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Abstract: This work is concerned with the application of reinforcement learning (RL)
techniques to adaptive dynamic programming (ADP) for systems with partly unknown models.
In ADP, one seeks to approximate an optimal infinite horizon cost function, the value function.
Such an approximation, i. e., critic, does not in general yield a stabilizing control policies,
i. e., stabilizing actors. Guaranteeing stability of nonlinear systems under RL/ADP is still an
open issue. In this work, it is suggested to use a stability constraint directly in the actor-critic
structure. The system model considered in this work is assumed to be only partially known,
specifically, it contains an unknown parameter vector. A suitable stabilizability assumption for
such systems is an adaptive Lyapunov function, which is commonly assumed in adaptive control.
The current approach formulates a stability constraint based on an adaptive Lyapunov function
to ensure closed-loop stability. Convergence of the actor and critic parameters in a suitable
sense is shown. A case study demonstrates how the suggested algorithm preserves closed-loop
stability, while at the same time improving an infinite-horizon performance.

Keywords: Consensus and Reinforcement learning control, Nonlinear adaptive control

1. INTRODUCTION

In ADP, one is commonly concerned with an infinite-
horizon (IH) optimal control problem for nonlinear sys-
tems of the form

ẋ = f(x) + g(x)u, (1)

where x ∈ Rn is the state, u ∈ Rm is the input, f :
Rn → Rn is the so called internal dynamics model and
g : Rn → Rn×m is called the input coupling function. The
IH cost function is usually given as

Jκ(x0) :=

∞∫
0

r(x(t), κ(x(t)))dt, x(0) = x0, (2)

where r : Rn×Rm → R≥0 denotes the reward function and
κ : Rn → Rm is a control policy. The function J∗(x0) :=
minκ J [κ](x0),∀x0 is called the value function, and, by
the Bellman’s optimality principle (Bellman, 1957), satis-
fies the Hamilton-Bellman-Jacobi (HJB) equation (Lewis
et al., 2012)

min
u

(∇xJ∗f(x, u) + r(x, u)) = 0,∀x ∈ Rn. (3)

where ∇xJ is the usual nabla operator. Dynamic program-
ming (DP) bases upon (3), discretizes (a compact domain
of) the state space, and computes an approximation to
J∗ in an iterative manner over the said discretization
nodes (Liu and Wei, 2014; Wei et al., 2016; Bertsekas
and Tsitsiklis, 1995). The curse of dimensionality, which is
related to the combinatorial explosion of the node quantity

as the state dimension grows, prevents application of DP
in an online manner.

In ADP, it is usually suggested to use function approxi-
mators Ĵ(θ, x) for the unknown value function, e. g., rep-
resented by neural networks (Liu et al., 2017). However,

it is not fully known how usage of the approximator Ĵ
in the closed control loop affects stability (Balakrishnan
et al., 2008; Sokolov et al., 2015). Furthermore, although
it is often times claimed that ADP effectively deals with
systems with unknown dynamics models, in fact, many
approaches explicitly or tacitly use at least some model
knowledge, e. g., that of the input-coupling function (Lewis
and Vrabie, 2009; Liu and Wei, 2014).

The current work aims to address systems with partially
known parameters. Namely, the following system class is
considered here:

ẋ = f(x) + Ψ(x)θ + g(x)u, (4)

where θ ∈ Rb is a constant, unknown parameter. Further,
f : Rn → Rn, g : Rn → Rn × Rm, and Ψ : Rn → Rn × Rb
are assumed known, smooth functions with f(0) = 0 and
Ψ(0) = 0.

The major goal of the work is to develop an actor-critic
structure for (4) that deals with the unknown parameter θ
and establishes a closed-loop stability guarantee. The form
(4) is commonly used in adaptive control (Krstić et al.,
1995). Adaptive control methods usually suggest concrete
control policies for stabilization, based on auxiliary ma-
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chinery of tuning functions, parameter adaptation rules
etc. One of the central assumptions is the knowledge of
an adaptive control Lyapunov function (ACLF), which,
roughly speaking, features a stabilizing control for (4)
under perfect knowledge of θ. Adaptive control designs are
then used to derive a realizable policy out of this ACLF by

a suitable parameter adaptation θ̂ (Krstić et al., 1995). In
the current work, it is suggested also to use an ACLF, but
not to derive a concrete stabilizing policy, but rather to
integrate it into an actor-critic structure in the form of a
constraint and derive a stabilizing dynamic controller (see
details in Section 3). This works extends the approach of
Göhrt et al. (2019a,b) to systems with partially unknown
dynamics of the form (4).

The rest of the paper is organized as follows. Section 2
introduces necessary definitions and notation. The actor-
critic structure is as well as the update rules are introduced
in Section 3. In Section 4, the proposed optimization
problems for the actor and critic are analyzed with respect
to convexity, feasibility and convergence to prescribed
vicinities of the respective optima. Based on the feasibility
for all time, stability under the approximate control policy
is shown. The analysis section is followed by case study in
Section 5.

2. PRELIMINARIES

This section introduces required notation and definitions.
The partial derivative of a function is abbreviated as
∂V
∂x = Vx. The norm ‖·‖ denotes the usual Euclidean norm
of a vector or the spectral norm for matrices, respectively.
The set R+ denotes the set of positive real numbers, R+

0
the set of positive real numbers including zero and R− the
negative real numbers including zero. Function arguments
are omitted from here on to simplify presentation and are
only provided at the first instance or when necessary.

The starting point of this work is the system (4) with
partially unknown model. As already mentioned in the
introduction, such a system description with a linear
dependence on an unknown parameter is often used in
adaptive control. Stability in this context can be studied,
e. g., by using an ACLF (Krstić et al., 1995) defined as
follows

Definition 1. (Adaptive control Lyapunov function).
A function W : Rn × Rb → R+

0 is called an adaptive
control Lyapunov function for a system (4), if there exists
a positive-definite matrix Γ ∈ Rb×b such that for each
θ ∈ Rb, W (x, θ) is a CLF for the modified system

ẋ = f(x) + Ψ(x) (θ + ΓWθ(x, θ)) + g(x)u, (5)

in other words, W satisfies

inf
u∈R

(
W>x (x, θ) (f(x) + Ψ(x) (θ + ΓWθ(x, θ))) +

g(x)u)} < 0.
(6)

ACLFs arise in various applications, e. g., in traction con-
trol (Nakakuki et al., 2008), where the structural physical
description of the vehicle dynamics is known, but concrete
wheel-ground parameters are not. In the current work,
such an ACLF for the system (4) is exploited by the
following

Assumption 2. There exists a continuously differentiable
control policy v(x, θ) and a twice continuously differen-

tiable radially unbounded ACLF W : Rn × Rb → R such
that for all x ∈ Rn \ {0} and for all θ ∈ Rb, it holds that

Ẇ =W>x (f + Ψ(θ + ΓWθ) + gv(x, θ)) ≤ −ν(x), (7)

where ν : Rn → R+
0 is a radially unbounded positive

definite continuously differentiable function.

Notice that the control policy in this assumption is based
on the unknown parameter θ.

The convergence analysis requires the notion of persistence
of excitation, which is a common assumption in adaptive
control (Krstić et al., 1995). This work uses the definition
of PE defined in (Göhrt et al., 2019b):

Definition 3. (Persistence of excitation). A continuous ma-
trix valued function A of time t is called uniformly T -
persistently excited at level δ if, for all t the matrix

t∫
t−T

A(τ)dτ − δI (8)

is positive-semidefinite. Here, I denotes the identity ma-
trix.

Definition 4. (m-strongly convex). A real valued twice
continuously differentiable function J : D → R is called
m-strongly convex, if there exists a m ∈ R+, such that
Jxx(x) −mI is positive-semidefinite for all x ∈ D, where
Jxx denotes the Hessian of J .

The reward r of the IH problem (2) is assumed in the
following form:

r(x, u) := q(x) + ρ(u), (9)

where q(0) = 0 and ρ(0) = 0. It is assumed that ρ(u) ∈ R+

for all u 6= 0 and q(x) ∈ R+ for all x 6= 0. Furthermore,
both functions are twice continuously differentiable and ρ
be ζ-strongly convex.

The critic is suggested in the followig form

Ĵ(x,w(t)) := w>(t)ϕ(x), (10)

where ϕ : Rn → Rd is called activation function and
assumed to be continuously differentiable and w ∈ Rd is
a parameter vector. The critic is a parametrized function
approximator for the IH cost given in (2).

The formulation of the actor-critic structure requires the
notion of a

Definition 5. (Barrier-function). A twice continuously dif-
ferentiable convex function B : R−0 → R ∪ {∞} is called
a barrier function, if B(z) < ∞ for all z < 0 and
lim
z→0−

B(z)→∞.

The next section describes the suggested actor-critic struc-
ture for adaptively stabilizable system with partially un-
known model.

3. ACTOR-CRITIC STRUCTURE

This section introduces the actor and critic optimization
problems and the corresponding update rules. First, con-
sider the actor optimization problem.
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min
u

Σ(x, u, w)

s. t. ẋ = f(x) + Ψ(x)θ + g(x)u,

V̇ (x, θ̂) ≤ −ν(x), (11)

where

Σ(x, u, w) := r(x, u) + w>ϕ̇︸ ︷︷ ︸
Ĵ>x ẋ

. (12)

The cost function Σ is known as the Bellman error and is
a common choice in ADP (Bertsekas and Tsitsiklis, 1995;
Lewis and Vrabie, 2009). In particular, it recovers the HJB
(3) under the approximated value function.

The function V in the inequality constraint of (11) is
based on the ACLF theory (cf. (Krstić et al., 1995)) and
is defined as

V (x, θ̂) := W (x, θ̂) +
1

2
θ̃>Γ−1θ̃. (13)

Here, θ̂ is an estimate of the unknown parameter θ and

θ̃ := θ− θ̂. The function W is the ACLF from Assumption
2.

The function V̇ depends on the unknown parameter θ.
This dependence can be removed as shown in (cf. (Krstić
et al., 1995)[Theorem 4.3])

Lemma 6. Consider system (4). Let Assumption 2 hold. If
˙̂
θ = ΓΨ>(x)Wx(x, θ̂), (14)

then the time derivative of the Lyapunov function candi-
date V given in (13) can be made independent of θ.

Proof. The time derivative of V reads as

V̇ = W>x ẋ+W>
θ̂

˙̂
θ + θ̃>Γ−1 ˙̂

θ. (15)

After applying the suggested adaptation rule, the deriva-
tive of the Lyapunov function candidate reads: (13):

V̇ =W>x (f + Ψθ + gv) +W>
θ̂

ΓΨ>Wx + θ̃>Ψ>Wx. (16)

Using θ = θ̃ + θ̂ and adding W>x (ΨΓWθ̂ −ΨΓWθ̂), yields

V̇ =W>x (f + Ψ(θ̂ + ΓWθ̂) + gv + Ψθ̃ −ΨΓWθ̂)

+W>
θ̂

ΓΨ>Wx − θ̃>Ψ>Wx. (17)

After rearranging, one obtains

V̇ =W>x (f + Ψ(θ̂ + ΓWθ̂) + gv), (18)

which does not depend on θ. Due to Assumption 2, there
exists a control policy v(x, θ) for each θ ∈ Rb that

guarantees (7). Since this includes θ̂ as well, there is a

control v(x, θ̂) such that V̇ (x, θ̂, v(x, θ̂)) < −ν(x), which is
independent of θ. �

Using the result of Lemma 6, the actor optimization
problem can be restated as

min
u

Σ(x, u, w)

s. t. ẋ = f + Ψθ + gu,

Λ(x, θ̂, u) ≤ 0,

˙̂
θ = ΓΨ>Wx, (19)

where

Λ(x, θ̂, u) := V̇ (x, θ̂, u) + ν(x)

= W>x (x, θ̂)(f(x) + Ψ(x)(θ̂ + ΓWθ̂(x, θ̂))

+ g(x)u) + ν(x). (20)

This inequality constraint Λ ≤ 0 is incorporated into the
cost function via a barrier function.

min
u

Π(x, u, w, θ̂, t)

s. t. ẋ = f + θΨ + gu,

˙̂
θ = ΓΨ>Wx, (21)

where

Π(x, u, w, θ̂, t) := Σ + µ(t)B(Λ− γ), (22)

with µ satisfying µ(t) > 0 and µ̇(t) < 0 for all t ≥ 0.
One particular choice could be, e. g., µ̇ = −µ with µ(0) =
µ0 < µ̄. The introduction of µ is motivated from discrete
time interior point algorithms and is transfered to the
continuous time case (Fazlyab et al., 2016). Furthermore,
γ > 0 is a constant relaxation parameter, which prevents
numerical issues with barrier functions, as convergence of
the state would yield V̇ → 0 leading to B(z)→∞.

Now the critic optimization problem is addressed.

min
w

Υ(xT , uT , w)

s. t. ẋ = f + θΨ + gu, (23)

where

Υ(xT , uT , w) :=

t∫
t−T

Σ2(x(τ), u(τ), w(t))dτ . (24)

The notation xT and uT are the state trajectory and
input trajectory in the moving time interval [t − T, t].
Notice that w depends on t and not on τ in the integral,
i. e., w is regarded as constant throughout the backward
window. The right-hand side of (23) is the so called
interval reinforcement form (Lewis and Vrabie, 2009).

In the following section, the update rules for the actor (21)
and critic optimization problem (23) are introduced.

3.1 Update rules

The considered optimization problems are time-varying
since the optimization occurs along the trajectory of the
system. The asymptotic convergence to the, in general,
time-varying optima require the inverse Hessian (Fazlyab
et al., 2016). Depending on the considered problem, cal-
culating the inverse Hessian might be computationally
expensive. In order to avoid expensive calculations, the
update rule for the actor optimization problem (21) is
suggested to be simply gradient descent with time-varying
gain, i. e.,

u̇ := −α(t)Πu(x, u, w, θ̂, t), u(0) = v(x(0), θ̂(0)). (25)

In case of the critic optimization problem, it is also
suggested to use gradient descent, i. e.,

ẇ := −β(t)Υw(xT , uT , w). (26)

The optimal control action is defined as

u∗(t) := arg min
u

Π(x, u, w, θ̂, t)

s. t. ẋ = f + Ψθ + gu (27)

and the optimal critic parameters are defined as

w∗(t) := arg min
w

Υ(xT , uT , w)

s. t. ẋ = f + Ψθ + gu. (28)

The next section deals with analysis of the suggested actor-
critic approach. In particular, the achieved convergence
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results are specified, since asymptotic convergence to the
optima cannot be guaranteed as explained above.

4. ALGORITHM ANALYSIS

This section is concerned with the analysis of the suggested
update rules (25) and (26).

4.1 Convexity

First, convexity of the critic optimization problem (23)
with respect to the parameter vector w is analyzed. The
convergence analysis requires strongly convex functions.
For the critic cost function Υ, one need to make

Assumption 7. The matrix ϕ̇(x)ϕ̇>(x) is T -persistently
excited at level δ1.

Based on this assumption, one can prove the following

Lemma 8. (Göhrt et al., 2019b). Under Assumption 7, the
cost function Υ of the optimization problem (23) is δ1-
strongly convex.

In case of the actor cost function Π, convexity follows from
the definition of the reward, in particular from ρ, which is
shown in the next lemma.

Lemma 9. (Göhrt et al., 2019b). Consider the reward func-
tion (9) and the optimization problem (21). Let Assump-
tion 2 hold. The cost function Σ defined in (22) is ζ-
strongly convex.

The proofs of Lemma 8 and 9 can be found in Göhrt et al.
(2019b).

4.2 Feasibility analysis

The critic optimization problem (23) is unconstrained,
hence feasibility is not an issue. The equality constraint is
already incorporated in the sense that w evolves through
the update rule along the trajectory of the system.

The actor optimization problem (21) contains an inequal-
ity constraint relaxed via a barrier function. In this case,
feasibility needs to be addressed. Feasibility of u in this
context is equivalent to the existence of a solution for all
t ∈ R+

0 .

Lemma 10. Consider the system (4), the optimization
problem (21), the update rule for the control action

(25) and the update rule for the parameter θ̂ (14). Let
Assumption 2 hold. For every initial condition x(0) ∈ Rn
and θ̂(0) ∈ Rb, the solution u(t) to (25) satisfies u(t) ∈
H(x(t), θ̂(t)) for all t ≥ 0, if u(0) ∈ H(x(0), θ̂(0)), where

H(x, θ̂) := {u ∈ Rm : Λ(x, θ̂, u) ≤ γ}.

Proof. The proof is analogous to that in Göhrt et al.
(2019b) by considering an augmented state vector z =

(x, θ̂). �

4.3 Stability analysis

The feasibility result of the last section is now used to
conclude stability of the system (4) under the control
action u as a solution to (25).

Theorem 11. Consider the system (4) under an initial
condition x(0) = x0. Let Assumption 2 hold. For any
continuously differentiable input u : R≥0 → Rm that
satisfies

V̇ (x, θ̂, u) + ν(x)− γ = W>x (x, θ̂)(f(x) + Ψ(x)

(θ̂ + ΓWθ̂(x, θ̂)) + g(x)u) + ν(x)− γ ≤ 0,

∀t ∈ R≥0, x(0) = x0 (29)

along the trajectory of (4), the state x converges to the
set G := {x ∈ Rn : ν(x) ≤ γ} and remains there.

Proof. The function ν(x) is radially unbounded and
positive-definite, hence, proper. Therefore, the set G is
compact. Define E := {x ∈ Rn : V̇ = 0}. Since for all x ∈
Rn \ G, one has V̇ < 0, it follows that E ⊆ G. By Lasalle’s
invariance principle (Khalil and Grizzle, 2002)[Theorem
4.4], x(t) converges to the largest invariant subset of E.
Since E ⊆ G, x(t) converges to G. �

4.4 Convergence analysis

This section analysis the convergence property of the
proposed update rules. As already mentioned in Section
3.1, time-varying optimization problem have time-varying
optima in general. Convergence to and tracking of the
optima require the inverse Hessian in case of strongly
convex optimization problems (Fazlyab et al., 2016). Using
Hessian-free gradient descent as suggested therefore does
not yield asymptotic convergence and tracking. But using
specifically chosen gains for gradient descent, convergence
to prescribed vicinities can be guaranteed as stated by the
following

Theorem 12. Consider the system (4), the optimization
problem (21) with the update rule (25) and the opti-
mization problem (23) with the update rule (26). Let
Assumptions 2 and 7 hold. For any ε1, ε2 ∈ R+, there
exist α(t) and β(t), such that lim

t→∞
‖u(t)− u∗(t)‖ ≤ ε1 and

lim
t→∞

‖w(t)− w∗(t)‖ ≤ ε2 hold.

Proof. The proof is along the lines of Göhrt et al. (2019b).
First, define ũ := u− u∗. Consider the following positive-
definite function

V0(u,w) :=
1

2
Π>u Πu︸ ︷︷ ︸

=:V1(Πu)

+
1

2
Υ>wΥw︸ ︷︷ ︸

=:V2(Υw)

. (30)

Its derivative is given as

V̇0 = Π>u Π̇u︸ ︷︷ ︸
=:V̇1

+ Υ>wΥ̇w︸ ︷︷ ︸
=:V̇2

. (31)

The analysis is started with V̇1,

V̇1 = Π>u (Πuuu̇+ Πuxẋ+ Πuθ̂
˙̂
θ + Πuwẇ + Πut). (32)

Together with (25), this yields

V̇1 = −αΠ>u ΠuuΠu + Π>u (Πuxẋ+ Πuθ̂
˙̂
θ + Πuwẇ + Πut).

(33)

Since Π is ζ-strongly convex due to Lemma 9, it holds that

x>Πuux ≥ ζx>x (34)

and further (Nesterov, 2013)

Π∗ ≥ Π + Π>u (u∗ − u) +
ζ

2
‖ũ‖2 . (35)
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Rewriting yields

Π>u ũ ≥ Π−Π∗︸ ︷︷ ︸
≥0

+
ζ

2
‖ũ‖2 ≥ ζ

2
‖ũ‖2 ≥ 0. (36)

It follows that
ζ2

4
‖ũ‖4 ≤ (Π>u ũ)2 ≤ ‖Πu‖2 ‖ũ‖2 , (37)

and, therefore,

ζ2

4
‖ũ‖2 ≤ ‖Πu‖2 = Π>u Πu. (38)

Multiplying by −1 yields

−Π>u Πu ≤ −
ζ2

4
‖ũ‖2 (39)

such that −Π>u ΠuuΠu can now be upper bounded in (33)
by

V̇1 ≤ −ζΠ>u Πu + Π>u (Πuxẋ+ Πuθ̂
˙̂
θ + Πuwẇ + Πut)

≤ −αζ
3

4
‖ũ‖2 + Π>u (Πuxẋ+ Πuθ̂

˙̂
θ + Πuwẇ + Πut)

(40)

Let ‖θ‖ ≤ c, therefore it holds that

Π>u Πuxẋ ≤ ‖Π>u Πux‖ (‖f + gu‖+ ‖Ψ‖c) (41)

If α is now chosen as

α ≥ 4

ε2
1ζ

3

(
(Π>u (Πuθ̂

˙̂
θ + Πuwẇ + Πut)+

‖Π>u Πux‖ (‖f + gu‖+ ‖Ψ‖c))2 +
1

4

)
,

(42)

then

V̇1 ≤

(
1− ‖ũ‖

2

ε2
1

(
Π>u (Πuθ̂

˙̂
θ + Πuwẇ + Πut) + ‖Π>u Πux‖

(‖f + gu‖+ ‖Ψ‖c)
))(

Π>u (Πuθ̂
˙̂
θ+ Πuwẇ + Πut)+

‖Π>u Πux‖ (‖f + gu‖+ ‖Ψ‖c)
)
− 1

4

‖ũ‖2

ε2
1

.

(43)

Independent of the sign of Π>u (Πuxẋ+Πuθ̂
˙̂
θ+Πuwẇ+Πut),

if ‖ũ‖2 > ε2
1 holds then V̇1 < 0.

Analogously, the negativity of V̇2 is shown. It holds that

V̇2 = −2βΥ>wΥwwΥw + Υwt. (44)

Using assumption 7, it holds that

V̇2 ≤ −β
δ3
1

2
‖w̃‖2 + Υwt (45)

If β satisfies

β ≥ 2

δ3
1ε

2
2

(
Υ2
wt +

1

4

)
, (46)

then

V̇2 ≤ −
‖w̃‖
ε2

2

Υ2
wt + Υwt −

1

4

‖w̃‖
ε2

2

. (47)

Again, independent of the sign of Υwt, if ‖w̃‖2 > ε2
2 holds

then V̇2 < 0

To show the actual convergence of u and w to the vicinities
‖u(t)− u∗(t)‖ and ‖w(t)− w∗(t)‖, define Π̃u := Πu − Π∗u

and Υ̃w := Υw − Υ∗w, where Π∗u := Πu(x, u∗, w, t) and
Υ∗w := Υw(x, u, w∗, t). Now introduce the following sets

D := {Πu ∈ Rm,Υw ∈ Rd : V (Π̃u, Υ̃w) ≤ V (Π̃u0
, Υ̃w0

)},
(48)

B := {(Π̃u, Υ̃w) ∈ D : ‖ũ‖ ≤ ε1 and ‖w̃‖ ≤ ε2}, (49)

∂B := {(Π̃u, Υ̃w) ∈ D : ‖ũ‖ = ε1 and ‖w̃‖ = ε2}, (50)

Ω := {(Π̃u, Υ̃w) ∈ D : V̇0 ≤ 0}. (51)

In the set B, both ‖ũ‖ ≤ ε1 and ‖w̃‖ ≤ ε1 hold. In the
following sets, one of these two conditions does not hold.

Su := {(Π̃u, Υ̃w) ∈ D : ‖ũ‖ ≤ ε1 and ‖w̃‖ ≥ ε2}, (52)

Sw := {(Π̃u, Υ̃w) ∈ D : ‖ũ‖ ≥ ε1 and ‖w̃‖ ≤ ε2}. (53)

Define S := B ∪ Su ∪ Sw. Define the subsets of Ω:

Ωu := {(Π̃u, Υ̃w) ∈ (Su ∪ B) : V̇0 ≤ 0}, (54)

Ωw := {(Π̃u, Υ̃w) ∈ (Sw ∪ B) : V̇0 ≤ 0}. (55)

Furthermore, define the following sets:

E := {(Π̃u, Υ̃w) ∈ Ω : V̇0 = 0}, (56)

Eu := {(Π̃u, Υ̃w) ∈ Ωu : V̇1 = 0}, (57)

Ew := {(Π̃u, Υ̃w) ∈ Ωw : V̇2 = 0}. (58)

If (Π̃u, Υ̃w) ∈ Ω, then by the Lyapunov theory (Khalil and

Grizzle, 2002), it follows that (Π̃u, Υ̃w) converge to the set

E . Since V̇0 < 0 holds for all (Π̃u, Υ̃w) ∈ Ω \ S, one has
E ⊆ S. Now, two different cases need to be considered.
In the first case, let (Π̃u, Υ̃w) ∈ Ωu. Since V̇1 < 0, Π̃u

converges to the set Eu with Eu ⊆ Ωu ⊆ (Su ∪ B). In

the second case, (Π̃u, Υ̃w) ∈ Ωw holds. Since V̇2 < 0, Υ̃w

converges to the set Ew with Ew ⊆ Ωw ⊆ (Sw ∪ B).

The resulting set EB is defined as EB ⊆ E ∩Eu ∩Ew. Using
the fact that Su ∩ Sw = ∂B and ∂B ∪ B = B, one obtains
the following relation

EB ⊆ E ∩ Eu ∩ Ew ⊆ S ∩ (Su ∪ B) ∩ (Sw ∪ B)

⊆ (B ∪ Su ∪ Sw) ∩ (Su ∪ B) ∩ (Sw ∪ B) ⊆ B. (59)

It follows that (Π̃u, Υ̃w) converge to the prescribed vicini-
ties B, which completes the proof. �

5. CASE STUDY

Consider the following uncertain two-dimensional system.[
ẋ1

ẋ2

]
=

[
x2

1θ + x2

u

]
(60)

Here, θ is an unknown parameter. An ACLF for (60) with
a corresponding control is

W (x, θ) =
1

2
x2

1 +
1

2
(x1 + x2 + x2

1θ)
2

v = −x1 − (x1 + x2 + x2
1θ)− (1− 2x1θ)ẋ1 (61)

Define

ξ1 := x1

ξ2 := x1 + x2 + x2
1θ̂. (62)

Notice that the origin of (60) is stabilized by a policy v, if
the origin of the system[

ξ̇1
ξ̇2

]
=

[
−ξ1 + ξ2 + ξ2

1θ − ξ2
1 θ̂

−ξ1 + ξ2 + ξ2
1θ + u

]
(63)

is stabilized by a policy v. A nominal stabilizing control
policy can be designed using backstepping (Krstić et al.,
1995) as follows
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Fig. 1. Relative performance mark (69) of the suggested
approach against a nominal stabilizing policy.

u :=− ξ1 − 100ξ2 − (ξ2 − ξ1)(1 + 2ξ1θ̂)

− γξ4
1(ξ1 + ξ2(1 + 2ξ1θ̂)). (64)

For the system (63) and the control (64), the following
ACLF candidate is defined

V (ξ1, ξ2, θ̃) :=
1

2
ξ2
1 +

1

2
ξ2
2 +

1

2
θ̃2 (65)

Let the parameter adaptation rule be defined as follows

˙̂
θ := γξ2

1(ξ1 + ξ2 + 2ξ1ξ2θ̂) (66)

The derivative of the ACLF candidate reads as

V̇ = −ξ2
1 − ξ2

2 . (67)

Let the reward of the consider infinite horizon problem be

r(x, u) := x>x+ 0.25u2. (68)

Set ν := 0.1(ξ2
1 + ξ2

2) and γ := 0.001. Choose the barrier
function as B(z) = −z−1, z ∈ R−. Further, set ε1 := 0.2
and ε2 := 0.2. Choose µ̇ = −µ, µ(0) := 10. The window
of the cost function is chosen as T := 0.1. The nominal
controller (64) is used to calculate the initial feasible
control action. The actor-critic-generated policy is applied
to the system and compared to the nominal policy. The
performance mark is chosen as

C(x(0), u) =

tend∫
0

r(x, u)dτ , (69)

where tend is set such that the states reach a vicinity
of the equilibrium. To give an accurate measure of the
difference in performance, the two control policies are
tested for a grid of initial value of the states x1 and x2

in the range of [−1, 1]. For comparison reasons, Figure 1
shows the relative performance mark, i. e., the fraction of
the individual performance marks for both the suggested
approach and the nominal policy. The relative performance
mark is calculated as

Crel :=
CADP(x, uADP)

Cnom(x, unom)
(70)

Areas where the cost of the presented method are smaller
than the cost of the nominal controller are given in
different shades of green, areas where the nominal control
is better are given in shades of red.

6. CONCLUSIONS

This work was concerned with the design of an actor-
critic control approach to system with partially known
dynamics model. The focus was set to deriving constraints

for the control scheme so as to guarantee closed-loop
stability of the system’s equilibrium. This was achieved
by utilizing an adaptive control Lyapunov function. The
case study demonstrated cost reduction by the suggested
control policy compared to a nominal stabilizing one over
a wide range of initial conditions.
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