΔ) (28)
to complement the information, where the subscript T
and S indicate the information in time and space domain,
respectively, λ is a positive coefficient determined by the
ratio of smallest singular values of Hess,T and Ω. Then,
the Hessian matrix becomes

Hess =Hess,T + λHess,S (29)
where Hess,T is given in (15), while Hess,S = Ω. Since
Ω is composed of the normalized orthogonal vectors of
Cφ

e
,φ(αp, τ), the condition number of Hess is improved

largely by introducing the positive-semidefinite matrix Ω

into Hess. Moreover, the new information of gS(θ̂
(l)

Δ ) =

dJS(θ̂
(l)

Δ )
/
dθ̂

(l)

Δ is also added into the gradient.

4. MULTI-POINT SEARCH BASED
IDENTIFICATION

In order to improve the global convergence performance,
the model parameters are estimated from M points par-

allelly. Assume the M initial values are θ̂
(0)

Δ,m and the
multiplicities are set as γm = 1, m = 1, · · · ,M .

4.1 Updating estimate

In the lth iteration, the gradient vector and Hessian matrix
of each estimate point are calculated g

(l)
m and H(l)

ess,m,
where the subscript m indicates the mth estimate point
in the multi-point search. Then the Hessian matrix used
for estimate updating is given by

H̄
(l)
ess,m =

⎧⎪⎨
⎪⎩
H(l)

ess,m l ≤ l0
M∑

m=1

wmH
(l)
ess,m l > l0

, (30)

where wm is a weight coefficient given by
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wm = γme
−σ2

ε,m

/
M∑

m=1

γme
−σ2

ε,m , (31)

here σ2
ε,m is the mean squares of the prediction error with

respect to the parameter estimates θ̂
(l)

Δ,m. l0 is such an
integer that the inverse of Hessian matrices could be ap-
proximated by a common one to reduce the computational
complexity. Then the estimates are updated by

θ̂
(l+1)

Δ,m = θ̂
(l)

Δ,m−μ
(
H̄

(l)
ess,m

)−1

g
(
θ̂

(l)

Δ,m

)
,

for m = 1, · · · ,M (32)

where H̄(l)
ess,m and g

(
θ̂

(l)

Δ,m

)
contain the information in

both the time and space domains. The larger rate P , the
more information can be obtained. However, when the
signals are band limited, the information obtained by high
sampling rate may do little contribution to identification.
Commonly, P is chosen as 2 ∼ 4. On the other hand,
for P = 1 where only {u(KT ), y(KT )} can be available,

H̄
(l)
ess,m and g

(
θ̂

(l)

Δ,m

)
are just constructed by the time

domain information as in (14), (15). While the multi-
point search can be performed work for P = 1 without
over-sampling, the convergence performance may only be
guaranteed when the numerical condition is not too poor.

4.2 Merger and re-generation of estimate points

If some estimates are close to each other, e.g.,∣∣∣θ̂(l+1)

Δ,m1
− θ̂(l+1)

Δ,m2

∣∣∣ < δ, (33)

where δ is a small positive number. Then,

m0 = min
m1,m2

{
σ2

ε,m1
, σ2

ε,m2

}
, (34)

where σ2
ε,m it the mean squares of the prediction error cor-

responding to the the mth estimate. Correspondingly, the
m1 and m2th estimates are merged, and a new estimates
is initialized by random walk β as follows:

θ̂
(l+1)

Δ,m1
= θ̂

(l+1)

Δ,m0
, γm1 = γm1 + γm2 , (35)

θ̂
(l+1)

Δ,m2
= θ̂

(l+1)

Δ,m0
+ β, γm2 = 1. (36)

It is seen that the multi-point search has larger proba-
bility to make some estimates enter into the attraction
region of the global optimum than the single-point search.
Moreover, the probability is improved with increasing the
point number M . Consequently, the convergence perfor-
mance improves largely compared with the conventional
identification algorithms.

4.3 Identification procedure

The procedures of the identification algorithm are summa-
rized as follows.

(1) Select the initial values θ̂
(0)

Δ,m and γm = 1, and let the
iteration number l = 0.

(2) In the lth iteration, calculate the prediction error

εΔ(k, θ̂
(l)

Δ,m) and instrumental vector êΔ(k).

(3) Estimate the cyclo-stationary correlation matrices
Cφe,φ(αp, τ) for p = 1, · · · , P − 1, τ = 0, · · · , n,
and execute singular value decomposition of Cφe,φ,
then construct the matrix Ω by using the orthogonal
vectors of Cφe,φ.

(4) Calculate the gradients and Hessian matrices in time
and space domains, respectively,

(5) Update the estimates parallelly.
(6) Merge the close estimates, create new points by

random walk, and record the optimal estimate.
(7) Let l = l+1 then go to step (2) until the the iteration

number l exceeds the maximal number ltol, or there
is an estimate whose multiplicity is larger than M .

(8) Choose the optimal one that has smallest noise vari-
ance from the M estimates.

5. NUMERICAL EXAMPLES

Consider a 3rd order continuous time process Gc(s) whose
transfer function is given by

Gc(s) =
2s2 + 28.8s+ 368.18

s3 + 5.72s2 + 147.7296s+ 720.648
. (37)

It is operated by a digital PID controller C(z−1) which is
followed by a ZOH with holding period T = 0.18s. The
reference signal is a constant r(t) = 0.01, whereas the
process is disturbed by a noise term ec(t) as follows

ec(t) =
0.0001s+ 10
s2 + s+ 0.2344

wc(t), (38)

where wc(t) is an i.i.d white signal with N (0, 1). The
signal components of ec(t) are concentrated in the low
frequency band, while the reference is a constant. As a
result, the numerical conditions of the input-output data
in the closed-loop are very poor, and the conventional
parameter estimation methods are hard to construct the
system model even in the output over-sampling scheme.

+−

ProcessController

+++ZOH 
( T )

Sampling 
( T )

Sampling 
(Δ=T/P)+r(kT)

C(z−1)
u(kT) u(t)

Gc(s)

ec(t)

y(t) yΔ(k)

y(KT)=yΔ(k)

Fig. 3. Process model in closed-loop system

For P = 1, i.e., the output is sampled at the same rate of
the control input, the data record {u(KT ), y(KT )} do not
have sufficient information for system identification due
to the low controller’s order and the constant reference
signal r(t), see Söderström et al. (1975, 1976). As a
result, identification might fail to work just using the data
{u(KT ), y(KT )} sampled at the rate 1/T . Therefore, the
data record {uΔ(k), yΔ(k)} obtained under P ≥ 2 are used
in system identification.

Consider the case of P = 3 where the output y(t) is
sampled at an interval Δ = 0.06s. The true process model
of GΔ(q−1) with respect to the interval Δ is

GΔ(q−1)=
0.1483q−1 − 0.1477q−2 + 0.0638q−3

1−2.2123q−1+2.0478q−2−0.7095q−3
. (39)
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The simulations are performed independently for 10 runs
using the input-output data sampled with interval Δ =
T /3. In order to improve the numerical conditions, the
information in both the time and space domains is utilized
in the information criterion J(θ̂Δ). The point number is
chosen as M = 8, and the initial estimates are selected as
random values. The estimated parameters are summarized
in Table 1. It is shown that the multi-point search based
algorithm has better convergence performance than the
conventional single point search algorithms.

Table 1. Estimation results for P = 3

Para- True Multi-point Single-point
meters search search

a1 −2.2123 −2.1693 ± 0.0604 −2.3152 ± 0.1290

a2 2.0478 1.9835 ± 0.0902 2.2008 ± 0.1917

a3 −0.7095 −0.6675 ± 0.0591 −0.8065 ± 0.1204

b1 0.1483 0.1476 ± 0.0014 0.1482 ± 0.0015

b2 −0.1477 −0.1420 ± 0.0080 −0.1616 ± 0.0178

b3 0.0638 0.0618 ± 0.0029 0.0634 ± 0.0032

The 8 estimates of the 50th iteration in multi-point search
are shown in Table 2. It is seen that from the initial values,
the 6 ∼ 8th estimates are close to the true parameters,
whereas the others are approaching to the local minima
that should be adjusted to escape from the local minima.

Table 2. M estimates of [a1, a2, a3] in the 50th
iteration.

Estimate a1 a2 a3
Number

1 −2.4932 2.4651 −0.9718

2 −0.5528 −0.5971 0.3440

3 −2.3680 2.2638 −0.8410

4 −2.6197 2.4974 −0.8647

5 −2.0590 1.8744 −0.6289

6 −2.1805 2.0004 −0.6790

7 −2.2725 2.1381 −0.7686

8 −2.2747 2.1414 −0.7707

True −2.2123 2.0478 −0.7095

6. CONCLUSIONS

The identification problem under the severe numerical
conditions has been investigated. It has been shown that
by using the output over-sampling scheme, the cyclo-
stationary properties in both time and space domains can
be extracted from the experimental data, and the cyclo-
stationary information can be used in the information cri-
terion to improve the numerical conditions without intro-
ducing external test signals. Furthermore, by introducing
the multi-point search into the numerical optimization for
model parameter estimation, the local minima problem
can be mitigated so the performance of global conver-
gence has been improved. The effectiveness of the proposed
approach is demonstrated by numerical simulations. The
convergence analysis, the approaches to improve the opti-
mization efficiency and to determine the optimal estimate

from the multiple points will be investigated in the future
research work.
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Söderström, T. and Stoica, P. (1989). System Identifica-
tion. Prentice Hall, NJ, USA.

Sun, L., Ohmori, H., and Sano, A. (2001). Output inter-
sampling approach to closed-loop identification. IEEE
Trans. on Automatic Control, 46(12), 1936–1941.

Sun, L. and Sano, A. (2017). Temporal-spatial informa-
tion based approach to direct closed-loop identification.
Trans. of the Society on Instrument and Control Engi-
neers, 53(6), 346–354.

Sun, L., Sano, A., and Liu, X. (2018). Direct closed-loop
identification approach to magnetic levitation system.
In Proc. 18th IFAC Symposium on System Identifica-
tion, 610–615. Stockholm.

Talbi, E. (2009). Metaheuristics: from Design to Imple-
mentation. John Wiley & Sons, Inc.

Van den Hof, P. and Schrama, R. (1995). Identification
and control - closed-loop issues. Automatica, 31(12),
1751–1770.

Wang, J., Chen, T., and Huang, B. (2003). Closed-
loop identification via output fast sampling. Journal
of Process Control, 14, 555–570.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

487


