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Abstract: We consider several line-search based gradient methods for stochastic optimization:
a gradient and accelerated gradient methods for convex optimization and gradient method for
non-convex optimization. The methods simultaneously adapt to the unknown Lipschitz constant
of the gradient and variance of the stochastic approximation for the gradient. The focus of this
paper is to numerically compare such methods with state-of-the-art adaptive methods which
are based on a different idea of taking norm of the stochastic gradient to define the stepsize,
e.g., AdaGrad and Adam.
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1. INTRODUCTION

In this paper we consider unconstrained minimization
problem

min
x∈Rn

f(x), (1)

where f(x) is a smooth, possibly non-convex function with
L-Lipschitz continuous gradient. We say that a function
f : E → R has a L-Lipschitz continuous gradient if it is
continuously differentiable and its gradient satisfies

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖x− y‖22, ∀ x, y ∈ E.

We assume that the access to the objective f is given
through stochastic oracle ∇f(x, ξ), where ξ is a random
variable. The main assumptions on the stochastic oracle
are standard for stochastic approximation literature

E∇f(x, ξ) = ∇f(x), E
(
‖∇f(x, ξ)−∇f(x)‖22

)
≤ D.

In papers Duchi et al. (2011); Byrd et al. (2012); Fried-
lander and Schmidt (2012); Kingma and Ba (2015); Iusem

? The research of A. Gasnikov and P. Dvurechensky was partially
supported by Russian Foundation for Basic Research project 18-31-
20005 mol-a-ved. The research of D. Dvinskikh was supported by the
Ministry of Science and Higher Education of the Russian Federation
(Goszadaniye) no 075-00337-20-03.

et al. (2019); Gasnikov (2017); Levy et al. (2018); Deng
et al. (2018); Ogaltsov and Tyurin (2019); Ward et al.
(2019); Bach and Levy (2019); Kamzolov et al. (2020);
Dvurechensky et al. (2020) there proposed different ap-
proaches to choose in an adaptive manner L and D, see
Table for details.

In this paper we extend the idea of Armijo-type line search
in variants from Gasnikov (2017); Ogaltsov and Tyurin
(2019) for the adaptive methods for convex and non-
convex stochastic optimization. Surprisingly, the adapta-
tion is needed not to each parameter separately, but to
the ratio D/L, which can be considered as signal to noise
ratio or an effective Lipschitz constant of the gradient in
this case. We propose an accelerated and non-accelerated
gradient descent for stochastic convex optimization and a
gradient method for stochastic non-convex optimization.
Our methods are flexible enough to use optimal choice
of mini-batch size without additional information on the
problem. Moreover, our procedure allows an increase of
the stepsize, which accelerated the methods in the areas
where the Lipschitz constant is small. Also, as opposed to
the existing methods, our algorithms do not need to know
neither the distance to the solution, nor a set of com-
plicated hyperparameters, which are usually fine-tuned
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Paper N-C 1 N-Ac Ac Prf Btch Par

Duchi et al.’11 ×
√

×
√

× ×
Byrd et al.’12 ×

√
× × × ×

Friedlander et al.’12 ×
√

× × × ×
Kingma & Ba’15 ×

√ √
× × ×

Iusem et al.’19 ×
√

×
√

×
√

Gasnikov’17 ×
√

× ×
√ √

Levy et al.’18 ×
√

×
√

× ×
Deng et al.’18 × ×

√
× × ×

Ogaltsov et al.’19 × ×
√

×
√ √

Ward et al.’19
√

× ×
√

×
√

Bach & Levy’19 ×
√

×
√

× ×
This paper

√ √ √
×

√ √

by multiple repetition of minimization process. Moreover,
since our methods are based on inexact oracle model (see
e.g. Devolder et al. (2014); Gasnikov and Dvurechensky
(2016); Dvurechensky and Gasnikov (2016)), they are
adaptive not only for a stochastic error, but also for
deterministic, e.g. non-smoothness of the problem. This
means that our methods are universal for smooth and
non-smooth optimization Nesterov (2015); Yurtsever et al.
(2015); Dvurechensky (2017). Our focus in this paper is to
demonstrate in the experiments that our methods work
faster than state-of-the-art methods Duchi et al. (2011);
Kingma and Ba (2015). The rigorous proofs are deferred
to a separate paper.

The paper is structured as follows. In Sect. 2 we present
adaptive stochastic algorithms based on stochastic gradi-
ent method to solve a problem of type (1) with convex
objective function. Sect. 3 renews Sect. 2 for non-convex
objective function. Finally, in Sect. 4 we show numerical
experiments supporting the theory in above sections.

2. STOCHASTIC CONVEX OPTIMIZATION

In this section we solve problem (1) for convex objective
by adaptive algorithm which does not need the informa-
tion about Lipschitz constant. Then we comment on its
acceleration and practical implementation.

2.1 Adaptive algorithm

We assume that the constant L may be unknown. If the
true variance D is unavailable we use its upper bound
D0 ≥ D. We provide adaptive algorithm (Alg. 1) which
iteratively tunes the Lipschitz constant. Importantly, the
approximation of the Lipschitz constant used by the algo-
rithm may decrease as iteration go, leading to larger steps
and faster convergence. Further, we comment on its rates
of convergence.

From Lipschitz continuity of ∇f(x) we have

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉

+
Lk+1

2
‖xk+1 − xk‖22. (3)

1 N-C stands for availability of an algorithm for non-convex op-
timization, N-Ac for a non-accelerated algorithm for convex opti-
mization, Ac for accelerated algorithm for convex optimization, Prf
for proof of the convergence rate, Btch for possibility to adaptively
choose batch size without knowing other parameters, Par for non-
necessity to know or tune hyperparameters like distance to the
solution for choosing the stepsize.

Algorithm 1 Adaptive Stochastic Gradient Descent

Require: Number of iterations N , accuracy ε, D0, initial guess L0.
1: for k = 0, . . . , N − 1 do
2: Lk+1 := Lk/4
3: repeat
4: Lk+1 := 2Lk+1

5: Calculate batch size rk+1 = max

{
D0

Lk+1ε
, 1

}
6:

xk+1 = xk −
1

2Lk+1
∇rk+1f(xk, {ξk+1

l
}rk+1

l=1
) (2)

7: until

f(xk+1) ≤ f(xk) + 〈∇rk+1f(xk, {ξk+1
l
}rk+1

l=1
), xk+1 − xk〉

+ Lk+1‖xk+1 − xk‖22 + ε/2

8: end for
Ensure: x̄N = 1

N

∑N

k=1
xk.

By Cauchy–Schwarz inequality and since ab ≤ a2

2 + b2

2 for
any a, b, we get

〈∇f(xk)−∇rk+1f(xk, {ξk+1
l }rk+1

l=1 ), xk+1 − xk〉

≤ 1

2Lk+1
‖∇f(xk)−∇rk+1f(xk, {ξk+1

l }rk+1

l=1 )‖22

+
Lk+1

2
‖xk+1 − xk‖22. (4)

Then we add and subtract ∇rk+1f(xk, {ξk+1
l }rk+1

l=1 ) in (3).
Using (4) and (2) we get

f(xk+1)− f(xk) ≤ − 1

4L2
k+1

‖∇rk+1f(xk, {ξk+1
l }rk+1

l=1 )‖22

+
1

2Lk+1
‖∇rk+1f(xk, {ξk+1

l }rk+1

l=1 )−∇f(xk)‖22. (5)

From (2) we have for any x

‖xk+1 − x‖22 = ‖xk − x− 1

2Lk+1
∇rk+1f(xk, {ξk+1

l }rk+1

l=1 )‖22

= ‖xk − x‖22 +
1

4L2
k+1

‖∇rk+1f(xk, {ξk+1
l }rk+1

l=1 )‖22

− 1

Lk+1
〈∇rk+1f(xk, {ξk+1

l }rk+1

l=1 ), xk − x〉. (6)

From (5) and (6) we get

〈∇rk+1f(xk, {ξk+1
l }rk+1

l=1 ), xk − x〉 ≤ f(xk)− f(xk+1)

+ Lk+1‖xk − x‖22 − Lk+1‖xk+1 − x‖22 + ε/2, (7)

where we used batch size rk+1 = max
{

D0

Lk+1ε
, 1
}

to fulfill

E‖∇r+1f(xk, {ξk+1
l }rl=1)−∇f(xk)‖22 = εLk+1.

Since Lk+1 is random, rk+1 will be random as well and,
consequently, the total number of oracle calls T is not
precisely determined. Let us choose it according to the
number of oracle calls for non-adaptive counterpart of
Algorithm 1

T =

N−1∑
k=1

rk+1 = O

(
D0R

2

ε2

)
. (8)

This number of oracle calls (8) can be provided by choosing
the last batch size rN as a residual of the sum (8)
and calculate the last Lipschitz constant LN = D0

rNε . In
practice, we do not need to limit ourselves by fixing the
number of oracle calls T .
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From the convexity of f we have

f(xk)− f(x) ≤ 〈∇f(x), xk − x〉. (9)

Then from (9) we get

〈∇rk+1f(x, {ξk+1
l }rk+1

l=1 ), xk − x〉 ≥ f(xk)− f(x)

+ 〈∇rk+1f(x, {ξk+1
l }rk+1

l=1 )−∇f(xk), xk − x〉.

From this and (7) we have

1

Lk+1
(f(xk)− f(x))

+
1

Lk+1
〈∇rk+1f(x, {ξk+1

l }rk+1

l=1 )−∇f(xk), xk − x〉

≤ ‖xk − x‖22 − ‖xk+1 − x‖22
+

1

Lk+1

(
f(xk)− f(xk+1)

)
+

ε

2Lk+1
.

We notice that the following sum∑N−1
k=0

1
Lk+1
〈∇rk+1f(xk, {ξrk+1

l }rk+1

l=1 ) − ∇f(xk), xk − x〉 is

not the sum of martingale-differences and therefore the
total expectation is not zero, since rk is random. Thus,

we cannot guarantee that Alg. 1 converges in O
(

LR2

ε

)
iterations. However, numerical experiments are in a good
agreement with the provided complexity bound.

2.2 Accelerated adaptive algorithm

To compare our complexity bounds for adaptive stochastic
gradient descent with the bounds for accelerated variant of
our algorithm we refer to Ogaltsov and Tyurin (2019). For
the reader convenience we provide that accelerated algo-
rithm in a simpler form and complexity bounds presented
there without proof.

Algorithm 2 Adaptive Stochastic Accelerated Gradient
Method
Require: Number of iterations N , D0 accuracy ε, Ω ≥ 1, A0 = 0,

initial guess L0.
1: for k = 0, . . . , N − 1 do
2: Lk+1 := Lk/4
3: repeat
4: Lk+1 := 2Lk+1

5: αk+1 =
1+
√

1+8AkLk+1

4Lk+1
; Ak+1 = Ak + αk+1

6: Calculate batch size rk+1 = max

{
Ωαk+1D0

ε
, 1

}
7: yk+1 = (αk+1u

k +Akx
k)/Ak+1

8: uk+1 = uk − αk+1∇rk+1f(yk+1, {ξk+1
l
}rk+1

l=1
)

9: xk+1 = (αk+1u
k+1 +Akx

k)/Ak+1

10: until

f(xk+1) ≤ f(yk+1)

+ 〈∇rk+1f(yk+1, {ξk+1
l
}rk+1

l=1
), xk+1 − yk+1〉

+ Lk+1‖xk+1 − yk+1‖22 + ΩD0/(Lk+1rk+1) (10)

11: end for
Ensure: xN

For Algorithm 2 the number of oracle calls T will be the
same as for the non-accelerated version of the algorithm
while the number of iterations will be smaller: N =

O
(√

LR2/ε
)
. Both these bounds are optimal Woodworth

et al. (2018).

Unfortunately, to prove these bounds we also met the
problem of martingale-differences mentioned above. We

expect that original technique from the paper Iusem et al.
(2019) sheds light on how one can try to resolve it and we
defer the complete proof to a future version of this paper.

2.3 Practical implementation of adaptive algorithms

Next we comment on applicability of Alg. 1 and Alg. 2 in
real problems. Generally, in case when the exact gradients
of function f(xk) is unavailable, function values itself of
f(xk) are also unavailable. It holds, e.g., in stochastic
optimization problem, where the objective is presented by
its expectation

f(x) = Ef(x, ξ). (11)

In this case we estimate the function as a sample average
f(x, {ξl}rl=1) = 1

r

∑r
l=1 f(x, ξl) and use it in adaptive

procedures. In this case we interpret Lk as the worst
constant among all Lipschitz constants for f(x, ξ) with
different realization of ξ. Indeed, if Lk+1 satisfies the
following

f(xk+1, ξk+1) ≤ f(xk, ξk+1) + 〈∇f(xk, ξ), xk+1 − xk〉
+ Lk+1‖xk+1 − xk‖22 + ε/2.

Then it satisfies

f(xk+1, {ξk+1
l }rk+1

l=1 ) ≤ f(xk, {ξk+1
l }rk+1

l=1 )+

〈∇rk+1f(x, {ξk+1
l }rk+1

l=1 ), xk+1 − xk〉
+ Lk+1‖xk+1 − xk‖22 + ε/2. (12)

If, e.g, (11) holds we replace adaptive procedure in the
algorithms by (12).

We also comment on batch size. If the batch size rk
decreases during the process of Lk selection, we preserve
rk from the previous iteration in order not to recalculate
stochastic approximation ∇rk+1f(x, {ξk+1

l }rk+1

l=1 ).

All these remarks remain true also in non-convex case.

3. STOCHASTIC NON-CONVEX OPTIMIZATION

In this section we assume that the objective f may be non-
convex. We consider adaptive algorithm and provide the
complexity bounds for it.

Algorithm 3 Adaptive Non-convex Stochastic Gradient
Descent
Require: Number of iterations N , D0, accuracy ε, initial guess L0

1: Calculate batch size r = max
{

8D0
ε2

, 1
}

2: for k = 0, . . . , N − 1 do
3: Lk+1 := Lk/4.
4: repeat
5: Lk+1 := 2Lk+1

6:

xk+1 = xk −
1

2Lk+1
∇rf(xk, {ξk+1

l
}rl=1) (13)

7: until

f(xk+1) ≤ f(xk) + 〈∇rf(xk, {ξk+1
l
}rl=1), xk+1 − xk〉

+ Lk+1‖xk+1 − xk‖22 +
ε2

32Lk+1
(14)

8: end for
Ensure: x̂ = arg min

k=1,..N
‖∇f(xk)‖2.

Theorem 1. Algorithm 3 with expected number of stochas-

tic gradient oracle calls T̃ = O
(

D0L(f(x0)−f(xN ))
ε4

)
and
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expected number of iterations Ñ = O
(

L(f(x0)−f(xN ))
ε2

)
outputs a point x̂Ñ satisfying

E‖∇f(x̂Ñ )‖22 ≤ ε2.

Sketch of the Proof. From (14) using (13) we get

f(xk+1)− f(xk) ≤− 1

4Lk+1
‖∇rf(xk, {ξk+1

l }rl=1)‖22

+
ε2

32Lk+1
. (15)

Due to ‖a‖2 ≤ 2‖b‖2 + 2‖a− b‖2 for any a, b ∈ Rn we get

‖∇rf(xk,{ξk+1
l }rl=1)‖22 ≥

1

2
‖∇f(xk)‖22

− ‖∇f(xk)−∇rf(xk, {ξk+1
l }rl=1)‖22. (16)

From (15) and (16) we have

f(xk+1)− f(xk) ≤ − 1

8Lk+1
‖∇f(xk)‖22 +

ε2

32Lk+1

+
1

4Lk+1
‖∇f(xk)−∇rf(xk, {ξk+1

l }rl=1)‖22.

If ‖∇f(xk)‖22 ≥ ε2. Then

f(xk+1)− f(xk) ≤ (8δ2k+1 − 3ε2)/(32Lk+1). (17)

Based on iterated procedure (10) we may expect that
Lk+1 ≤ 2L. The exact proof of this fact in probability
of large deviations terminology was provided in Ogaltsov
and Tyurin (2019) (numerical coefficient needs to be
corrected). In our work, we limit ourselves by assuming
this inequality holds ‘in average’.
If 3ε2− 8δ2k+1 ≥ 0 we may replace Lk+1 by 2L. Therefore,
we rewrite (17) with minor changing and after taking the
expectation we get

Ef(xk+1)− Ef(xk) ≤ (8Eδ2k+1 − 2ε2)/(64L).

Ensuring Eδ2k+1 ≥ ε2

8 we obtain

Ef(xk+1)− Ef(xk) ≤ −ε2/(64L).

Summing this over expected number of iteration we get

Ñ = 64L(f(x0)− f(x∗))/ε2. (18)

This Ñ ensures that for some k we get ‖∇f(xk)‖22≤ε2.
We choose the batch size according to

Eδ2k+1 = E‖∇rf(xk, {ξk+1
l }rl=1)−∇f(xk)‖22 =

ε2

8
≤ D0

r
.

Consequently, r = 8D0

ε2 . Using the expected number of
iterations (18) we get expected number of oracle calls

T̃ = Ñr = 512D0L(f(x0)− f(xN ))/ε4.

2

More accurate proof of Theorem 1 can be done using
large deviations technique and sub-Gaussian variance, see
Dvurechensky et al. (2018a).

4. EXPERIMENTS

We perform experiments using proposed methods with and
without acceleration on convex and non-convex problems
and compare results with commonly used methods —
Adam, Kingma and Ba (2015) and Adagrad, Duchi et al.
(2011). Experiments consist of four problems:

(1) Training logistic regression on MNIST dataset Lecun
et al. (1998) (convex problem). Number of optimized
parameters is 7850.

(2) Training fully-connected sigmoid-activated neural net-
work with two hidden layers of size 1000 on MNIST
dataset (non-convex problem). Number of optimized
parameters is 795010.

(3) Training fully-connected relu-activated neural net-
work with two hidden layers of size 1000 also on
MNIST dataset (non-differentiable and non-convex
problem). Number of optimized parameters is 795010.

(4) Training small convolutional neural network with
three filters and three fully-connected layers on CI-
FAR10 dataset Krizhevsky (2009) (non-convex prob-
lem). Number of optimized parameters is 62000.

Objective for all the problems is cross-entropy function
between predicted class distribution and ground-truth
class labels. Hyper-parameters set for proposed methods
varies depending only on convexity of the problem. Hyper-
parameters for all our algorithms in convex case were
D0 = 0.01, ε = 10−5, Lk = 100, and D0 = 0.1, L0 = 1, ε =
0.002 for all non-convex problems. This hyperparameter
set is chosen experimentally to obtain universal hyperpa-
rameters for broad range of settings. Adam and Adagrad
had batch size equal to 128, learning rate = 0.001 and
β1 = 0.9, β2 = 0.999 — these parameters are frequently
used in various machine learning tasks and are used in
Kingma and Ba (2015). Training set is 60K samples for
MNIST dataset and 50K samples for CIFAR10 dataset.
Dynamics of objective function value is depicted on Fig 1.
Since batch size is variable we also compare algorithms
by epochs (one epoch is one full pass through dataset).
We also performed grid search of hyper-parameters for all
algorithms to compare best versions of the laters. Result
for tuned algorithms by epochs for logitic regression and
fully connected neural network are in Fig 2. Although
Adam performs better than our methods in case of fully
connected network, we show that our algorithms are more
robust to hyper-parameter choice. Final experiment series
is follows. We pick logistic regression for computational
simplicity, choice hyper-parameter set and do 10 epochs
of optimization procedure than average results for each
epoch. Hyper-parameter set for Adam and Adagrad is all
pairs of batch size (8, 32, 64, 128, 256, 512, 1024) and
learning rate (10−5, 10−4, 10−3, 10−2, 10−1, 1). Hyper-
parameter set for our methods is all combinations of D0

(10−5, 10−4, 10−3), L0 (104, 103, 102), ε (10−6, 10−5,
10−4). Median for each epoch (to omit sensibility to out-
liers) with one standart deviation are on Fig. 3. One
can see that underestimate of hyper-parameters for our
algorithms does not lead to substantial deviations and that
all proposed algorithms outperform Adam and Adagrad
in terms of robustness. The code for all algorithms is
available, visit. 2

5. CONCLUSION

In this paper we focus on adaptive methods for stochastic
convex and non-convex optimization. It would be interest-
ing to combine these ideas with the notion of inexact model

2 https://github.com/alexo256/Adaptive-Gradient-Descent-for-
Convex-and-Non-Convex-Stochastic-Optimization
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(a) LR Objective (b) FC Objective

(c) FC Relu Objective (d) CNN Objective

Fig. 1. Experiments by iteration

(a) LR Objective (b) FC Objective

Fig. 2. Experiments with tuned algorithms by epoch

Fig. 3. Robustness to hyperparameters

of the objective function and inexact model Stonyakin
et al. (2019b) of the operator in variational inequali-
ties Dvurechensky et al. (2018c); Gasnikov et al. (2019);

Stonyakin et al. (2019a) to obtain adaptive and universal
methods using stochastic inexact model. We leave this for
future work.

It seems that the results of this paper can be general-
ized on gradient-free method for stochastic optimization
Dvurechensky et al. (2017). In particular, for sum-type
problems. It would be interesting to apply these methods
for stochastic optimization in the context of Wasserstein
barycenters Dvurechensky et al. (2018b); Dvinskikh et al.
(2019); Kroshnin et al. (2019); Uribe et al. (2018).

Note also, that if we replace step 2 in Alg. 1 and Alg. 2
by Lk+1 := Lk/2, take rk+1 ≡ max{2D0/(Lkε), 1} and
forbid Lk+1 to be outside the range [Ld, Lu], where Ld ≡
L0 ≡ Lu mod 2, L0 ∈ [Ld, Lu], then based on union
bound inequality and theory of empirical process Giné and
Nickl (2016) one can prove the desired estimates up to a
logarithmic factors.

See the complete version of this paper at
https://arxiv.org/pdf/1911.08380.pdf for details.
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