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Abstract: We propose a theoretical framework for joint system identification and control
on a class of stochastic linear systems. We investigate optimization algorithms for inferring
endogenous and environmental parameters from data, part of which are used for control
purposes. A number of non-trivial interplays among stability and performance, as well as
computational challenges and fundamental limits in identification rate emerge. Our results are
validated via simulation example on a quadcopter control problem.

1. INTRODUCTION

Modern robotic systems are expected to perform in pres-
ence of uncertain and often challenging environments.
Nowadays technology enables autonomous agents with
sensing and processing information modules that can op-
erate in real-time. It is thus important to investigate data-
driven algorithms for general identification and diagnosis
purposes. The problem becomes more challenging when
parameters inferred in real-time and also use for con-
trol purposes that affect the identification process. Unlike
mainstream offline algorithms, the objective in real-world
scenarios is for the engineers to devise solutions that per-
form in parallel with the data acquisition and processing.
A problem of interest regards a system-environment in-
teraction scenario where only some parameters of either
end are known. This would be either because some of
the parameters are not directly observable or because
e.g. those parameters are at fault state and need to be
diagnosed.

Related Literature The present work bears resemblance
to contributions in the field of system identification. A clas-
sic textbook on the general theory is this of (Ljung, 1998)
to which we shall frequently refer for standard results.
Notable works in the field contribute on problems that
involve linear regressions (Goodwin and Mayne, 1987),
multivariate linear systems with numerical robustness or
stability certificates (Gibson and Ninness, 2005), (Umen-
berger et al., 2018) as well nonlinear systems (Schön et al.,
2011). Another very related research thrust is this that
looks at problems of identification for control purposes.
We refer to (Gevers, 2005) and (Hof and Schrama, 1995)
for further analysis and references. Due to the abundance
of works in the field we saw proper to cite (Ninness, 2009)
for a particularly thorough review of classic results and

? This material is based upon work supported in part by the
Defense Advanced Research Projects Agency (DARPA) Award
HR00111890037 Physics of AI (PAI) Program.

recent advances. Finally a third, and more contemporary,
line of contributions traverses system identification and
machine learning algorithms, (Pillonetto et al., 2014).

Contribution We consider a class of linear systems sub-
ject to multiple sources of noise (environmental as well as
measurement). Maximum likelihood estimation methods
are used to infer on unknown parameters, some of which
are essential for internal control. We discuss the various
theoretical and practical challenges the emerge. We ad-
dress problems that span the non-stationary cost function,
controllability of the surrogate model, as well as the stabi-
lization of closed loop dynamics. To this end, we propose
projected gradient descent optimization algorithms with
vanishing regularization terms of heavy-ball type. In the
practical side, computational challenges put a barrier on
a brute force application of the proposed algorithms. We
resort to a number of heuristics and approximations in or-
der to formulate an algorithmic implementation of the pro-
posed theory. Our case study regards joint identification
and control on a simplified quad-copter model developed
in (Bouabdallah and Siegwart, 2007). The objective is to
design a data-driven method of simultaneous identification
of parameters of interest (exogenous noise and controller
feedback gains), in a safe and fast manner. Due to space
limitations, proofs of technical results will be presented in
the extended version of the work.

2. NOTATIONS & DEFINITIONS

By ‖ · ‖ we understand the Euclidean norm. The spectral
radius of a matrix F is denoted by ρ(F ). A positive
(semi)-definite matrix S is denoted by S � 0, (S � 0

)
.

A function l(θ) is (strongly) convex at θ if its Hessian
matrix satisfies ∇2l(θ) � 0, (∇2l(θ) � 0). The projection
operator that measures the distance of point x to set Θ is
PΘ = infθ∈Θ ‖x−θ‖. We highlight the dependence of A, µ,
Σ on θ to represent estimates of A, Aθ, and so forth. By Aθ
we understand matrix A with the nA unknown elements
evaluated on θ. Next, In denotes the n×n identity matrix.
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Fig. 1. Block diagram of the proposed scheme for joint
identification and control. Double line arrows refer
to processing of function signals. Single line arrows
refer to vector signals. The q−1 modules represent unit
time-lag of signal. Alphanumeric modules refer to the
enumerated formulas in the text.

We use relation ∝ for any variable proportional to a value,
e.g. εt ∝ f(t) means εt = R · f(t) for constant R > 0.

3. PROBLEM SETUP

Let xt ∈ Rn be state vector at time t ≥ 0. The evolution of
xt is governed by linear time invariant stochastic system

xt+1 = Axt +B ut + wt
yt = xt + ξt

(1)

subject to initial condition x0 ∈ Rn. The control signal at
time t is ut ∈ Rq and state and control input matrices A
and B are of appropriate dimension. Dynamics are subject
to external disturbance wt ∈ Rn ∼ N

(
µ,Σ

)
, ∀ t ≥ 0.

The observable output yt is internal state xt corrupted
with measurement noise ξt ∈ Rn ∼ N

(
0,Ξ

)
, ∀ t ≥ 0,

independent of wt.

3.1 Identification Vector

In theory, every parameter of (1) can be considered po-
tentially deficient and it needs to be inferred from data.
We refer to (Ljung, 1998) for a general theory of system
identification. Our interest in (1) is focused on a problem
where only some of system parameters A, µ and Σ need
to be identified. The objective is to asses these quantities
from imposed control inputs and measurements. If nA
elements of A, nµ elements of µ and nΣ elements of Σ need
to be identified we can stack them all in a vector θ ∈ Rnθ
for nθ = nA + nµ + nΣ with the true value θ∗ ∈ Rnθ .
Throughout the paper we assume that θ∗ belongs inside

Θ =
{
θ ∈ Rnθ : ‖θ − θ0‖ ≤ ϑ

}
.

Constant θ0 ∈ Rnθ and scalar ϑ are assumed known,
characterizing the set of acceptable parameter values. We
also assume that we can estimate “how far” inside Θ we
should expect to find θ∗, i.e. we know parameter

κ ∈ (0, 1) : ‖θ∗ − θ0‖ ≤ κϑ. (2)

It is remarked that identifiable parameters are restricted in
internal system inter-dependencies (i.e. elements of A) as
well as the effect of exogenous disturbances (i.e. elements
of µ and Σ). We conclude with a condition on part of θ
that concerns state matrix A.

Assumption 1. The pair
(
Aθ, B

)
is controllable, ∀ θ ∈ Θ.

Controllability of candidate models is a both mild and
reasonable requirement. If we accept that the true system
ought to be controllable, every surrogate model (Aθ, B) we
consider it is expected to satisfy such a condition.

3.2 Output Feedback Control

The control to be implemented at time t is of the form

ut = −Kt yt + vt, (3)

where Kt is a time-varying feedback gain matrix and vt
is a control signal of appropriate dimension to assist the
identification process. Our overall approach is illustrated
in Figure 1.

4. PRELIMINARY RESULTS

In this section we lay the groundwork of our analysis with
a collection of results that characterize the statistics of
the output and the form of the metric function for our
estimates.

4.1 Output Statistics

We begin with the statistics of {yt}t≥0 where the linearity
of our reference model yields explicit stochastic behavior.

Proposition 2. Let the dynamics of (1) with control input
(3). Given yt and vt, the event

{
yt+1|yt, vt

}
satisfies{

yt+1

∣∣ yt, vt} ∼ N (mt , Π
)

with mt = [(A−B Kt) B]

[
yt
vt

]
+µ, Π = AΞAT + Ξ + Σ.

The essence of this result relies on the form of (1). Indeed,
yt yields the aforementioned result on the distribution of
measurements that is particularly elegant. It bypasses the
need to estimate the state xt allowing us to work directly
with input/output signals.

4.2 The t-MLE function

Evidently, by time t, measurement and input data Yt and
Vt are available and one can, in theory, consider the log-
likelihood function

Lt(θ) = log pθ
(
Yt|Vt

)
that is is among the most reliable metrics for statistical
inference. As (Ljung, 1998) explains the θ-maximization
of Lt(θ) yields asymptotically unbiased estimators that
converge to θ∗. Maximization of Lt(θ) is equivalent to
finding θt such that θt = argminθ∈Θ lt(θ) for

lt(θ) :=
1

t

[
− 2Lt(θ) + const.

]
(4)

where “const.” stands for terms independent of θ. The
advantage of lt(θ) is that it can be computed in a recursive
fashion, economizing on computational cost.

Lemma 3. The MLE at time t of θ∗, θt, satisfies

θt = argminθ∈Θ lt(θ)

where

lt(θ) =

(
1− 1

t

)
lt−1(θ) +

1

t
Wt(θ) (5)
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with
Wt(θ) = log

∣∣Πθ

∣∣+ Tr
(
Π−1
θ Cθ

)
,

and Cθ =
(
yt − mt−1(θ)

)(
yt − mt−1(θ)

)T
, and Πθ = Π,

mt−1(θ) = mt−1 are as in Proposition 2.

Note that lt(θ) is sufficiently smooth. As we show in
Theorem 5, provided that input signals and controls are
bounded, then limit function limt lt(θ) exists almost surely
and the convergence occurs uniformly in θ ∈ Θ. MLE
estimators θt is that they converge to the true value θ∗

1

almost surely and that
√
t
(
θt − θ∗

)
∼ N (0, S∗), t >> 1, (6)

for covaraiance matrix S∗ is the Fisher information matrix
and by the Cramér - Rao bound, the covariance of θt
cannot improve below this bound in the sense that

E
[
[
√
t(θt − θ∗)][

√
t(θt − θ∗)]T

]
� S∗ , ∀ t > 0. (7)

While S∗ is, in general, not easy to compute, in our
analysis we will rely on more conservative estimates based
on (7) when necessary. Another remark that is useful to
us is that sequence {θt} satisfies

θt
a.s.−−→

{
θ ∈ Θ | θ = argmaxE

[
log pθ

(
Y |V

)]}
for Y = limt Yt and V = limt Vt, respectively. In other
words, maximum likelihood estimators will converge to the
best possible approximation of the system that is available
in the model set Θ, see also §8.3 in (Ljung, 1998).

5. AUGMENTED GRADIENT DESCENT

Stationary points of lt(θ), θt, satisfy ∇θlt(θt) = 0. Unfor-
tunately, the form of lt(θ) is often too complex for a brute
force calculation of θt. This seems to be the case with (5).
Moreover, new data constantly change the shape of lt(θ).
Consequently, the true value of θt can only be estimated
simultaneously with data getting integrated in lt(θ). We
conclude that non-stationary types of optimization algo-
rithms are a suitable candidate for estimating θt. In this
work we consider gradient descent schemes of type

θ̂t+1 = θ̂t − αt∇θ lt(θ̂t) (8)

with step αt > 0 to satisfy smallness criteria to be
highlighted in the following. In order to meet safety and
robustness requirements for identification and control we
enhance (8) along three lines:

i. We derive estimates of θ∗ to define a controllable
candidate model in accordance to Assumption 1.

ii. While we expect that l∗(θ) = limt lt(θ) will satisfy
smoothness and convexity criteria sufficient enough
to uniquely identify θ∗, it is not clear that lt(θ) are
equally elegant and this may steer and perhaps trap

estimates θ̂t in undesirable regions of Θ.
iii. It is generally desirable that the overall identification

process needs to be fast and efficient. A one-step
scheme such as (8) is typically not the best choice.

5.1 Projected Heavy-Ball with Vanishing Regularization

The iterative scheme we propose to implement is

1 Whenever such θ∗ uniquely exists.

θ̂t+1 = PΘ

[
θ̂t − αt∇θ

(
lt(θ̂t) +

εt
2
‖θ̂t − θ0‖2

)
+

+ βt
(
θ̂t − θ̂t−1

)] (9)

for parameters αt, εt and βt to satisfy conditions specified
in the convergence analysis section. Scheme (9) augments
(8) to meet conditions i. - iii. mentioned above as follows:
Projection operator PΘ guarantees controllability of can-
didate models, quadratic term takes care of possible ill-
formed lt(θ) for early t, as a result of insufficient data. Reg-
ularization compensates such case by steering estimates in
the heart of Θ. The last term, also known as Heavy Ball,
is strengthens the performance of gradient descent, that is
very desirable for our setup.

5.2 Convergence Analysis for Simple Convexity

The first result of the paper discusses weak convergence.
Assume that we possess a complete realization of closed
loop system (1) with (3), together with Y and V we
introduce the corresponding implemented control policies
K := {Kt}t≥0. Also, for any finite truncation Yt, Vt, ,Kt

of the sets we the associated t-MLE function lt(θ) attains
a number of minimizing points in Θ. Let Θt ⊂ Θ denote
the set of minimizers of lt(θ).

Proposition 4. Assume that data-sets Y , V,K, are time-
series formed by elements that are uniformly bounded
in time. Denote by Lt := supθ∈Θ ‖∇2

θlt(θ)‖ and assume
that it is also uniformly bounded with respect to t. Then
l∗(θ) := limt→∞ lt(θ) is twice differentiable in Θ.

The assumed boundedness on Y, V and K is crucial for our
result to hold. The uncertainty in the way input/output
data is integrated with time does not allow reasonable
speculation on the form of lt(θ). Nevertheless, by virtue
of (6) we expect that l∗(θ) to be locally convex in Θ. This
extra condition, together with the ones in Proposition 4
seem to suffice for convergence.

Theorem 5. Assume that conditions of Proposition 4 hold
true. Also let for t-MLE function (5) to satisfy

lt Inθ � ∇2lt(θ) � Lt Inθ , ∀ θ ∈ Θ.

If lt → l∗ ≥ 0, then iterations of (9) with

εt ∝
{
t−ζ , lt ≥ 0

t−ζ − δ lt, lt < 0
, 0 < αt <

2

Lt + εt

that is uniformly bounded away from zero, ζ ∈ (0, 1/2),
δ > 1 and βt ≡ 0 guarantee

θ̂t → θ∗∗ ∈ Θ∗, θ∗∗ = argminθ∈Θ‖θ − θ0‖,
where Θ∗ = limt Θt ⊂ Θ the set of optimizers of l∗(θ).

The second round of results assume that limit function
l∗(θ) is strongly convex in Θ.

5.3 Convergence Analysis for Strong Convexity

Assume that there exists a unique minimizer of l∗(θ). In
such case Heavy Ball approach can presumably improve
the performance of our scheme.

Theorem 6. Assume that conditions of Theorem 5 hold
true and, in addition, the smallest eigenvalue of the Hes-
sian lt → l∗ > 0. The scheme (9) with

εt ∝
{

0, lt ≥ 0

−2lt, lt < 0
, βt ∈

(
0,

lt + εt
Lt + εt

)
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and αt ∈
(

2βt
lt+εt

, 2
Lt+εt

)
guarantees convergence to Θ∗.

The assumption of strong convexity in l∗(θ) is essential to
characterize the convergence rate to minimum. The overall
performance of the scheme is, however, determined by the
rate with which lt(θ) will converge to l∗(θ). Although αt
and βt can be carefully tuned to maximize the performance
(see a similar argument in (Polyak, 1987)) the ultimate
speed of convergence is expected to be dominated by data
integration in t-MLE. Condition (6) and bound (7) can
provide a somewhat stronger result for large t.

When l∗(θ) is strongly convex in Θ with its minimal point
to be in the interior of Θ, then gradient descent schemes
will asymptotically return estimates almost surely in Θ.
In other words, for almost every bounded realization Y , V
and K, there is a finite instance t̃ after which if we neglect
regularization we have

θ̂t − αt∇gt(θ̂t) + βt (θ̂t − θ̂t−1) ∈ Θ, ∀ t > t̃.

Consequently, projection operator becomes obsolete in
(9) resulting in simplifications and into more explicit
convergence rates. For the exposition of the next result
we define, for brevity, gt(θ) := lt(θ) + εt

2 ‖θ− θ0‖2 together
with its Hessian

Ht =

∫ 1

0

∇2gt
(
ω θ̂t + (1− ω)θεt;t

)
dω. (10)

Theorem 7. Assume that Y , V and K amount to a stable
system and that l∗(θ) is strongly convex in Θ. Then for
αt and βt taken from Theorem 6, as t̃ >> 1 the following
estimate is true with probability 1− γ:

‖θ̂t − θ∗‖ ≤ qtt̃ ‖θ̂t̃ − θ∗‖+ 6
nθ
γ

t−1∑
s=t̃

qts
(1 + κ)ϑ√

s

with qt
t̃

=
∏t
s=t̃ ρ(Ws) < 1 whereWs is 2nθ×2nθ complex

valued matrix

Ws :=

[
0 i

√
βs Inθ

i
√
βs Inθ Inθ − αsHs + βs

]
(11)

for i =
√
−1, Ht is the nθ × nθ Hessian matrix (10) with

εt ≡ 0.

The validity of the above estimate relies on (6) and this
is the best estimate we can get for now. The manner with
which lt(θ) → l∗(θ) is a very crucial and relevant matter
to this work that is part of on-going research. This is
a fundamental limitation that characterizes every data-
driven process in this or similar works, and it seems, in
fact, quite obvious: We cannot do better than the best we
can do with the information that is currently available.

6. PROBABILISTIC ASYMPTOTIC STABILIZATION

Our discussion so far relies on the hypothesis that closed
loop system (1) with control (3) is internally stable. It
is only then that t-MLE is “well”-behaved and scheme
(9) can produce meaningful results. Had we been granted
exact knowledge of state matrix A, a quite desirable
property of (3) would be ε-stability. For given margin
ε < 1, we would like to design Kt such that

ρ(A−BKt) ≤ ε, ∀ t ≥ 1 (12)

where ρ(·) denotes the spectral radius. Evidently, the
stabilization problem is that part of A needs to be inferred

from data. This is because the output feedback gain would
only be based on an estimate that may harm, in our setup
destabilize the system. A sufficient condition between Kt

and Aθ̂t is provided below to guarantee internal stability
for t >> 1.

Theorem 8. Assume conditions of Theorem 7 hold true.
Fix some ε ∈ (0, 1). If, at every time step t, we select Kt

such that
ρ
(
Aθ̂t −BKt

)
≤ ε

3
then

ρ(A−BKt) < ε (13)

for all t such that

‖θt − θ∗‖ ≤
1
√
na

( ε
3

)n
.

Moreover, Eq. (13) will hold true with probability 1 − γ
for all t > t̃ >> 1 such that

qtt̃ +
6nθ
γ

t∑
s=t̃

qts
1√
s
<

εn

3n
√
na(1 + κ)θ

.

where qts are as in Theorem 7.

This result provides a design condition under which data-
driven controllers can guarantee, at high level of confi-
dence, closed-loop systems to get eventually internally sta-
bilized. At this point, we feel obligated to raise the concern
on the possibility of a circular argument: If non-stationary
t-MLE function lt(θ) can uniformly converge to some l∗(θ)
only if associated dynamics are stable, then the control
policy Kt at every instance may not be sufficient to keep
the nominal system stable long enough so true value θ∗ is
sufficiently approximated. Numerical explorations suggest
that if design condition is strong enough, i.e. ε ≤ 1 is not
so close to 1, then identification process is conducted in
safety. More investigation is necessary to clarify this vital
interplay.

7. PRACTICAL IMPLEMENTATION

In order for our framework to be applicable, we see fit
to propose guidelines along which an algorithmic process
can be developed for potential application scenarios. With
the aid of pre-tuned time-stamp indexes we consider a
data-driven decision making process that, although funda-
mentally heuristic, it aims to cover most of the challenges
reported so far. As any real-time simulation, Tmax < ∞
is the maximum number of iterations to be executed.
Then we introduce a first checkpoint T1 with the following

property: For t ∈ [0, T1] regularization term 1
2εt‖θ̂t − θ0‖2

in (9) is always enabled. The idea is that in the initial step
of data collection we assume that t-MLE is ill-behaved
thus we want to leverage the regularization function as
the main driving force of our estimates. Then for [T1, T2],
T2 < Tmax a second checkpoint, we enable regularization
conditionally along the lines of Theorem 6. Instead of (10)

we evaluate ∇2lt(θ̂t) . The regularization term is triggered

if smallest eigenvalue of ∇2lt(θ̂t) falls below a given cut-off
λ > 0. When the process reaches iteration T2 the algorithm
make a final decision based on the form of the most recent
MLE function.

• Smallest eigenvalue of ∇2lT2(θ̂T2) is greater than λ.
Function l∗(θ) is likely strongly convex. Regulariza-
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tion term is canceled for t > T2. The algorithm
proceeds along the lines of the Theorem 7.

• Smallest eigenvalue of∇2lT2(θ̂T2) is in (0, λ). Function
l∗(θ) is likely convex. The algorithm proceeds along
the lines of the Theorem 6.
• ∇2lT2(θ̂T2) is negative definite. The identification

process has failed and the algorithm aborts.

8. IDENTIFICATION AND CONTROL IN
QUAD-COPTER DYNAMICS

We apply our method on a case that involves a planar
quadrotor, the dynamics of which evolve along the x and
y axes and yaw angle, φ. The drone is supposed to hover
at a point, (xd, yd, 0), with the use of a local stabilizer.
Exogenous environment perturbs the quad-copter and it
leads the stabilizer at fault state. For the drone recovery,
both nature of disturbance and faulted stabilizer require
to be diagnosed. The diagnosis is expected to happen
online as drone needs to be stabilized immediately. The
example’s objective is to use input/output data from a
motion-capture system and try to simultaneously identify
parameters of the faulted controller as well as parameters
of the environment. The estimates of the identification
vector will be used online to ensure that the copter will
maintain an internally locally stable profile. Schematics of
the problem is provided in Figure 2.

8.1 Derivation of Model

The dynamics of a quadcopter restricted to move on the
horizontal / vertical subspace and turn according to pitch
angle are

mẍ = u1 sin(φ)

mÿ = u1 cos(φ)−mg

Iφ̈ = lu2

where m is the mass of the drone, I is the moment of
inertia of rotors and l the distance of rotors from the
center of mass of the quadcopter, and g ≈ 9.81m/s2 the
gravitational acceleration. Let us introduce the state and
control vectors

X =
(
x, ẋ,y, ẏ,φ, φ̇

)T
=: (x1, x2, x3, x4, x5, x6)T

U =
(
u1,u2

)
,

respectively so that system reads

d

dt
Xt = f(Xt,Ut), (14)

for appropriate mapping f . Next we consider the case that
dynamics evolve in a noisy environment where sources of
disturbance are modeled via Gaussian noise generators
that affect copter’s rules of acceleration. This yields the
system of nonlinear stochastic differential equations

d


x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)

 =



x2(t)
1

m
u1(t) sin

(
x5(t)

)
x4(t)

1

m
u1(t) cos

(
x5(t)

)
− g

x6(t)
l

I
u2(t)


dt+



0

dw
(2)
t

0

dw
(4)
t

0

dw
(6)
t

 (15)

Fig. 2. A case study of joint identification and control. We
set values m = 0.05, l = 0.1 and I = 1.

for dw
(i)
t |i=1,2,3 independent Gaussian measures each of

which is supported by N (µi, σ
2
i ). In an attitude/altitude

control problem the fixed points of type (xd, 0, yd, 0, 0) are
of interest. Now it is easy to see that a fixed point of
(unperturbed) system (15) is

X∗ =
(
xd, 0, yd, 0, 0, 0

)T
, U∗ =

(
mg, 0

)T
First order approximation of (11) around fixed point yields

d δX =

[
∂f

∂X

]
δX dt+

[
∂f

∂U

]
δU dt+ dwt

where matrices
[
∂f
∂X

]
,
[
∂f
∂U

]
are evaluated at (X∗,U∗) and

δX := X − X∗ , δU := U − U∗.
A nominal (embedded) controller is applied on the drone to
guarantee its hovering around X∗. The controller samples
system dynamics with sampling period of 1 unit time.
Evidently, the controller is leveraging information of the
discretization of (11) that reads:

δXt+1 = A δXt + B δUt + wt (16)

with

A = e[
∂f
∂X ], B =

∫ 0

−1

e[
∂f
∂X ]sds

[
∂f

∂U

]
and noise

wt ∼ N
(∫ 0

−1

e[
∂f
∂X ]s ds

[
µ1

µ2

µ3

]
,

∫ 0

−1

e[
∂f
∂X ]sSST e[

∂f
∂X ]

T
s ds

)
for S a zero matrix except elements S2,2 = 0.25, S4,4 =
0.12 and S6,6 = 0.2. Now if the embedded controller
applies a state feedback law of type δUt = −KδXt with
gain matrix

K∗ =

[
k11 k12 k13 k14 k15 k16

k21 k22 k23 k24 k25 k26

]
=

[
−0.0067 −0.0280 0.0202 0.0753 −0.4588 −0.4443
0.1751 1.0568 −0.0013 −0.0023 26.6588 40.2878

]
stabilizes internally (16) with ρ(A−BK∗) = 0.6. The effect
of disturbance and/or other mechanical failures lead the
controller to the default state

K =

[
0 0 0 0 0 0
0 0 0 0 k25 0

]
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Where k25 needs to be re-identified. The closed loop sys-
tem will serve as our starting model to test our identifica-
tion algorithms. In particular,

xt+1 = Axt +B ut + wt (17)

with A = A−BK and B = B and wt normally distributed
as above. The output measurements are obtained through

yt = xt + ηt, for ηt ∼ N (0, I6).

Identification vector Together with k25 we are also inter-
ested in identifying part of the exogenous perturbations
that in our example are variance S2,2 and expectation µ1.
In conclusion, we have θ ∈ R3 with

θ1 ↔ k25 θ2 ↔ µ1 θ3 ↔ S2,2

i.e. na = 1, nµ = 1, nσ = 1. Furthermore we are given Θ

via θ0 = (25, 6, 4)T , ϑ = 3 and κ = 2.8
3 . It is easy to verify

that Θ satisfies Assumption 1.

8.2 Simulation Results

In Fig. 3 we present simulation of scheme 9 implemented
via Algorithm 1. Following this procedure we run the
simulation for 2200 iterations. The first part ends at
T1 = 300 iterations and last part begins at T2 = 1840.
It appears that function lT2

(θ) is strictly convex and
remains ever after. The cut-off value for the smallest
eigenvalue was set at λ = 0.01. Also ζ = 0.48, C = 3
and δ = 1.2. We observe that the algorithm works as
expected in these three stages. At first the effort was of
the scheme was to follow the regularization term. As more
data are implemented, the second phase, balances between
weakening regularization and more reliable t-MLE. Finally
at the last step, strong convexity conditions are verified,
the algorithm proceeds in full confidence of on the T2-
MLE function to stay on the average constant. In the last
plot we present the magnitude of feedback controller Kt.
We also set ε = 0.6 and condition ρ(Aθ̂t − BKt) < ε is
implemented by imposing pole placement in the surrogate
model (Aθ̂t , B) at the initial ones. As Figure 3 suggests the

output design {Kt}t appears to be finite. This, validates
the boundedness assumption on which the convergence
results rely. It is remarkable to note that Kt → K∗ as

a result of the successful identification of θ
(1)
∗ = 26.6588.

9. DISCUSSION

Integration of artificial intelligence and control theory is
becoming a necessary step for formal analysis and syn-
thesis of modern autonomous agents that are expected to
operate in unpredictable and challenging environments. In
this paper, we investigate aspects of this research thrust by
inspired by well-known techniques from theory of system
identification. Our results, although at initial stage, open
up a venue towards a theory of system identification and
control for autonomous systems that enforced with for
real-time decision-making capabilities from their interac-
tion with the environment. There appears several open
issues left as a future work. Perhaps the most notable one
is an inherent connection between output feedback control
of the unknown system and learning rate of identification
vector θ∗. While asymptotic normality of θt is very help-
ful, it remains an open question for us to state explicit
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Fig. 3. Simulation for identification of θ∗ (sub-plots 1-3)
and norm of control policy Kt vs time (sub-plot 4).

conditions on control policies that guarantee safety cer-
tificates. This would require exploration of limit theorems
and convergence rates of random processes along the lines
of (6).
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