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1. EXTENDED ABSTRACT 

Steam methane reformers are key process units which form 

an integral part of every syngas plant. Fault-free reformer 

operation helps to keep plant reliability high and product 

yield optimal; however, reformers, being complex, large-

scale, and high-temperature units, undergo various failures. 

Rapid detection of such failures is crucial to minimize failure 

costs (due to product loss, equipment repair) and prevention 

of unplanned shutdowns. Practical constraints on continuous 

manual monitoring of reformers by plant engineers 

necessitates the usage of automatic fault detection (FD) 

methodologies. The easy availability of process 

measurements and the difficulty of development of high-

fidelity first-principle models of complex systems like 

reformers have motivated development of expert systems 

based on data-driven process monitoring methodologies. 

However, implementation of the plant-wide FD tools in 

chemical process industry has been low - lack of published 

work from industry on industrial FD applications and the 

subsequent dearth of industry-relevant practical guidelines 

can be attributed to the low industrial adoption. In this work, 

the capabilities of the FD methodologies are studied for real 

industrial steam methane reformers operating in hydrogen 

manufacturing plants. The methodologies are evaluated on 2 

important aspects, frequency of false alarms and fault 

sensitivity (minimum fault magnitude that leads to alarms). 

An ideal FD methodology has low false alarm frequency and 

high fault sensitivity (an abnormal change of small 

magnitude in any process variable causes alarm). Fault 

detection performance is tested on simulated faults by 

imposing a 5% abnormal increase in three crucial 

temperature variables. 

For FD model development, 3 years of data with 1-minute 

sampling period is taken. A total of 36 variables/sensor-

measurements are used to build the monitoring expert system. 

Out of the 36 variables, 27 variables are temperature or 

pressure measurements of several high-temperature process 

streams around and within the reformer box. Some of these 

include, amongst others, temperatures of flue gas at several 

locations within the reformer, temperatures at several 

locations in the flue gas-heat recovery section, and plant 

production rate. The rest of the variables include fuel flow, 

PSA recycle flow, combustion air flow into the burners, 

process feed flow, steam flow into the reformer tubes, heat 

content of natural gas, and temperatures of a few reformer 

input streams. During pre-processing, steady-state data are 

extracted from the plant data for implementation of steady-

state-based methods. 

PCA-based FD methodology failed to provide desirable 

performance on test dataset as the faults in 2 of the 3 

variables went undetected. Consequently, external analysis 

methodology was attempted. Kano et. al. proposed external 

analysis for multivariate statistical process monitoring to 

explicitly consider the changes in operating conditions of 

‘main’ or output variables due to changes in ‘external 

variables’ or input variables. Figure (1) gives an overview of 

the method. A PLS model between main variables (reformer 

outputs) and external variables (reformer inputs) is developed 

to decompose main variables into two parts: one part is 

explained by external variables and the other part is not 

explained. PCA is then performed on the unexplained part 

(output residuals) and (99.5%) control limits for SPE and T2 

are determined.  

 

 

Fig. 1. Steps involved in external analysis method 

The fault-detection capability of steady-state external 

analysis for reformer unit was found superior to PCA-based 

approach as only ~2% faults caused the breach of SPE 

control limit for all the three test variables.  A problem 

associated with training models with steady-state operation 

data is that such models can be used for fault detection only 

when the input variables are steady. While it seems 

reasonable to selectively monitor a process for faults only 

when inputs are steady, fault scenarios where abnormality in 

process output leads to changes in process inputs (for 

example, unexpected changes in flue gas temperature can 

affect the reformed gas temperature and the control system 

will manipulate fuel flow to burners to keep the reformed gas 

temperature steady) will not be monitored and the faults will 

remain undetected. When the inputs are undergoing normal 

change and the whole plant is moving from one operation 

state to another, steady-state models, if used, can report high 
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percentage of false fault-alarms; this happens because process 

variables do not maintain steady-state correlations during the 

transient phase when moving from one steady-state condition 

to the other, leading to high SPE values. one such instance 

where the plant experiences normal dynamic changes leading 

to ~10% variations in output temperatures within a few hours 

is shown in Figure  (2). Q statistic, however, flags this normal 

transient period as faulty period. 

 

 

Fig. 2(a). Normal dynamic changes in crucial variables 

 

Fig. 2(b). Q statistic from steady-state external-analysis 

model for data during normal process changes 

To account for the temporal correlations among reformer 

variables, dynamic external analysis was implemented. The 

procedure is similar to that of steady-state external analysis 

except that the input data matrix is replaced by its augmented 

version where past or lagged measurements are treated as 

additional process variables. Dynamic PLS is followed by a 

PCA on output residuals and the 99.5% control limits are 

determined. For the test dataset, ~ 3% faults in crucial 

variables caused the threshold breaches. Thus, the fault 

sensitivity, slightly worse than that of steady-state external 

analysis method, is adequate for reformer unit monitoring. 

The primary motivation for using dynamic variation of the 

external analysis method was to avoid false alarms during 

normal process transients. Figure (3) gives the plots of the 

fault-detection metrics for the normal process data from 

Figure (2b). It can be seen that unlike steady-state external 

analysis, dynamic external analysis results in Q and T2 values 

that are well below the threshold value. Note that this period 

of process data was removed from the training dataset. 

 

 

Fig. 3. Monitoring metrics from testing dynamic external-

analysis model for data during normal process changes 

In this work, it has been shown that external analysis - a 

combination of partial least squares regression and principal 

components analysis - can be effectively used for monitoring 

large-scale industrial steam methane reformers. Emphasis has 

added on the need for the FD methodology to be robust to 

dynamic process transients; in this work this is achieved 

through employment of dynamic variation of the external 

analysis method. 
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