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Abstract: In this work, we consider a population composed of a continuum of agents that seek
to selfishly minimize a cost function by moving on a network. The nodes in the network may
represent physical locations or abstract choices. Taking inspiration from how water distributes
itself in a system of connected tanks of varying heights, we formulate a best response dynamics
for the population. In this dynamics, the population in each node simultaneously seeks to
redistribute itself according to the ‘best response’ to the state of the population in the node’s
neighborhood. We provide an algorithm to determine the best response as a function of the
state of the population. We then show that given the state of the population, the best response
is unique. For the continuous time version of the best response dynamics, we show asymptotic
convergence to an equilibrium point for an arbitrary initial condition. We then explore a second
dynamics, in which the population evolves according to centralized gradient descent of the social
cost. Again, we show asymptotic convergence for an arbitrary initial condition. We illustrate
our results through simulations.
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1. INTRODUCTION

Large scale multi-agent systems, including those with self-
ish agents, have been of interest to the scientific com-
munity for several years. A number of frameworks have
emerged over the years to explore various facets of such
systems. Population games and evolutionary dynamics,
opinion dynamics and swarm control are a few examples.
In such large scale systems, the primary interest is in the
evolution of the population as a whole rather than that of
specific, individual agents. In this paper, we seek to model
the evolution of a population of selfish and myopic agents
that may move on a network.

1.1 Literature Survey

Population games and evolutionary dynamics (Sandholm,
2010) are well established areas that explore such large
scale systems composed of selfish agents. However, in much
of the work in this literature, there is no state dependent
restriction on the available actions as a network might
impose. Evolutionary dynamics on a graph (Lieberman
et al., 2005; Pattni et al., 2015; Allen and Nowak, 2014) is
concerned with a finite number of agents modeled as nodes
with the graph being a represention of the interactions be-
tween different agents. References (Barreiro-Gomez et al.,
2016; Zino et al., 2017; Barreiro-Gomez and Tembine,
2018) have a formulation similar to the current work but
also have significant differences. Zino et al. (2017) consider
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the underlying graph to be a complete graph wherein
every agent can interact with every other agent albeit with
different frequency rates. On the other hand, (Barreiro-
Gomez et al., 2016; Barreiro-Gomez and Tembine, 2018)
consider the underlying graph in full generality but give
local results where the initial condition and the Nash
Equilibrium can only be in the relative interior of the n-
dimensional probability simplex.

Another relevant area is that of opinion dynamics, which
has its roots in sociology and seeks to construct dynamical
models of the evolution of social behavior as represented
by the opinions of agents. Although, by now, the literature
in this area is vast (Proskurnikov and Tempo, 2017, 2018),
almost all the work is in the context of opinions evolving in
a continuous space and for finitely many agents, perhaps
with the exception of (Hendrickx and Olshevsky, 2016)
which considers a continuum of agents.

Yet another related area is that of swarms and swarm
control. Krishnan and Mart́ınez (2018) consider the swarm
to be a continuum evolving in a continuous space and
use a partial differential equations framework for designing
control algorithms. Another established way of modelling
a swarm is to discretize the space and consider the agents
to be moving from one cell to another. Most of these works
consider the movement of the agents in the swarm to be
probabalistic and hence turn to Markov chains (Chat-
topadhyay and Ray, 2009; Açıkmeşe and Bayard, 2015;
Bandyopadhyay et al., 2013). While some use the conver-
gence properties of markov chains in order to design ap-
propriate control actions for the swarm to reach a desired
distribution (Açıkmeşe and Bayard, 2015), others focus on
designing the markov chains so that the swarm converges
to the stationary distribution (Chattopadhyay and Ray,
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2009). Another way to look at swarms is distributed cov-
erage control (Diaz-Mercado et al., 2015). Finally, Wang
and Li (2017, 2018) explore the problem of optimal control
of an ensemble of bilinear systems.

1.2 Contributions

In this paper, we study the evolution of a population
of selfish and myopic agents on a network. We model
the population as a continuum of agents, with different
fractions of the population located on different nodes in
the network. The nodes in the network may represent
physical locations or choices, in a more abstract sense,
available to the infinitesimal agents. Each agent repeat-
edly seeks to minimize a cost function by moving/revising
from its current node/choice to one of the neighboring
nodes/choices in the network. An agent may also choose
not to revise its choice at a given time. Thus, at each
time instant, the network imposes constraints on the set
of choices that an agent can revise to. Under this setup,
we model the evolution of the population on the network
starting from an arbitrary initial configuration. For this,
we take inspiration from nature - in particular from how
water in a system of connected tanks redistributes itself
from an initial configuration. Specifically, we model the
evolution of the population based on the best response
dynamics. We also consider the centralized network re-
stricted potential minimization dynamics. In each case, we
demonstrate analytically that for all initial conditions, the
trajectories converge to an equilibrium point. We compare
the two dynamics through simulations.

Compared to (Barreiro-Gomez et al., 2016; Zino et al.,
2017; Barreiro-Gomez and Tembine, 2018), in this work,
we consider an arbitrary graph and model the evolution of
the population on the simplex of dimension equal to the
number of nodes in the graph. We allow both the initial
condition of the population and the equilibrium of the dy-
namics to be present anywhere on the simplex. Compared
to the opinion dynamics literature, our proposed model
has several distinctive features - a continuum of agents,
discrete space for the opinions (choices) interrelated by a
network and most significantly, the dynamics being the
result of the agents optimizing a cost or utility function,
as in game theoretic evolutionary dynamics. The literature
on swarm control has its roots in robotics and hence the
dynamics of the agents may be designed. In this paper,
however, we assume that the dynamics is the result of
agents’ inherent selfish and myopic nature.

1.3 Organization

The rest of the paper is organized as follows. In Section 2,
we provide the basic framework and setup the overall
problem that we address. In Section 3, we give a dynamics
in the spirit of best response dynamics in game theory and
analyze its convergence. In Section 4, we give a centralized
dynamics and again analyze its convergence. In Section 5,
we illustrate the two dynamics and our analytical results
through simulations. In Section 6 we summarize the paper
and provide directions for further extensions.

1.4 Notation and Definitions

By R, R+ and Z we denote the sets of real numbers, non-
negative real numbers and integers respectively. We let

[p, q]Z := {x ∈ Z | p ≤ x ≤ q}. Rn (similarly Rn+) is
the cartesian product of R (equivalently R+) with itself
n times. If v ∈ Rn, we denote the ith component of v by
vi. The support of the vector is defined as supp(v) := {i ∈
[1, n]Z | vi 6= 0}. We let 1 to be the vector, of appropriate
size, with all its components as 1. The empty set is denoted
by ∅. If Q is an ordered countable set, then Qi denotes
the ith member of Q and |Q| is used to represent the
cardinality of Q. (i, j) is used to denote an ordered pair.
If v ∈ Rn, v ≥ 0 is used to denote term wise inequalities.
For a function f(x) : Rn → R, ∇xf is used to denote the
gradient of f with respect to x, i.e., the jth component of
∇xf is ∂f

∂xj
. We denote by Sn, the n-dimensional simplex

Sn := {v ∈ Rn | v ≥ 0 , 1T v = 1}.

2. FRAMEWORK AND PROBLEM SETUP

In this paper, we consider a population composed of a
continuum of agents that seek to selfishly minimize a cost
function by moving on a network or a graph. Let V be a
set of nodes, E ⊂ V×V be a set of edges and G := (V, E) be
an undirected graph that does not contain any self loops
or multiple edges. The nodes in the network represent
either physical locations or they may be choices, in a more
abstract sense, that are available to the infinitesimal agents
constituting the population. Let N := |V| be the total
number of nodes and M := |E| be the total number of
edges in the graph. Let xi ∈ [0, 1] be the fraction of the
population in node i, or equivalently making the choice
i. We assume that the overall population is fixed and,

without loss of generality, assume that
∑
i∈V

xi = 1. The

cost that the fraction xi incurs as a whole is

p(ai, xi) := ai xi +
1

2
x2
i , (1)

where ai ∈ R is the node parameter associated with node
i. For example, −ai can be thought of as a measure of
profitability of node i.

Let x ∈ SN ⊂ RN and a ∈ RN be the vectors with xi
and ai as the ith component, respectively. In this paper,
we are interested in the evolution of x, the fractions of
the population making each choice i ∈ V. We see that
the underlying graph G constrains the transition of choices
of the infinitesimal agents. For example, a change in the
choice of an infinitesimal “agent” or fraction of agents from
i ∈ V to j ∈ V must occur only through a sequence of
changes corresponding to some path from i to j in G.

Remark 1. (Water and Connected Water Tanks Analogy).
As shown in Figure 1, we interpret each node i as a water
tank of unit cross-sectional area, with its base at a height
ai. Then, xi represents the volume of water in the tank.
Notice that the potential energy of the water in tank i
is precisely as in (1), assuming the density of water and
acceleration due to gravity each is 1 unit. We assume
that each tank has the capacity to hold the entire volume
of water (entire population). The graph G describes the
network of connections between the water tanks. Given an
arbitrary a ∈ RN and an initial x ∈ SN , we suppose that
each water particle (infinitesimal agent) seeks to minimize
its potential energy (cost). •
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Fig. 1. Graph structure and the connected water tanks
interpretation.

2.1 Dynamics and Problem Statement

Note that we are only interested in the evolution of the
population fractions xi and not in the evolution of each
infinitesimal agent per se. Thus, we suppose that at each
time instant, the fraction in node i seeks to selfishly
minimize its overall cost by redistributing itself among
node i and its neighbors while assuming that the fraction
in the neighboring nodes does not change. The overall
dynamics is the resultant of the fractions xi in each
node i simultaneously seeking to selfishly and myopically
minimize their potential energy, in a manner constrained
by the graph G. We also consider an evolution of x where
the decision making is centralized. In such a scenario, the
fraction of population in node i still seeks to myopically
minimize its overall cost by redistributing itself among
node i and its neighbors, but now with the knowledge and
coordination of the redistributing choices of the fractions
in the other nodes as well.

Both the evolution of the population and the steady state
(if it exists) are significantly affected by the graph G
and the node parameters a. As a first step, we seek to
capture the above notional dynamics as a discrete-time or
continuous-time dynamical system, with the dependence
on the node parameters a and the graph G suitably
captured as

x(t+ 1) = fd(x(t), a,G), or ẋ = fd(x, a,G).

In this paper, we are interested in the case with a constant
a and seek to characterize the dynamics and its conver-
gence properties.

3. SIMULTANEOUS BEST RESPONSE DYNAMICS

In this section, we propose an initial characterization of the
best response dynamics and analyze properties of its so-
lutions, chiefly its convergence. Here, each of the fractions
of population take a decision to redistribute themselves
among their neighboring nodes with local information
about the overall population distribution. First we give
an algorithm to determine the best response and formu-
late the dynamics. Then, we analyze the properties of its
solutions, including the convergence property.

3.1 Best Response

Let N i be the set of all neighbors of node i in the graph

G and let N i
= N i ∪ {i}. Given the undirected graph

G, let A :=
⋃
{i,j}∈E{(i, j), (j, i)}. It is easy to see that

|A| = 2 |E| = 2M . The arcs in A are used to model the

inflow and outflow of the population between a given node
and its adjacent nodes. Given a configuration of x and
a, the population fraction in a node i may be able to
reduce its cost by redistributing itself among node i and its
neighboring nodes N i. Let δij denote the outflow, that is
the fraction of population that moves from node i to node
j ∈ N i through the arc (i, j). The fraction xi determines
the optimal δij that would minimize its own overall cost
under the assumption that the fractions in other nodes
do not redistribute. However, the overall dynamics is the
resultant of each fraction xi simultaneously redistributing
itself in the above “myopic” sense. This behaviour is in
the spirit of best response dynamics (Sandholm, 2010) in
evolutionary dynamics.

Thus the outflows δij from node i are determined by
solving the following optimization problem

P1(i) : (2)

min
{δij |j∈N

i}

∑
j∈N i

p(aj + xj , δij) + p(ai, δii)

s.t. δii +
∑
j∈N i

δij = xi, δij ≥ 0, ∀j ∈ N i
.

The non-negativity constraints δij ≥ 0 and δii ≥ 0 ensure
that the outflows to the neighboring nodes and the fraction
that remains in node i each is non-negative. Notice that

p(aj , xj + δij) = ajxj +
1

2
x2
j + p(aj + xj , δij).

Hence, with δij as the optimization variables, one can also
interpret the objective in the problem P1(i) as one of
minimizing the potential energy of the fraction in node
i and its neighbors with the optimization variables still as
the outflows from node i to its neighbors.

3.2 An Algorithm to Compute the Best Response

The problem in (2) is a quadratic program (Boyd and Van-
denberghe, 2004) and is also convex in {δij}j∈N i . The cost

function, in particular, is also strictly convex. Moreover, if
xi ∈ R+, then the problem P1(i) is always feasible since

δij = 0 for all j ∈ N i
is feasible. Hence the problem

P1(i) possesses a unique minimizer. Algorithm 1 gives a
procedure to compute the unique minimizer, {δ∗ij}j∈N i , of

P1(i) given a, x and the graph G.

Algorithm 1 relies on the observation that the fraction in
node i perceives hij := aj + xj as the node parameter
for each j ∈ N i. Hence, we call hij as the pseudo cost
parameter. Algorithm 1 is best understood in the context
of Remark 1 with nodes interpreted as tanks, population
fractions xi interpreted as the volume of water in tank i
and δij as the outflow of water from tank i to tank j. In
this context, hij is the pseudo height of the tank j that is
perceived by the volume of water xi in node i. Then the
objective in (2) is simply the minimization of the potential
energy of the volume of water xi through its redistribution
among tank i and its neighbors at pseudo heights hij . In
the problem P1(i), we let the pseudo height of tank i be
hii := ai. The main idea of the algorithm is based on the
following observations.

Remark 2. (Observations about the unique minimizer of
problem P1(i)). The unique minimizer {δ∗ij}j∈N i to the

problem P1(i) satisfies the following two properties.
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• If δ∗ij > 0 for some j ∈ N i
then δ∗iq > 0 for all q such

that hiq ≤ hij .
• If D is the set of all nodes j ∈ N i

for which δ∗ij > 0
then there exists a constant H such that

hij + δ∗ij = H, ∀j ∈ D.
For each feasible solution that does not satisfy these
conditions one can construct another feasible solution that
has a lower cost. •

The main iterations in Algorithm 1 compute the set D and
the value of H.

Algorithm 1 : Find minimizer of P1(i)

Input: aj , xj , ∀ j ∈ N
i

Output: δ∗ij , ∀ j ∈ N
i

1: hij ← aj + xj , ∀ j ∈ N i {pseudo height for neighbors of i}
2: hii ← ai {pseudo height for node i}
3: if xi = 0 then
4: h← −∞ {initial height if xi = 0}
5: else if xi > 0 then
6: h← ai + xi {initial height if xi > 0}
7: end if
8: M← ∅ {set of nodes with δ∗ij > 0}

9: M← {j ∈ N i | hij < h} {candidate nodes for δ∗ij > 0}
10: while (M\M) 6= ∅ do
11: M←M∪ argmin

(M\M)

{hij}

12: h←

(∑
k∈M hik

)
+ xi

|M|
13: M← {j ∈M | hij < h}
14: end while
15: δ∗ij ← h− hij , ∀ j ∈M

16: δ∗ij ← 0, ∀ j ∈ N i \M

Theorem 3. If xi ∈ R+ then Algorithm 1 computes the
unique optimizer of problem P1(i) in (2). 2

We omit the proof this theorem due to space constraints.
Its main ideas are to show that the unique minimizer
must indeed satisfy the properties in Remark 2 and to
demonstrate that H and the set D are in fact h and M
returned by Algorithm 1.

3.3 Discrete-Time and Continuous-Time Versions of the
Dynamics

Algorithm 1 can be repeated for all i ∈ V to get the set
{δ∗ij}(i,j)∈A of all outflows on every arc (i, j) ∈ A and
{δ∗ii}i∈V the fraction of population that is retained in node
i in the problem (2). This gives the best response of the
population xi in each node i ∈ V. Moreover, Algorithm 1
can also be used to justify Remark 4.

Remark 4. (Best response outflows are not bi-directional).
For each j ∈ N i, if δ∗ij > 0 then δ∗ji = 0. Thus δ∗ijδ

∗
ji = 0

∀j ∈ N i. The reasoning for this observation is that if
δ∗ij > 0 for j ∈ N i then aj+xj = hij < ai+xi = hji. Thus,
we see that in Step 9 of Algorithm 1 when implemented
for P1(j), node i /∈M and hence i /∈M of P1(j). •

Using this observation, and the fact that δ∗ii = xi −∑
j∈N i δ∗ij , which follows from the constraints in (2), we

can write the evolution of x, according to the simultaneous
best response dynamics, as

D1(s) : x(t+ 1) = x(t) + sA ∆∗(a, x(t)). (3)

where s ∈ (0, 1] is a step size parameter, which captures
how frequently the population fraction in a node i becomes
aware of the changed population distribution x compared
to the rate at which the population redistribution occurs.

In (3), A ∈ RN×2M is the incidence matrix of the graph
which can be formed using V and A. We first number each
arc in A and let An be the nth arc, with n ∈ [1 , 2M ]Z. If
An = (i, j), then Ain = −1, Ajn = 1 and Akn = 0, ∀ k ∈
V\{i, j}. Similarly, we assemble the elements of the set
{δ∗ij}(i,j)∈A into the vector ∆∗ ∈ R2M as

∆∗n := δ∗ij , for n ∈ [1 , 2M ]Z s.t. An = (i, j). (4)

It should be noted that if either a or x is changed, the set
of optimizers {δ∗ij}(i,j)∈A and hence ∆∗ will change. Thus
∆∗(a, x) in (3) is written as a function of a and x.

We will refer to the dynamics in (3) as the best response
dynamics (BRD). In the limit that s → 0, the dynamics
in the difference equation “approaches” that of the differ-
ential equation

ẋ = A∆∗(a, x). (5)

Lemma 5. (Existence and Uniqueness of Solutions for
Continuous-Time BRD). Let a ∈ RN be fixed. The state
equation in (5) with an initial condition x(0) ∈ SN has a
unique solution ∀ t ≥ 0. 2

We skip the proof of the lemma due to space constraints.
The main idea for the proof is to show that ∆∗(a, x) is
locally Lipschitz in x and that the trajectories of (5) are
confined to the simplex, which is a compact set.

3.4 On the Convergence of Continuous-time BRD

Here we introduce the function,

V (a, x) :=
∑
i∈V

p(ai, xi), (6)

which is the aggregate potential energy of the population
as a whole. Note that V (a, x) is a strictly convex function
in x. For simplicity, we skip the first argument of V and
write it as only a function of the population distribution,
i.e. V (x), wherever there is no confusion.

The set of equilibrium points X (a) of the dynamics (5), as
a function of a is given by

X (a) :=
{
x ∈ SN

∣∣ ai + xi ≤ aj + xj

∀ j ∈ N i,∀ i ∈ supp(x)
} (7)

In the following theorem, we show that for each initial x(0),
the state converges to some equilibrium point in X (a). We
omit the proof due to space limitations. The main idea of
the proof is based on the observations in Remark 7 and
LaSalle’s invariance theorem.

Theorem 6. (Continuous-time BRD converges asymptoti-
cally to an equilibrium point). For a fixed a ∈ RN , let the
evolution of x be governed by the dynamics in (5) with an
initial condition x(0) ∈ SN . Then limt→∞ x(t) = x, where
x ∈ X (a), with X (a) defined in (7). 2

Remark 7. (Two Interpretations of the Rate of Change
of Potential Energy for Continuous-Time BRD). The
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derivative of V along the trajectories of (5), i.e. V̇ =
(∇xV )T ẋ can be written as

V̇ = (∇xV )TA∆∗ = (∆∗)TAT∇xV

=
∑

(i,j)∈A

δ∗ij

(
∂V

∂xj
− ∂V

∂xi

)
=

∑
(i,j)∈A

δ∗ij [(aj + xj)− (ai + xi)] .

(8)

In (8), two different ways of looking at the rate of change of
potential energy along the trajectories of (5) is provided.
In the first line, we are directly computing the rate of
change of potential energy of the fraction in each node
and summing them up. In the second and the third lines,
we are instead computing the change in the potential
energy due to each individual inter-nodal outflows and
then adding them up, This alternate perspective makes
the computation and bounding of the rate of change of
potential energy particularly easy. •

4. NETWORK RESTRICTED POTENTIAL
MINIMIZATION

In this section, we analyze the centralized or socially op-
timal dynamics given by gradient descent of the potential
energy, though restricted by the network or the graph.
Again, we let a remain constant and let x evolve on its
own. We use V defined in (6) to describe the potential
energy of the system. We let the set of arcs A and the
incidence matrix A be defined as in the text preceding (4)
in Section 3. Let the elements of the set {δij}(i,j)∈A be

assembled into the vector ∆ ∈ R2M as

∆n := δij , for n ∈ [1 , 2M ]Z s.t. An = (i, j).

Using these definitions, we wish to obtain the set of
optimizers of P2 in (9) and subsequently define the socially
optimal gradient descent dynamics.

P2 : (9)

min
∆,z

∑
i∈V

p(ai, zi) = min
∆,z

V (z)

s.t. zi = xi +
∑
j∈N i

(δji − δij), ∀ i ∈ V,

xi −
∑
j∈N i

δij ≥ 0, ∀ i ∈ V, δij ≥ 0, ∀ (i, j) ∈ A.

Observe that z = x + A∆. Note that although V (z)
is strictly convex in z, the cost function in P2 is only
convex in (∆, z). Thus, in general, there may be more than
one optimizer for P2. However, for all the optimizers, the
resultant node fractions zi, for each node i ∈ V is unique.
The following lemma justifies this claim. We skip its proof
due to space limitations.

Lemma 8. (Uniqueness of a Subset of Optimizer Variables
in a Class of Convex Optimization Problems). Let w ∈
Rnw , y ∈ Rny and q := (w, y). Consider the optimization
problem

min
q∈Q

f̄(q) := min
(w,y)∈Q

f(w).

Suppose that the set Q ⊂ Rnw+ny is convex and the
function f(w) is a strictly convex function of w. Then,
every optimizer qi := (wi, yi) has the property that wi =
w∗, a unique constant. 2

Direct application of Lemma 8 to problem P2 gives us the
following result, whose proof we skip here.

Lemma 9. (The Resultant Node Fractions in any Optimal
Solution of P2 are Unique). Consider the problem P2 in
(9) with x ∈ SN . Let Y be the set of all optimizers of P2.
Then ∀ (∆∗, z∗) ∈ Y, z∗ = x+A∆∗ is unique. 2

Problem P2 gives the centralized or socially optimal,
network restricted best gradient response given complete
knowledge of the population distribution x. Note that P2

is feasible for each x ∈ SN as ∆ = 0 and z = 0 is a
feasible solution. In Lemma 9, we have established that
z∗(x) = x + A∆∗ is uniquely defined for each x ∈ SN .
Then, we can let the evolution of x as a whole be as

D2(s) : x(t+1) = x(t)+sA ∆∗(a, x(t)) = z∗(x(t)), (10)

with s ∈ (0, 1] the step size parameter. We can also define
a continuous-time dynamics as

ẋ = A ∆∗(a, x) = z∗(a, x)− x, (11)

where z∗(x) is the map that gives the unique value of
z∗ for all optimizers (∆∗, z∗) of P2. We refer to the
dynamics (10) and (11) as network restricted potential
minimization (NRPM). Using ideas similar to those used
in proving Lemma 5, one can existence and uniqueness for
NRPM, as we state in the following lemma.

Lemma 10. (Existence and Uniqueness of Solutions for
Continuous-Time NRPM). Let a ∈ RN be fixed. The state
equation in (11) with an initial condition x(0) ∈ SN has a
unique solution ∀ t ≥ 0. 2

We now demonstrate that the dynamics (11) converges to
an equilibrium point asymptotically. The proof relies on
LaSalle’s invariance theorem and we skip it due to space
limitations.

Theorem 11. (Continuous-Time NRPM Converges Asymp-
totically to an Equilibrium Point). For a fixed a ∈ RN and
an initial condition x(0) ∈ SN , let the evolution of x be
governed by (11). Then lim

t→∞
x(t) = x, where x ∈ X (a),

with X (a) defined in (7). 2

We can also show that the trajectories of the discrete-time
NRPM (10) asymptotically converge to a point in the set
of equilibrium points X (a).

Theorem 12. (Discrete-Time NRPM Converges Asymp-
totically to an Equilibrium Point). For a fixed a ∈ RN ,
let the evolution of x be governed by D2(s) in (10) with
an initial condition x(0) ∈ SN and let s ∈ (0, 1]. Then
lim
t→∞

x(t) = x, where x ∈ X (a), defined in (7). 2

5. DISCUSSION

5.1 A Difference in the Converging Distribution

For a fixed a, we consider the evolution of x to be governed
by D1(s1) in (3) with s1 → 0 and D2(s2) in (10) with
s2 ∈ (0, 1] separately for the same initial condition. Then
the converging states may not be the same under the two
dynamics.

Example 13. Consider a graph with |V| = 4 and |E| = 3.
Let the graph be such that node 1 is connected to node 2;
node 2 is connected to nodes 1 and 3; node 3 is connected
to nodes 2 and 4 and finally node 4 is connected to node
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3. Let the initial conditions be given by x(0) = y(0) =
[0, 0.2, 0.8, 0]T . Let a = [0, 2, 5, 2]T .

(a) Population Fraction (b) Potential Energy

Fig. 2. Difference in BRD and NRPM.

It is easy to see that no matter how small s is chosen to
be, two dynamics provides a different set of optimizers in
each time step. Once any fraction of the population has
moved to node 4 from node 3, it remains there. This leads
to them settling at different equilibria. Simulation results
in Figure 2 support this observation. The dynamics were
simulated with the said parameters over a period of 105

time steps with a step size s = 10−4. •

This motivates the discussion about how the dynamics
differ fundamentally. In BRD, the infinitesimal agents
make their choices with only local knowledge about the
system. As they assume that the fraction of the population
in the neighboring nodes remains constant, their decision is
restricted and hence may not lead to a distribution where
the overall potential energy of the system can be reduced
further. On the other hand, in NRPM, the infinitesimal
agents evolve in a cooperative manner with the reduction
of the overall potential in mind. Thus as they evolve,
NRPM allows the population as a whole to move to a
distribution where the overall potential may be reduced
below what is allowed by BRD. This is akin to the concept
of “price of anarchy” in game theory.

6. CONCLUSION

We proposed two dynamics that govern the evolution
of a population on a network of choices and dealt with
their convergence. In the simultaneous BRD, we proposed
discrete-time updation rule where the fraction of pop-
ulation in a node takes a decision to redistribute itself
amongst its neighboring nodes, assuming that the fraction
of population in the neighboring nodes remains constant,
in order to minimize a potential function. We also devel-
oped a continuous-time differential equation version of the
dynamics and showed existence, uniqueness and conver-
gence for an arbitrary initial condition in the simplex. We
also proposed a socially optimal dynamics given by the
gradient descent of the potential energy. We proposed a
discrete-time and a continuous-time version of the same
and showed convergence for both.

Future work includes the problem with nodes having lim-
ited capacity for holding a population fraction, connec-
tions with opinion dynamics and applications to specific
domains. Given the convergence phenomenon of both dy-
namics, we would like to extend this framework to allow for
changes in the node parameter at a rate much slower than
the rate at which the population distribution converges.
We would also like to utilize these results to come up with
optimal strategies to change the node parameter to control
the distribution of the population.
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