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Abstract:
We propose a new control design for active vibration suppression of flexible structures with
a collocated sensor-actuator pair. The proposed controller is based on the inverse form of a
well-known input zero vibration (ZV) shaper. The inverse ZV shaper is utilized with a serially
interconnected all-pass filter. This way, the appropriate controller frequency response properties
for vibration suppression of collocated flexible systems is achieved, when the controller is applied
in the positive feedback path. We propose two different cost functions to optimize the parameters
of the proposed controller for efficient vibration suppression. The performance of the controller
is investigated in both frequency and time domains through the vibration control of a cantilever
beam model with a collocated piezoelectric sensor-actuator pair. Furthermore, its performance
is compared with a recently improved version of the positive position feedback controller, which
is a state-of-the-art work. It is shown via the simulations that the proposed controller suppresses
vibrations more efficiently.
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1. INTRODUCTION

In many engineering and scientific applications, flexible
structures are attractive due to their advantages such as
light weight and less energy consumption, see e.g. Song
et al. [2006] for civil structures, Tokhi and Azad [2008]
for robotic manipulators and Fleming et al. [2010] for a
scanning probe microscope. However, they have highly
resonant dynamics resulting in vibrations, which avoids
even properly working of a device or machine. To suppress
vibrations in flexible structures, there are two main tech-
niques: (i) active vibration control that utilize sensors, ac-
tuators and controllers, (ii) passive techniques performed
with damping elements without need of power supply.
Active control approach is advantageous for suppressing
the low-frequency vibrations, where passive systems are
not capable due to limited damping characteristics.

An effective approach in active vibration control is to
integrate (locate) smart material sensors and actuators on
the flexible system, constructing a control architecture; see
Chopra [2002]. Among various smart materials, piezoelec-
tric patches, which can be used as both sensor and actu-
ator, are usually preferable due to their fast response and
large strain output (Orszulik and Shan [2012]). Piezoelec-
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tric sensor (PES) and piezoelectric actuator (PEA) pairs
are commonly collocated on the flexible structure for active
vibration control, since it provides better performance,
robustness and easy implementation (Aphale et al. [2007]).

There are various active vibration feedback control meth-
ods for flexible structures with collocated sensors and ac-
tuators. One of the earliest and most well-known methods
is the Positive Position Feedback (PPF) control, which
is a second-order filter applied in the feedback path and
was proposed by Goh and Caughey [1985]. Resonant Con-
trollers and Integral Resonant Controllers (IRC) are other
relatively recent well-known works, see Pota et al. [2002]
and Aphale et al. [2007]. Also, delayed resonant controllers
have been considered in Kim and Brennan [2013] and
Kammer and Olgac [2016]. Among those methods, PPF
approach is the commonly used/implemented one due to
its (i) quick damping characteristics, (ii) insensitivity to
spillover, (iii) easy implementation. Thus, the structure
and design of PPF controllers have been widely studied
and improved; see e.g. Moheimani et al. [2006], Mahmoodi
and Ahmadian [2009] and Omidi and Mahmoodi [2015].

For vibration attenuation of flexible structures, input
(command) shaping is a common technique conventionally
applied in feed-forward path to suppress resonant modes.
Various types of input shapers with lumped delays (e.g.
ZV, ZVD, EI) have been proposed and investigated, see
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Singhose [2009]. Shapers with distributed delays have been
studied recently since they provide better robustness, see
e.g. Vyhĺıdal and Hromč́ık [2015], Alikoç et al. [2016].
Vyhĺıdal et al. [2016] proposed an efficient feedback ar-
chitecture, the inverse of a signal shaper’s dynamics in
the feedback path, for flexible systems maneuvered by an
actuator. Note that the proposed inverse shaper design
architecture is capable of suppression of vibrations caused
by disturbances on the actuator output. However, it is not
able to attenuate the effects of disturbances acting on the
flexible structure, since the flexible part is considered to
be out of the feedback-loop.

In this study, we utilize a well-known input ZV shaper in
its inverse form together with an all-pass filter intercon-
nected in series, for active vibration suppression of flexible
structures with a collocated PES-PEA pair. The proposed
controller is applied in the positive feedback loop. The
proposed control design is inspired from the similarity of
inverse ZV shaper’s frequency response to the classical
PPF controller’s. We provide two different optimization
based methods to parametrize the controller for efficient
vibration suppression. To the best of our knowledge, the
proposed control design is new in the literature for ac-
tive vibration control of collocated flexible structures. The
proposed technique, with utilizing a genetic algorithm for
solving optimization problem, is performed over a real sys-
tem model via simulations, and compared with a recently
proposed PPF controller. The results show that the inverse
shaper design with the proposed optimized parametriza-
tion provides faster and better vibration attenuation.

The paper is organized as follows. Section 2 provides the
problem description with its model, and preliminaries for
PPF control and inverse shaper design. We propose the
new active vibration controller and the methods for its
parametrization in Section 3. Section 4 provides the fre-
quency and the time domain performance of the proposed
controller over a case study. Section 5 concludes the paper.

2. PRELIMINARIES

In this section, we present the cantilever beam, which is a
widely studied benchmark flexible structure, and its mod-
eling. Then we provide a brief summary of the state-of-the-
art work, PPF control design, for suppression of vibrations
on flexible structures with collocated actuators and sen-
sors. Finally, we present the conventional ZV shaper design
and its inverse form application in the feedback loop, which
is utilized in this work for the vibration suppression of
flexible structures with a collocated PES-PEA pair.

2.1 Problem Description and Modeling

We study a typical smart flexible structure, in particular
a flexible cantilever beam with a collocated PES-PEA
pair, shown in Fig. 1. The beam is clamped at one end
and is free at the other end, i.e. one end is fixed while
the other is moving freely. The beam is assumed to be a
Euler-Bernoulli beam, i.e. the beam deflection angle (or
slope) is small enough and all of the beam sections are
perpendicular to the neutral axis. The PES-PEA pair is
attached on the beam. The displacement in y-axis, i.e.
y(r, t), which corresponds to the amplitude of vibrations

Fig. 1. The scheme of a cantilever beam with a collocated
piezoelectric sensor-actuator pair

is measured by the induced voltage Vo by the PES. The
bending moment M(r, t), which is the input to the flexible
system, is generated by the applied voltage Vi by the PEA
to suppress the vibrations.

The general motion equation of a Euler-Bernoulli beam
is a fourth-order partial differential equation, from which
y(r, t) can be solved numerically with respect to the rele-
vant boundary conditions, see Moheimani et al. [2003]. The
closed-form solution is possible when the beam is assumed
to have a uniform mass distribution and a constant cross-
sectional area. The exact solution is obtained utilizing
the modal analysis technique in Halim [2002] with infinite
number of mode shape functions described in Meirovitch
[1975]. A more efficient approach based on finite element
model, which is valid even for modeling non-homogeneous
beams and includes the effect of collocated PES-PEA pair,
is given in Orszulik and Shan [2011] and Orszulik and Shan
[2012]. This way, the transfer function from Vi to Vo, i.e.
from M(r, t) to y(r, t), is given as

G(s) =

∞∑
i=1

ki
s2 + 2ζiωis+ ω2

i

(1)

where ki is the gain, ζi is the damping ratio, ωi is the
frequency.

Indeed, the transfer function (1) of the considered flexible
system has infinite number of modes. Obtaining such a
model and control design over this model is theoretically
challenging. However, in practice, a certain frequency
range is of interest, and the modes in this range are
usually considered for modeling and control design. In that
manner, for practical modeling of flexible structures, (1)
is truncated to N modes of interest as

G(s) =

N∑
i=1

ki
s2 + 2ζiωis+ ω2

i

+D, (2)

where D is a constant feedthrough term.

Note that the term D in truncated transfer function (2)
has an important role. Truncation process yields altering
the actual zeros of (1) with the exclusion of high frequency
modes. This undesired fact could be corrected with D for
accurate modeling; see e.g. Moheimani [2000], Halim [2002]
for different approaches on determination of D.

2.2 An Overview of PPF Control for Collocated Flexible
Structures

PPF control is a pioneer design method for vibration
suppression of flexible structures, proposed by Goh and
Caughey [1985]. The block diagram of a PPF controlled
flexible system with a collocated sensor-actuator pair is
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Fig. 2. Block diagram of a flexible system with a collocated
sensor-actuator pair controlled with PPF

given in Fig. 2, see Mahmoodi et al. [2010], where w is the
disturbance and y is the displacement of the beam. G(s)
represents the flexible structure transfer function given by
(2). C(s) is the PPF controller transfer function.

The main idea of PPF proposed in Goh and Caughey
[1985] is to suppress the vibrations via designing a second-
order filter C(s) with a large damping as compared to the
system damping. This approach was extended in Fanson
and Caughey [1990] to multi-modal design, such that the
PPF controller transfer function corresponds to

C(s) =

Ñ∑
i=1

giω
2
ci

s2 + 2ζciωcis+ ω2
ci

, (3)

where gi, ζci and ωci are the controller gain, damping ratio
and frequency, respectively, determined to compensate
the ith mode of the flexible system (1). Note that Ñ is
the number of targeted resonant modes in the controller,
typically chosen Ñ < N for lower computational load in
design. Design procedure for determining the parameters
of (3) is summarized as follows: (i) Select ζci > ζi,
(ii) Select ωci ≈ ωi, (iii) Determine gi’s to maximize
the closed-loop system damping by placing the closed-
loop poles. An alternative approach to determine the
parameters in (3) is H∞-optimization based, namely

min
gi,ζci,ωci

‖ T (jω) ‖, ∀ω ∈ R (4)

where T (s) stands for the closed-loop transfer function
from w to y in Fig. 2; see Moheimani et al. [2006] and
Orszulik and Shan [2012] using a nonlinear search and a
genetic algorithm, respectively, for the solution.

The vibration suppression performance of the PPF to
steady-state disturbances has been enhanced by Mah-
moodi and Ahmadian [2009], utilizing first-order filters in
feedback path additionally to (3). This approach was gen-
eralized to optimization based multi-mode design in Omidi
and Mahmoodi [2015], so called Multi-mode Modified PPF
(MMPPF), with the controller transfer function

C(s) =

Ñ∑
i=1

α2
i

s2 + 2ζciωcis+ ω2
ci

+
β2
i

s+ ωci
. (5)

Two different optimization methods for MMPPF con-
troller design was proposed: LQR and M -norm optimiza-
tion. It is shown that the M-norm optimized MMPPF is
advantageous in terms of calculation simplicity and the
power consumption. The idea is to determine the param-
eters in (5) which minimizes the cost function

M =

N∑
i=1

‖ ai T (jωi) ‖ (6)

Fig. 3. Closed-loop system with inverse signal shaper

where ai is the pre-selected weighting constant for the
ith resonant frequency ωi, regarding to its importance
for the designer. Clearly, by minimizing (6), it is aimed
to reduce largest displacement amplitudes, i.e. vibrations,
which occurs at system resonant frequencies.

2.3 Preliminaries on Input Shaper Design for Vibration
Suppression

The main idea of input shaper design is feed-forward
filtering (shaping) the reference command applied to an
actuator mounted to a flexible structure. A classical ex-
ample for such a system is a crane with a suspended load.
The task of the shaper S(s) is to move the actuator in such
a way that the flexible system G(s) is not excited. S(s) is
typically parametrized such that its dominant zeros are
placed on a resonant mode,

rsi = −ζsiωsi ± jωsi
√

1− ζ2si (7)

of G(s) in the open-loop.

A well-known and widely-used shaper is the ZV shaper
represented by the transfer function

S(s) = A+ (1−A)e−sτ (8)

where the gain and the delay are parametrized as

A =
eζsiωsiπ/(ωsi

√
1−ζ2

si
)

1 + eζsiωsiπ/ωsi

√
1−ζ2

si

, τ =
π

ωsi
√

1− ζ2si
, (9)

respectively, to compensate the resonant mode rsi of G(s),
see Singhose et al. [1994].

Note that the shaper design in open-loop control is not able
to cancel the vibrations caused by disturbances acting on
the actuator. To overcome this disadvantage, the feedback
architecture for the shaper design shown in Fig. 3 has been
proposed in Vyhĺıdal et al. [2016]. The main motivation for
this architecture is to cancel the effect of the disturbance w
on the residual vibrations of the flexible sub-system G(s),
as well as the effect of the reference input r. To see this
fact, consider the transfer functions,

Try(s) =
S(s)FC(s)FA(s)

S(s) + FC(s)FA(s)
G(s), (10)

Twy(s) =
S(s)

S(s) + FC(s)FA(s)
G(s) (11)

from the reference and the disturbance, respectively, to
the output y of the flexible sub-system. It is clear that
the zeros of the shaper S(s), which are also the zeros of
the closed-loop transfer functions (10) and (11), can be
assigned to cancel the resonant mode (7) of G(s).

The ZV shaper (8) can be utilized in the feedback loop in
Fig. 3 with its inverse form, which has the transfer function
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S−1(s) =
z(s)

v(s)
=

1

A+ (1−A)e−sτ
, (12)

and is easy to implement, see Vyhĺıdal et al. [2016]. Indeed,
the parametrization of Inverse ZV (IZV) shaper is also as
given in (9) to cancel a single resonant mode (7).

In the following section, we present the reasoning of
utilization of IZV shaper with an all-pass filter and its
parametrization via optimization for active vibration sup-
pression of flexible structures with a collocated sensor-
actuator pair, which are modeled by (2).

3. INVERSE ZV SHAPER BASED CONTROL FOR
COLLOCATED FLEXIBLE STRUCTURES

In this section, we first present over an example, the
similarity in the frequency responses of the PPF controller
and the IZV shaper. Inspired from that, we propose a new
controller, namely a filtered IZV shaper, also applied in
the positive feedback path to suppress vibrations in flexible
structures with a collocated sensor-actuator pair. Then, we
present two different optimization approaches, with newly
introduced cost functions, to parametrize the proposed
controller for efficient vibration suppression.

3.1 Motivating Example and the Proposed Controller

Consider the transfer function of the PPF controller in
(3) for a single mode (Ñ = 1) with the gain gci = 1,
the damping ratio ζc1 = 0.1 and the frequency ωc1 = 5
rad/s. Moreover, consider the IZV shaper in (12), where
A and τ are parametrized as in (9) for the same damping
ratio and frequency values. The frequency responses of the
considered PPF controller and IZV shaper are given in
Fig. 4.

Notice that the magnitude peak of the IZV shaper appears
at the design frequency ωc1 = 5 rad/s as it happens for
the PPF controller. This is the main desired fact in control
design for Fig. 2 to suppress vibrations at the resonant
frequency caused by disturbances. On the other hand, the
phase of the IZV shaper is 0◦ while the phase of the PPF
controller is −90◦ at ω = ωc1. It is shown in Kwak and
Heo [2007] that the phase of the controller C(s) should
be around −90◦ at the resonant frequency. To do so, we
utilize an all-pass filter interconnected to the IZV shaper in
series, which only shifts the phase response of IZV shaper
to −90◦ at a resonant frequency ωi, while keeping the
magnitude response same; see dashed lines in Fig. 4. Thus,
we propose the Filtered IZV (FIZV) controller described
by the transfer function

C(s) =

M∑
i=1

S−1i (s)
−s+ ωi
s+ ωi

, (13)

where

S−1i (s) =
γi

Ai + (1−Ai)e−sτi
, (14)

applied in the positive feedback path as in Fig. 2, for multi-
mode vibration suppression of the considered collocated
flexible structure modeled by (2) with resonant frequencies
ωi. The IZV shaper to be designed for the corresponding
resonant modes are interconnected in parallel similarly as
in the multi-mode design of PPF controller.
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Fig. 4. The frequency responses of the PPF controller, IZV
shaper and its interconnection with an all-pass filter

Note that the feedback architectures for active vibration
control design in Fig. 2 and for the conventional inverse
shaper application in Fig. 3 are different. For flexible
structures with collocated PES-PEA pair, the flexible
system transfer function is in the feedback loop, thus the
closed-loop dynamics are affected by the flexible system
modes. Besides, the architecture in Fig. 3 is not capable of
suppressing the vibrations caused by disturbances acting
on flexible structure and exciting its resonant modes at
most, which is actually the main goal of this paper for the
described problem. Thus, the IZV shaper terms (14) in the
proposed FIZV controller (13) additionally have the gain
parameters γi compared to the classic IZV shaper (12). In
design, at least those gains should be determined properly
to suppress vibrations, even if Ai and τi are parametrized
as described in Section 2.3.

3.2 Parametrization of the FIZV Controller

Our aim is to parametrize the FIZV controller given by
(13)-(14) applied in positive feedback path to suppress
the resonant modes of (2). Note that each all-pass filter
in (13) is parametrized with the corresponding resonant
mode ωi due to the needed phase shift explained in the
previous subsection. Thus, it remains to parametrize the
IZV shaper terms given by (14). For this purpose, we
present two norm-based optimization approaches for the
closed-loop transfer function T (s) of the positive feedback
loop in Fig. 2 with G(s) in (2) and C(s) in (13)-(14).

First, we consider a modified version of the M -norm
optimization method with the given cost function (6). For
parametrization of (13)-(14), we describe the optimization
problem

min
γi

N∑
i=1

ai ‖ T (jωi) ‖ + a0 T (0) (15)

where Ai and τi are parametrized as in (9) for ωsi =
ωi and a pre-selected small ζsi value. Such selection of
controller frequency and damping ratio was originally
offered in Omidi and Mahmoodi [2015] for MMPPF design.
Differently, we introduce an additional term, the weighted
DC-gain term -a0T (0)- in the cost function of (15) to
achieve better vibration suppression at low frequencies.
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Table 1. System parameters in (2)

ki ζi ωi

Mode 1 5.4681 0.0006 10.5833
Mode 2 108.9400 0.0033 65.5031
Mode 3 322.9974 0.0091 181.8815
Mode 4 153.8421 0.0177 354.3648

Table 2. Parameters of MMPPF (5) and IZV
(14) controllers found by (15) and (16).

M-norm i = 1 i = 2

MMPPF α1 = 5.5165 α2 = 32.9111
β1 = 0.1015 β2 = 1.0510

FIZV k1 = 0.2231 k2 = 0.2750

H∞-norm i = 1 i = 2

MMPPF α1 = 10.041 α2 = 46.3298
β1 = 0.1365 β2 = 0.0008
ζc1 = 0.1971 ζc2 = 0.1160

FIZV γ1 = 0.2044 γ2 = 0.6377
ζs1 = 0.2044 ζs2 = 0.1441

Second, we consider a modified version of the H∞-norm
optimization given by (4). For parametrization of (14), we
describe the optimization problem

min
γi,ζsi

Ñ∑
i=1

bi ‖ T (s)Hi(s) ‖∞ + b0 T (0) (16)

where Ai and τi are parametrized as in (9) for ωsi = ωi
and the optimization variable ζsi, bi is the pre-selected
weighting constant for the ith resonant mode, and Hi(s)
is a pre-determined band-pass filter for the ith resonant
mode. The weighted DC-gain term -b0T (0)- is introduced
here for the same reason in M -norm optimization. More-
over, the band-pass filters are utilized in the cost function
of (16) additionally, compared to (4). Hi(s) is chosen in
such a way that the resonant mode ωi is in the range of
its bandwidth. This way, the desired frequency range is
dominated to achieve a better sub-optimal solution of the
non-convex problem (16) searched by an algorithm. We
use a genetic algorithm for the parameter search to solve
the described optimization problems (15) and (16) in the
following section.

4. NUMERICAL SIMULATIONS

In this section, we consider the model of a real cantilever
beam with a collocated PES-PEA pair studied in Orszulik
and Shan [2012]. The flexible system has been modeled
precisely by (2) for N = 4, i.e. for four resonant modes,
with the parameters given in Table 1.

For the given system, we perform the design of pro-
posed FIZV controller (13)-(14) and also the design of the
MMPPF controller (5) proposed in Omidi and Mahmoodi
[2015], with the presented M -norm and H∞-norm opti-
mization methods in Section 3.2. In design, we target the
first two resonant modes of the system given in Table 1,
thus Ñ = 2 for both controllers. The controller parameters
found by M -norm optimization in (15) and H∞-norm
optimization in (16) using the standard genetic algorithm
of MATLAB, are given in Table 2. All the controller
frequencies are determined as ωci = ωsi = ωi in the same
way of the conventional design approach. For the M -norm
optimization based controllers, ζci = ζsi = 0.01 are pre-
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Fig. 5. The frequency responses of the flexible system,
and the closed-loop systems controlled with FIZV
and MMPPF controllers parametrized via M -norm
optimization (15)
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Fig. 6. The frequency responses of the flexible system,
and the closed-loop systems controlled with FIZV
and MMPPF controllers parametrized via H∞-norm
optimization (16)

selected. The frequency responses of the open-loop system
G(s), and the closed-loop systems controlled with FIZV
and MMPPF parametrized via the presented M -norm and
H∞-norm optimization techniques are given in Fig. 5 and
Fig. 6, respectively. The following was observed from the
frequency responses in Fig. 5 and Fig. 6.

• All controllers designed via the given optimization
approaches are able to suppress the targeted two
resonant modes.

• M -norm based design provides better suppression at
targeted resonant modes, while H∞-norm provides
suppression for wider range of frequencies.

• There is not a remarkable difference of M -norm
based designed FIZV and MMPPF controllers in
suppressing the resonant modes.

• Both controllers designed via M -norm optimization
do not suppress the 3rd resonant mode. However,
for H∞-norm based design, FIZV suppresses the 3rd

resonant mode while MMPPF does not.
• Considering H∞-norm based designs, the FIZV con-

troller results in better suppression at resonant fre-
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Fig. 8. The system responses under impulsive disturbance
without control and with controls designed via H∞-
norm optimization

quencies and generally all over the frequency range
compared to the MMPPF controller.

From the observations above, it is concluded that the
FIZV controller provides good suppression of resonant
modes. Especially for the H∞-norm optimization based
design case, the FIZV controller performs better than
the MMPPF controller. Besides, less parameters are to
be optimized for FIZV controller design compared to the
MMPPF controller design, in both optimization methods.

Remark 1. Note that the frequency response of the system
with FIZV controllers has troughs continuously, and also
more frequently for higher frequencies. This fact, which
occurs due to the delay term, i.e. the periodicity of e−sτi

terms in the closed-loop transfer functions, may yield in
better suppression of high frequency resonant modes.

We also illustrate the time-domain performance of the
designed controllers when an impulsive and a periodic
disturbance act on the flexible system. First, to simulate
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Fig. 9. The closed-loop system responses under periodic
disturbance with controls via M -norm optimization
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Fig. 10. The closed-loop system responses under periodic
disturbance with controls via H∞-norm optimization

the impulsive disturbance, we assume that an impulsive
voltage of 0.17 V is applied at t = 0 to the PEA on
the beam. The system response without control and the
closed-loop system responses are given in Fig. 7 and Fig. 8
with controllers designed via M -norm based and H∞-
norm based optimization methods, respectively. For both
methods, but especially for M -norm optimization, FIZV
controller suppresses the vibrations faster.

To simulate the periodic disturbance, we assume that a
periodic voltage disturbance is applied to the PEA on the
beam. The periodic disturbance is characterized as w(t) =
2sin(ω1t) + 2sin(ω2t), where ω1 and ω2 are the frequency
values of the first two resonant modes of the flexible
system given in Table 1. The closed-loop system responses
are given in Fig. 9 and Fig. 10 for controllers designed
via M -norm based and H∞-norm based optimization
methods, respectively. For both methods, but especially
for H∞-norm optimization, FIZV controller suppresses the
vibrations better. Moreover, FIZV controller suppresses
the vibrations faster than MMPPF controller in the M -
norm optimization design case.
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From the simulations in time-domain provided above, we
conclude that the proposed FIZV controller has also good
time-domain characteristics, and dominates the MMPPF
controller.

Remark 2. Note that MMPPF controllers designed via
the proposed optimization criteria in (15) and (16) pro-
vide better suppression performance compared to the
previously proposed optimization criteria in (6) and (4).
However, we skip to demonstrate that contribution over
MMPPF controller design due to space limitations and our
main focus on demonstrating the FIZV controller proposed
in this study.

5. CONCLUSION

A new active vibration control design applied with positive
feedback is proposed for flexible structures with a collo-
cated PES-PEA pair. The proposed controller is based on
the inverse form of a well-known ZV shaper, namely its se-
rial interconnection with an all-pass filter, which we named
as FIZV controller. The implementation of the FIZV con-
troller is easy due its simple structure with lumped delays,
as known from the classical input shaper design. New
cost functions are introduced for the M -norm and H∞-
norm optimization based designs to parametrize the FIZV
controller for better vibration suppression. Note that the
proposed cost functions for optimization approaches can
also be utilized to parametrize the other kinds of active
vibration controllers. The effective vibration suppression
characteristics of the FIZV controller is demonstrated over
a real flexible system model, and compared with a recently
proposed MMPPF controller. Numerical simulations show
also that the FIZV controller provides better performance
for vibration suppression as compared to the MMPPF con-
troller, even it has a simpler form. In feature research, the
effects of the FIZV controller on the closed-loop stability
and on the robustness will be studied.
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