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Abstract: We address the problem of selecting sensors, that is, output equations, in order to
endow dynamic equations of a system with some properties. Among all such desirable properties
is the basic one of observability and/or identifiability. Once such a problem is solved one may
ask how to choose sensors in order to improve estimation algorithms in terms of reliability,
robustness, or simply, low complexity. First, what is the minimal number of sensors that make
the dynamics observable? Second, when the sensors are bound to measure state components,
what is their minimum number? Third, how may the observability margin be improved by
selecting the sensors? In this communication we provide an overview of these questions in the
differential algebraic approach of observation problems.
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1. INTRODUCTION

Given state dynamics

ẋ = f(x, u) (1)

with input u and state x there may be opportunity in
practice for the designer to choose sensors, that is output
equation, in order to endow the system with desirable
properties in terms of observation problems. Selecting an
output equation amounts to finding function

y = h(x, u) (2)

such that the state becomes observable with respect to
(u, y). This is part of various problems that are addressed
in the litterature. In the parameter estimation context for
linear systems, see for instance pioneering works Mehra
(1976); Friedland (1977).

Notions of differential algebraic geometry used in this
introduction are briefly recalled in a later section.

Let y be an arbitrary output of the system. By definition y
is componentwise algebraic over k〈u, x〉. An output makes
the dynamics observable if

d◦k〈u,y〉k〈u, x, y〉 = 0 ,

that is, if each component of x is algebraic over k〈u, y〉.

Clearly, y = x is an output which makes the system
observable.

Let n denote the number of components of x, and

I =
{
p ∈ N : ∃y1, · · · , yp ∈ k (u, x) , d◦k〈u,y〉k〈u, x, y〉 = 0

}
.

The set I is the one of integers p such that there exists
an output y with p components which makes the system
observable.

It is a nonempty (since n ∈ I) subset of N. Therefore, I
contains a smallest element which is precisely the minimal
number of sensors which make the system observable.

To the author’s opinion characterization of sensors min-
imal number is the first question which needs to be an-
swered in sensor selection problem. And it seems to be an
open problem. A very partial answer is given in a later
section.

The next question is, when the output y is chosen as a
subset of the components of x, instead of a vector rational
function of u and x, what are those subsets of components
of x which make the system observable.

In the differential algebraic approach of observation prob-
lems we may consider generalized implicit state dynamics

P (ẋ, x, θ, u) = 0 (3)

where u designates a finite collection of derivatives of the
input u, and P is a vector function with components Pi
(non differential) polynomials in x, ẋ, θ and u, and take
output equation as polynomial equations

Q(y, x, θ, u) = 0 (4)

and ask for an additional question: assume that we are
given the freedom to select sensors among state com-
ponents, how to choose them such that the system is
identifiable, that is, each component of θ is algebraic over
k〈u, y〉?
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The differential algebraic approach of observation prob-
lems that is used here dates back to late eighties and
early nineties with works of Pommaret (1986); Fliess
(1987); Glad and Ljung (1990); Diop and Fliess (1991b,a).
See Diop (2002) for a survey.

The main point of this approach, as first clarified in Diop
and Fliess (1991b), is that a quantity, say z, of a system is
observable with respect to some other one, say w (which
is supposed to be available in some time interval), if
each component of z is a solution of a (non differential)
algebraic equation with coefficients eventually depending
on w and finitely many of w’s time derivatives.

The theory applies to models of systems in terms of
differential algebraic equations only but which may be
implicit in the variables to be observed.

In this approach the identifiability of constant parameters
is simply viewed as the observability of these parameters
in the system equations supplemented by differential equa-
tions expressing the fact that the time derivatives of the
parameters are zero.

The remaining of this communication is organized as
follows. Main lines of the differential algebraic approach
of observability are recalled in the the next section. Then
the single sensor selection theorem is recalled in section 3.
Next we overview the sensor minimal number problem in
section 4.

2. ON THE DIFFERENTIAL ALGEBRAIC
APPROACH OF OBSERVATION PROBLEMS

A thorough introduction to the differential algebraic ap-
proach is available in Diop (2002). For the sake of com-
pleteness the following definition is recalled from there.

By a (differential algebraic) system with coefficients in k
it is meant here a quasi-affine variety, X defined over k.
In other words, a system is defined by a set of differential
equations together with a differential inequation.

A system is often specified along with its input, u =
(u1, u2, . . . , um), output y = (y1, y2, . . . , yp), and latent
variable z = (z1, z2, . . . , zν). Because the same differential
equations usually define distinct systems when the input,
output, and latent variable are specified in different ways.

But in this observability study, the crucial distinction
between the system variables will be between the sup-
posedly measured or known variables or quantities, and
the those whose estimation, or observation is of interest.
The variables of the system will, therefore be denoted by
τ = (τ1, τ2, . . . , τµ).

The differential Zariski closure of X is denoted by X ,
and the differential k-algebra associated to the latter
differential affine variety is denoted by k

{
X
}

= k {τ}
and with coefficients in the ordinary differential field, k,
with characteristic zero. X is defined by giving differential
quasi-affine variety in Um×Uν ×Up where U stands for a
differential universal field extension of k.

With variables u, z, y, the differential k-algebra associ-
ated to the latter differential affine variety is denoted by
k
{
X
}

= k {u, z, y} as explained below.

Let µ ∈ N, µ ≥ 1, and U {T1, T2, . . . , Tµ} be the differential
polynomial U-algebra in the differential indeterminates
T1, T2, . . . , Tµ. If Σ is a subset of U {T1, T2, . . . , Tµ}, V (Σ)
denotes the subset of Uµ consisting of the zeros of Σ
in Uµ, i.e., the elements (t1, t2, . . . , tµ) ∈ Uµ, such that
P (t1, t2, . . . , tµ) = 0 (P ∈ Σ). Conversely, if X is a sub-
set of Uµ then I (X ) denotes the defining differential ideal
of X , i.e., the perfect differential ideal of U {T1, T2, . . . , Tµ}
consisting of the differential polynomials P such that

P (t1, t2, . . . , tµ) = 0 ((t1, t2, . . . , tµ) ∈ X ) .

If a differential algebraic set X of Uµ is defined over k
then I (X )/k denotes the defining differential ideal of X
over k. For a differential algebraic set X which is defined
over k U {X} (k {X}, respectively) denotes the differential
coordinate ring of X (the differential coordinate ring of
X over k, respectively), and U〈X〉 (k〈X 〉, respectively)
denotes the complete differential ring of quotients of U {X}
(the complete differential ring of quotients of k {X} over k,
respectively) and call it the differential ring of differential
rational functions on X (the differential ring of differential
rational functions on X over k, respectively). Recall that
the differential algebra U〈X〉 (k〈X 〉, respectively) is a
field if, and only if, X is irreducible (irreducible over k,
respectively). An irreducible system X over a differential
field k is equivalently defined by one of the three following
data sets:

(i) A positive integer µ and a set of differential polyno-
mials, P1, P2, . . ., in k{T1, . . . , Tµ} such that the per-
fect differential ideal generated by the Pi’s is prime.
The Pi’s are usually said to be the equations of the
system X , but any (finite) set of generators of the
perfect differential ideal, I (X )/k = {P1, P2, · · · }/k, of

k {T1, T2, . . . , Tµ} which is generated by the Pi’s play
the same role. The variables of X are then the residues
τ1, τ2, . . . , τµ of T1, T2, . . . , Tµ (mod I (X )/k), respec-

tively.
(ii) A differential universal field U which is universal over

k, a positive integer µ, and an irreducible differential
k-algebraic set, X , of Uµ. The equations of the system
X are then any set of generators of the defining
differential ideal of the differential k-algebraic set X
over k. The variables of X are the generic point,
τ1, τ2, . . . , τµ, consisting of the differential coordinate
functions on the differential k-algebraic set X , but
any other generic point, τ ′1, τ

′
2, . . . , τ

′
µ, of the differ-

ential k-algebraic set play the role of a new set of
variables of the system X , the corresponding equa-
tions being different from those which are relative to
τ1, τ2, . . . , τµ.

(iii) A differential field k-extension, k〈X 〉, differentially
of finite type. Given k〈X 〉 = k〈τ1, τ2, . . . , τµ〉, τ1,
τ2, . . ., τµ are the variables of X . The equations of
the system X are then any set of generators of the
defining differential ideal of k〈τ1, τ2, . . . , τµ〉, that is,
the kernel of the differential morphism of differential
k-algebras of k {T1, T2, . . . , Tµ} → k {τ1, τ2, . . . , τµ}
which sends Ti into τi.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4401



Variables of a system should be distinguished from values
of these variables (called the trajectories) which verify the
equations of the system. The above definitions of systems
are incomplete in that the variables of a system are often
partitioned into external variables (which consists of the
input u (which itself consists of the control and/or the
disturbance), and the output y), and the latent variables
(that are denoted by z and which consists of the remainder
of the variables of the system when the external variables
are specified). The external variables are often attached
to the system and cannot be arbitrarily changed without
altering the definition of the system. In particular, the in-
put variable should be a differential transcendence basis of
k〈X 〉 over k, or at least, as containing such a differential
transcendence basis.

In observation problems, the system variable is partitioned
into the data, or observations, w = w1, . . . , wµ, the
variable being observed (or estimated) z = z1, . . . , zn and
the remaining variables, ζ. In the classical observation
problem, the data consist exclusively of (u, y), the control
u and the measurements y. When the variable ζ is present,
the projection Xw,z of X along the variable ζ is considered.

It is the set of elements (w, z) ∈ k
µ × k

n
such that there

is at least ζ such that (w, z, ζ) ∈ X .

In terms of equations, previously defined systems are those
described by{

Pi(w, z, ζ) = 0 , i = 1, 2, . . . ,
Q(w, z, ζ) 6= 0 ,

(5)

where the Pi’s and Q are finitely many polynomials in w,
z, ζ and their derivatives.

For a system X the variable z is said to be (algebraically)
observable with respect to w if the projection map π :
Xw,z → Xw (sending every trajectory (w, z) of Xw,z onto
the corresponding observation w) is generically finite.

If z is observable with respect to w then the degree of π is
called the observability degree of z with respect to w, and
is denoted by d◦wz.

The variable z is said to be rationally observable with
respect to w if it is observable with respect to w with
observability degree one.

State systems of the form (1) are said to be observable if
x is observable with respect to (u, y).

It was first proved in Diop and Fliess (1991b) (see Diop
(2002) for more details) that the previous definition has a
differential algebraic translation, namely: z is observable
with respect to w iff z is algebraic over k〈w〉, that is, for
each component, zi of z there is a polynomial equation

Hi (zi, w, ẇ, . . .) = 0 (6)

in zi, and finitely many time derivatives of the data w,
with coefficients in k.

A quite general rank condition which applies to implicit
differential algebaric systems has been obtained in Diop
and Fliess (1991b). When specialized to rational dynam-

ics (1) this rank condition is similar to (but is not formally
the same as) the rank condition found in Hermann and
Krener (1977).

The reader is referred to Diop (2002) for details on
differential algebraic geometry terms or notations used
here without explanations.

3. THE SINGLE SENSOR SELECTION THEOREM

When the output equation (2) is scalar and linear in x as
follows

y = α1 x1 + α2 x2 + · · ·+ αn xn (7)

then this rank condition reduces to the rank of the Wron-
skian matrix of the coefficients α. The existence of a scalar
output (7) which makes the state of (1) observable then
results from a classical theorem on the linear dependence
of vectors of functions over constants.

In addition, the single sensor selection problem thus ob-
tained implies that if the rational function f is with coeffi-
cients in a differential field of constants (say, k = R) then
any set of functions of the time, α1(t), α2(t), . . . , αn(t),
which is linearly independent over k, will make the state
observable.

Theorem 1. Let the state dynamics of a rational state
system X be given by

ẋ = f(x, u) (8)

with a vector rational function f of the input u and the
state x, and with coefficients in a differential field k of
constants. Let m and n be the respective numbers of
components of u and x. Let K be a differential extension
field of k containing nonconstants. There always is a scalar
output

y =

n∑
i=1

αi xi (9)

with α1, α2, . . . , αn in K, which makes x observable with
respect to (u, y). Moreover, for y as in output 9 to make
X observable it suffices that the associated α’s be linearly
independent over the subfield of constants of K.

Remark 2. Note that the previous theorem is also an an-
swer to the sensor selection identifiability problem men-
tionned in the introduction.

4. ON THE SENSOR MINIMAL NUMBER PROBLEM

Let us consider the sensor selection for the identifiability
of θ in system 10.{

Pi(z, θ, u) = 0 , i = 1, 2, . . . ,
Q(z, θ, u) 6= 0 ,

(10)

In the previous definition of the set I the output was
supposed to be in k (u, z), this may be relaxed by allowing
components of y to be algebraic over k (u, z) instead.

I = {p ∈ N : ∃y1, y2, · · · , yp algebraic over k (u, z) ,

d◦k〈u,y〉k〈u, θ, y〉 = 0
}
.

If the output y is chosen as a subset of the components
of z, instead then a complete but combinatorial answer to
the question is as follows.
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Since the set of subsets of components of z is finite, they
may be examined one to see if their measure is sufficient for
θ to be observable with respect to (u, y). For each subset,
y = (zi1 = z1, . . . , zip = yp), the test merely consists of
computing the characteristic set of{

Pi(z, θ, u) (i finitely many),
yj = zij (1 ≤ j ≤ p)

with respect to a ranking such that any derivative of u and
y is lower than any component of θ, whose derivatives, in
turn, are lower than any state component which is not in
y.

There are 2n − 1 observability tests thus to be done when
the number of components of z is n!

The question thus reduces to how to avoid most of those
characteristic set computations, if possible?

The answer to the question is positive if, and only if,
θ1, θ2, . . . , θq are algebraic over k〈u, z〉.

Let a ranking of k {U,Z,Θ} be fixed such that every
derivative of U is lower than Z; every derivative of Z is
lower than Θ. Such a ranking is denoted as following.

{u}, {z}, {θ}. (11)

Let A be a characteristic set of Z with respect to rank-
ing 11.

Lemma 3. A consists of two groups of differential polyno-
mials: {

Az (U,Z) ,
Aθ (U,Z,Θ) .

Az (U,Z) represents the elements of A whose leaders
are derivatives of components of Z. There are as many
elements in this group as there are components of z. (Each
component of Z has a derivative, necessarily, proper which
is the leader of an element in Az (U,Z).) Aθ (U,Z,Θ)
consists of elements of A whose leaders are components
of Θ. Each component of the parameter is the leader of a
differential polynomial in Aθ (U,Z,Θ).

From this lemma, it comes

Proposition 4. If p′ designates the number of compo-
nents of Z which are present in one of the elements of
Aθ (U,Z,Θ) (regardless the order of derivation) then

p ≤ p′;
and it is sufficient to measure these p′ components of z to
guarantee the observability of θ with respect to (u, y).

To the question
p′ ≤ p?

we make the following remarks. For the following system{
ẋ1 = x2
ẋ2 = x1 + x2
ẋ3 = x2 + x3

(12)

the minimal number of sensors is 1. The minimal polyno-
mials of the latent variable are as follows

ẍ1 − ẋ1 − x1 = 0 (13)

ẍ2 − ẋ2 − x2 = 0 (14)

...
x 3 − 2ẍ3 + x3 = 0 (15)

In constrast, the minimal number of sensors for the system{
ẋ1 = a x1
ẋ2 = b x2
ẋ3 = c x3

(16)

is 3. The minimal polynomials of the latent variable are as
follows

ẋ1 − a x1 = 0 ,

ẋ2 − b x2 = 0 ,

ẋ3 − c x3 = 0 .

But
y = αx1 + β x2 + δ x3

makes the system observable as long as

αβ δ(a− b)(b− c)(c− a) 6= 0 .

It is not true that if the minimal number of sensors of a
given dynamics is known to be 1 then the sensor may be
placed at one of the state components. A counter-example
may be exhibited from the previous remark.

5. CONCLUSION

Differential algebraic approach of observation problems
seems to be well suited for the study of the sensor se-
lection problem for the observability of systems though
most questions are still unanswered. The relation to ob-
servability margin will be covered in the final version of
this communication.
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