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Abstract: This paper addresses a quantized consensus problem of general linear multi-agent
systems in a symmetric network under an event-triggered scheme. Firstly, a distributed event-
triggered strategy is developed with a dynamic threshold to reduce the unnecessary control
update. Then, based on absolute quantized state measurements, a distributed controller is
proposed and then a consensus criterion is derived, which ensures bounded consensus of linear
multi-agent systems. The Zeno behavior is also successfully excluded. Finally, a numerical
simulation is presented to validate theoretical results.
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1. INTRODUCTION

Over the past decade, consensus of multi-agent systems
(MASs), as a fundamental problem of cooperative control,
has attracted considerable attention due to its wide ap-
plications in unmanned air vehicles, robotic systems and
sensor networks (Cao et al. (2013); He et al. (2017)).
A crucial issue is how to design an efficient distributed
control algorithm such that all agents are able to achieve
a common quantity of interest.

Traditional control strategies assume that continuous mea-
surements and continuous update of the controller are
available (Li et al. (2013); He et al. (2020)), which is
known as the time-scheduled strategy. However, due to
the limitation of computation and storage in practice, the
event-scheduled strategy has been proposed to save the
limited resources. Many practical applications illustrate
that event-scheduled strategy can remarkably reduce con-
sumption of resources, such as sound control switches,
temperature valves. Great efforts have been made to study
the consensus of MASs under event-triggered strategies
(Dimarogonas et al. (2012); Xu et al. (2017); Peng et al.
(2017); Lv et al. (2018); He et al. (2019)). In 2012, Di-
marogonas et al. (2012) studied the average consensus of
MASs in which both centralized and distributed event-
triggered schemes were proposed. Since then, different
kinds of event-triggering strategies have been developed,
such as model-based event-triggering strategies (Xu et al.
(2017)), self-triggered event-triggering strategies (Peng
et al. (2017)) and event-triggering strategies based on
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combinational measurements (Lv et al. (2018); Xu et al.
(2019b)).

In additional, with the development of the digital commu-
nication technology, measurements needs to be quantized
when communication constraints and communication load
are taken into consideration (Delchamps (2018)). Studies
on quantized consensus of discrete-time single-integrator
systems were investigated based on uniform quantizer and
logarithmic quantizer in Frasca et al. (2010) and Maestrel-
li et al. (2016), respectively. Continuous-time quantized
consensus was solved by introducing the Krasovskii so-
lution of discontinuous differential equation (DDE) to
solve the discontinuity of the quantization error (Fras-
ca (2010)). Bounded consensus of continuous-time and
discrete-time single-integral systems with an undirected
topology was addressed under logarithmic quantization,
respectively (Liu et al. (2013)). It is worth noting that
the results mentioned above focus on the single-integral
systems. For general linear systems, an observer-based
consensus protocol was proposed to guarantee quantized
consensus of general linear systems in Ma et al. (2018).

Due to the communication constraints, it is essential to
alleviate the resource consumption on communication and
computation. The combination of the quantized control
and the event-triggered strategy provides a promising way
to solve the problem. Quantized consensus with event-
triggering strategies of single-integral systems and general
linear systems were investigated in Liu et al. (2016) and
Wu et al. (2018), respectively. Quantization of relative
state measurements was considered in above mentioned
literature. However, in a remote control mode, the states
need to be quantized before being transmitted to the
neighbors in practice. Thus the controller can only obtain
absolute quantized state measurements. Based on absolute
logarithmic quantization, synchronization of master-slave
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system under a dynamic event-triggered strategy was
addressed in He et al. (2019). Following this line, this paper
further studies the quantized consensus of networked linear
systems under a state-dependent dynamic event-triggered
strategy based on absolute quantized state measurements.

In this paper, an effective event-triggered scheme and
a consensus protocol based on absolute quantized state
measurements are proposed firstly. Compared to the event-
triggered condition in Wu et al. (2018), our proposed
state-dependent triggering condition is more flexible. In
addition, a sufficient condition of the quantized consensus
for general linear systems is derived, under which bounded
consensus is achieved, due to the quantization error, and
the upper bound of the error is also given. Finally, the
theoretical analysis for the exclusion of the Zeno behavior
is presented.

2. PRELIMINARIES AND PROBLEM STATEMENT

In this section, some basic concepts about algebraic graph
theory, logarithmic quantization and DDE are introduced.

2.1 Preliminaries

Let G = {V , E ,A} denote a graph consisting of a series
of vertices V = {v1, v2, · · · , vN}, a series of directed edges
E ⊆ V × V , and an adjacency matrix A = (aij)N×N . An
ordered pair of vertices (vj , vi) can be called an edge eij if
and only if aij > 0, where eij ∈ E . Particularly, a graph is
called an undirected graph if and only if eij ∈ E ⇔ eji ∈ E ,
in which A = [aij ]N×N , aij = aji = 1 if eij ∈ E ,
and aij = 0 otherwise. The in-degree matrix is denoted
as D = diag{d1, d2, · · · , dN}, where di =

∑

j∈Ni
aij .

Ni = {j ∈ V | eij ∈ E} denotes the neighbor index set
of agent i. The Laplacian matrix L = (lij)N×N for graph
G is defined as L = D −A.

A map from R to a finite set Γ of quantized levels q(·) :
R → Γ is called a quantizer. A uniform quantizer can be
defined as follows

q(x) = α⌊
x

α
+

1

2
⌋ (1)

where α > 0 is the gain of uniform quantizer. Define the
quantization error as the deviation between q(x) and x:

q(x)− x = ∆u. (2)

From (1) and (2), we have ∆u ∈ [−α
2 ,

α
2 ). Thus, the

quantization error satisfies |∆u| ≤
α
2 for all x ∈ R.

Next, we will introduce the concept of the Krasovskii
solution of DDE. For an ordinary function:

ẋ(t) = F (x(t)), x(0) = x0 ∈ R (3)

where F (x(t)) is right hand discontinous. There may not
exist a classic solution of (3). Thus, Ceragioli (2000)
introduced the Krasovskii solution. For almost t ∈ [t0, t1] ∈
R, if F (x(t)) satisfies the following differential inclusion

dx

dt
∈ K[F (x(t))] ,

⋂

ζ>0

c̄oF (B(x, ζ)) (4)

where c̄o represents the convex closure, and B(x, ζ) denotes
an open ball centered at x, whose radius is ζ. Then an
absolutely continuous map x : [t0, t1] → R

d is defined as
a Krasovskii solution of (3). Notably, the measurability

and boundedness of the function F (·) is the necessary and
sufficient condition of the existence of a local Krasovskii
solution. For more details on DDE, it can be found in
Ceragioli (2000) and references therein.

2.2 Problem Statement

Consider a group of agents comprised of N identical
agents, which is described by

ẋi(t) = Axi(t) +Bui(t) i = 1, 2, · · · , N. (5)

where xi(t) ∈ R
n is the state of agent i, and ui(t) ∈ R

r is
the control input of agent i. A ∈ R

n×n and B ∈ R
n×r are

given constant matrices.

Some assumptions and definitions are presented for subse-
quent analysis.

Assumption 1. The pair (A,B) is stabilizable.

Based on Assumption 1, for given positive constant ξ and
θ, there exists a positive symmetric matrix P ∈ Rn×n

satisfying the following inequality

PA+ATP − ξPBBTP + θI < 0. (6)

Assumption 2. For the MAS (5), the communication graph
G is undirected and connected.

The object of this paper is to design an effective quantized
consensus protocol under an event-triggered scheme to
achieve bounded consensus. The definition of bounded
consensus is given as follows.

Definition 1. The linear multi-agent system (5) is said to
be achieved bounded consensus if there exists a constant
ι > 0 such that

lim
t→∞

‖xi(t)− xj(t)‖ ≤ ι, i, j = 1, 2, · · · , N. (7)

3. MAIN RESULTS

In this section, firstly, a consensus criterion of a general
linear MAS is derived based on a proposed event-triggered
consensus protocol with quantized absolute state mea-
surements. Then the exclusion of the Zeno behavior is
discussed.

3.1 A dynamic event-triggered scheme

A dynamic event-triggered strategy with the consideration
of quantization is introduced in this subsection. Denote the
event-triggering time sequence of the ith agent as tik, k =
0, 1, . . .. Consider the quantized combining measurement
of agent i

ϕi(t) =
∑

j∈Ni

[q(xi(t))− q(xj(t))]

=
∑

j∈Ni

[xi(t) + ∆i(t)− xj(t)−∆j(t)] (8)

where q(xi(t)) and q(xj(t)) are the quantization of xi(t)
and xj(t), ∆i(t),∆j(t) denote the quantized errors of
agents i and j, respectively. The measurement error of
agent i is defined as follows

eqi (t) =ϕi(t
i
k)− ϕi(t). (9)
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The event-triggering time sequence for agent i is given as
{

ti0 = 0,

tik+1 = inf
r>tk

{r|f(eqi (t), ϕi(t
i
k)) > 0, t ∈ [tk, r)}

(10)

where f(eqi (t), ϕi(t
i
k)) is the triggering function with the

form

f(eqi (t), ϕi(t
i
k)) =‖Γ‖‖eqi (t)‖

2 − µ2‖Γ‖‖ϕi(t
i
k)‖

2

− γe−ρt − τ (11)

where eqi (t) is the measurement error defined in (9), Γ =
PBBTP , 0 < µ < 1, ρ > 0, γ > 0 and τ > 0, in which µ
will be determined later.

Remark 1. The event-triggering function (11) depends on
the quantized combining measurements ϕi(t

i
k) of agent i,

the exponential decay term γe−ρt and the constant τ .
Compared with Wu et al. (2018), the triggering condi-
tion is relevant to the combining measurements, which
is more flexible for MAS (5). It is worth noting that the
threshold in the triggering condition is dynamic due to the
exponential decay function, which could potentially reduce
more communication resources compared with static one
in Zhang et al. (2016).

The quantized event-triggered consensus protocol of agent
i during two adjacent triggering instants [tik, t

i
k+1) is de-

fined as

ui(t) =Kϕi(t
i
k) (12)

where K is the feedback gain matrix, which takes the form
of K = −BTP .

3.2 Consensus criteria

Taking (12) into (5), the following closed loop system can
be obtained

ẋi(t) =Axi(t) +BKϕi(t
i
k)

=Axi(t) +BK(eqi (t) + ϕi(t)), t ∈ [tik, t
i
k+1). (13)

Denote the average states of the MAS at t as x̄(t) =

1/N
∑N

i=1 xi(t). Since 1T
NL = 0, one has

˙̄x(t) =1/N
N
∑

i=1

(Axi(t) +BKϕ(tik))

=1/N
N
∑

i=1

(Axi(t) +BK(eqi (t) + ϕi(t)))

=1/N [(1T
N ⊗A)x(t) + (1T

N ⊗BK)eq(t)

+ (1T
NL ⊗BK)x(t) + (1T

NL ⊗BK)∆(t)]

=Ax̄(t) + 1/N(1T
N ⊗BK)eq(t). (14)

Define δi(t) = xi(t)− x̄(t). Then (8) can be rewritten as

ϕi(t) =
∑

j∈Ni

[δi(t)− δj(t) + ∆i(t)−∆j(t)]. (15)

Taking the derivative of δi(t) for t ∈ [tik, t
i
k+1) yields

δ̇i(t) =Aδi(t) +BK(eqi (t) + ϕi(t))− 1/N(1T
N ⊗BK)eq(t).

(16)

According to (15), one has

δ̇(t) =(IN ⊗A+ L ⊗BK)δ(t) + (L ⊗BK)∆(t)

+ ((IN − 1/N1N1T
N )⊗BK)eq(t) (17)

where δ(t) = col(δ1(t), δ2(t), . . . , δN ), ∆(t) = col(∆1(t),
∆2(t), . . . ,∆N (t)), eq(t) = col(eq1(t), e

q
2(t), . . . , e

q
N (t)), and

ϕ(t) has the compact form

ϕ(t) = (L ⊗ IN )δ(t) + (L ⊗ IN )∆(t). (18)
Note that (17) is a DDE. Hence according to (4), a
complete Krasovskii solution to the following differential
inclusion exists

δ̇(t) ∈(IN ⊗A+ L ⊗BK)δ(t) + (L ⊗BK)K(∆(t))

+ (M ⊗BK)eq(t) (19)

where M = IN − 1/N1N1T
N .

Choose ν(t) satisfying ν(t) ∈ K(∆(t)). It is easy to conduct
that ‖ν(t)‖ ≤ Nnα

2 . Thus (19) can be rewritten as

δ̇(t) =(IN ⊗A+ L ⊗BK)δ(t) + (L ⊗BK)ν(t)

+ (M ⊗BK)eq(t). (20)

Theorem 1. Under Assumptions 1 and 2, for given A, B,
if there exist positive constants κ1, κ2 such that

1− p−
κ2
2
|1− 2q| > 0 (21)

where p = κ1

2 + 2µ2

κ1(1−µ2) and q = 2µ2

κ1(1−µ2) . Then the MAS

(5) achieves bounded consensus, and the error system (20)
converges exponentially to the set M

M ={δ(t) ∈ R
n|‖δ(t)‖ ≤

√

2λmax(L ⊗ P )

θλ22λmin(P )
Ω} (22)

where Ω = q̃λ2N‖Γ‖( (N−1)nα
2 )2+ 2N

κ1(1−µ2)(γ+τ), q̃ = q+ 2
κ2
,

λ2 and λN denote the smallest nonzero eigenvalue and
maximum eigenvalue of L, respectively.

Proof. Consider the following Lyapunov function candi-
date

V (t) =
1

2
δT (t)(L ⊗ P )δ(t). (23)

Since K = −BTP , taking the derivative of V (t) with
respect to t yields

V̇ (t) =δT (t)(L ⊗ P )[(IN ⊗A− L⊗BBTP )δ(t)

− (L ⊗BBTP )ν(t) − (M ⊗BBTP )eq(t)]

=δT (t)(L ⊗ PA− L2 ⊗ PBBTP )δ(t)

− δT (t)(L2 ⊗ PBBTP )ν(t)

− δT (t)(LM ⊗ PBBTP )eq(t). (24)
Note that LM = L. For a constant κ1 > 0, the following
inequality can be conducted

− δT (t)(LM ⊗ PBBTP )eq(t)

=− δT (t)(

√

κ1
2
L ⊗ PB)(

√

2

κ1
IN ⊗BTP )eq(t)

≤
κ1
2
δT (t)(L2 ⊗ PBBTP )δ(t)

+
2

κ1
(eq(t))T (IN ⊗ PBBTP )eq(t). (25)

Since |‖ϕi(t
i
k)‖

2 − ‖ϕi(t)‖2| ≤ ‖eqi (t)‖
2, according to (9),

(10) and (11), we have

‖Γ‖‖ϕi(t
i
k)‖

2 ≤
‖Γ‖‖ϕi(t)‖

2 + γe−ρt + τ

1− µ2
(26)

According to (10) and (11), the inequality (25) can be
rewritten as
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κ1
2
δT (t)(L2 ⊗ PBBTP )δ(t)

+
2

κ1
(eq(t))T (IN ⊗ PBBTP )eq(t)

≤
κ1
2
δT (t)(L2 ⊗ PBBTP )δ(t)

+
2µ2

κ1(1− µ2)
ϕT (t)(IN ⊗ PBBTP )ϕ(t)

+
2N

κ1(1− µ2)
(γe−ρt + τ)

≤(
κ1
2

+
2µ2

κ1(1− µ2)
)δT (t)(L2 ⊗ PBBTP )δ(t)

+
2µ2

κ1(1− µ2)
[2δT (t)(L2 ⊗ PBBTP )ν(t)

+ νT (t)(L2 ⊗ PBBTP )ν(t)]

+
2N

κ1(1− µ2)
(γe−ρt + τ). (27)

Substituting (27) into (24) yields

V̇ (t) ≤δT (t)(L ⊗
PA+ATP

2
− (1 − p)(L2 ⊗ Γ))δ(t)

− (1 − 2q)δT (t)(L2 ⊗ Γ)ν(t)

+ qνT (t)(L2 ⊗ Γ)ν(t)

+
2N

κ1(1− µ2)
(γe−ρt + τ) (28)

where p, q is defined in Theorem 1.

Similar to (25), there exist κ2 > 0 such that

− (1− 2q)δT (t)(L2 ⊗ Γ)ν(t)

≤|1− 2q|[
κ2
2
δT (t)(L2 ⊗ Γ)δ(t)

+
2

κ2
νT (t)(L2 ⊗ Γ)ν(t)]. (29)

Thus, the inequality (28) can be rewritten as

V̇ (t) ≤δT (t)(L ⊗
PA+ATP

2
− p̃(L2 ⊗ Γ))δ(t)

+ q̃νT (t)(L2 ⊗ Γ)ν(t)

+
2N

κ1(1 − µ2)
(γe−ρt + τ) (30)

where p̃ = 1− p− κ2

2 |1− 2q|, q̃ = q + 2
κ2
.

Under Assumption 1, denote λ1, λ2, ..., λN as the eigenval-
ues of matrix L, satisfying 0 = λ1 < λ2 ≤ λ3... ≤ λN .
Since L is symmetric, there exists an orthogonal matrix U
such that

UTLU = J = diag{λ1, λ2, ..., λN} (31)
where U satisfies UTU = I. We can conduct that L =
UJUT . Define δ̃(t) = (UT ⊗ In)δ(t) and ν̃(t) = (UT ⊗
In)ν(t). Then inequality (30) is equivalent to

V̇ (t) ≤δ̃T (t)(J ⊗
PA+ATP

2
− p̃(J2 ⊗ Γ))δ̃(t)

+ q̃ν̃T (t)(J2 ⊗ Γ)ν̃(t)

+
2N

κ1(1− µ2)
(γe−ρt + τ)

=

N
∑

i=2

δ̃i
T
(t)(λi

PA+ATP

2
− p̃λ2iΓ)δ̃i(t)

+ q̃

N
∑

i=2

ν̃i
T (t)λ2iΓν̃i(t) +

2N

κ1(1− µ2)
(γe−ρt + τ). (32)

According to (6), one has

V̇ (t) ≤−
N
∑

i=2

λiθ

2
δ̃i

T
(t)δ̃i(t) + q̃

N
∑

i=2

ν̃i
T (t)λ2iΓν̃i(t)

+
2N

κ1(1 − µ2)
(γe−ρt + τ)

≤−
λ2θ

2

N
∑

i=2

δ̃i
T
(t)δ̃i(t) + q̃λ2N

N
∑

i=2

ν̃i
T (t)Γν̃i(t)

+
2N

κ1(1 − µ2)
(γe−ρt + τ)

≤−
θ

2
λ2δ

T (t)δ(t) + q̃λ2N‖Γ‖(
(N − 1)nα

2
)2

+
2N

κ1(1 − µ2)
(γ + τ)

=−
θ

2
λ2δ

T (t)δ(t) + Ω

≤−
θλ2

λmax(L ⊗ P )
V (t) + Ω (33)

where Ω is given in Theorem 1.

By the comparison principle and induction, it is conducted
that

V (t) ≤e−
θλ2

λmax(L⊗P )
tV (δ(0))

+
λmax(L ⊗ P )

θλ2
Ω(1− e−

θλ2
λmax(L⊗P )

t). (34)

When δ1(t) = δ2(t) = ... = δN (t) is not satisfied, we have
1
2λ2λmin(P )δ

T (t)δ(t) ≤ V (t). Since θ > 0, P > 0, one
obtains

‖δ(t)‖ ≤e−
θλ2

λmax(L⊗P )
t

√

2V (δ(0))

λ2λmin(P )

+

√

2λmax(L ⊗ P )

θλ22λmin(P ))
Ω(1− e−

θλ2
λmax(L⊗P )

t). (35)

Thus, the error δ(t) converges to the set M exponentially
as t→ ∞. This completes the proof.

Theorem 2. Under the event-triggering condition (10), the
Zeno behavior of the error system (17) is avoided if
Theorem 1 is satisfied and 0 < τ < ‖Γ‖(2dmaxnα)

2, where
dmax represents the largest diagonal element of the in-
degree matrix D.

Proof. Since the quantized state measurement error
eqi is not continuous due to quantization. Thus, de-
fine a continuous measurement error: ei(t) = ψi(t

i
k) −

ψi(t), t ∈ [tik, t
i
k+1), where ψi(t) =

∑

i∈Ni
(xi(t) − xj(t)) =

∑

i∈Ni
(δi(t) − δj(t)). The relationship between eqi (t) and

ei(t) is given as

‖ei(t)‖ =‖ψi(t
i
k)− ψi(t)‖

=‖
∑

j∈Ni

[q(xi(t
i
k))− q(xj(t

i
k))−∆i(t

i
k) + ∆j(t

i
k)]
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−
∑

j∈Ni

[q(xi(t))− q(xj(t))−∆i(t) + ∆j(t)]‖

=‖eqi (t)−
∑

j∈Ni

[∆i(t
i
k)−∆j(t

i
k)]

+
∑

j∈Ni

[∆i(t)−∆j(t)]‖. (36)

When the event-triggering condition (10) is fulfilled, ei(t)
is reset to zero.

Taking the derivative of (36) for t ∈ (tik, t
i
k+1) yields

d‖ei‖

dt
=
eTi (t)ėi(t)

‖ei(t)‖
≤ ‖ėi(t)‖

=‖
∑

j∈Ni

[δ̇i(t)− δ̇j(t)]‖

=‖
∑

j∈Ni

[A(δi(t)− δj(t))−BBTP (ϕi(t
i
ki
)− ϕj(t

j
kj
))]‖

≤
∑

j∈Ni

[‖A‖‖δi(t)− δj(t)‖

+ ‖BBTP‖‖(ϕi(t
i
ki
)− ϕj(t

j
kj
))‖]

≤dmax[‖A‖(‖δi(t)‖+ ‖δj(t)‖

+ ‖BBTP‖(‖ϕi(t
i
ki
)‖+ ‖ϕj(t

j
kj
)‖)] (37)

where tiki
is equal to tik, t

j
kj

denotes the last triggering-

instant of agent j before t, dmax is defined in Theorem
2.

According to (15), we have

‖ϕi(t
i
k)‖ =‖

∑

j∈Ni

[δi(t)− δj(t) + ∆i(t)−∆j(t)]‖

≤
∑

j∈Ni

[‖δi(t)− δj(t)‖ + ‖∆i(t)−∆j(t)‖]

≤2dmax‖δ(t)‖+ dmaxNnα. (38)
According to (33), it is obtained that ‖δ(t)‖ has the

upper bound with Ξ2 =
√

λmax(L⊗P )
λ2λminP

‖δ(0)‖ + Ξ1, where

Ξ1 =
√

2λmax(L⊗P )
θλ2

2λmin(P )
Ω. Thus

‖ϕi(t
i
k)‖ ≤2dmaxΞ2 + dmaxNnα = Ξ3. (39)

Substituting (39) into (37) yields

d‖ei‖

dt
≤ 2dmax(‖A‖Ξ2 + ‖BBTP‖Ξ3) = ω. (40)

For t ∈ [tik, t
i
k+1), one has

∫ t

ti
k

d‖ei(t)‖

dt
≤ ω(t− tik). (41)

Then the following inequality holds

t− tik ≥
‖ei(t)‖ − ‖ei(t

i
k)‖

ω
. (42)

According to (10), (11) and (36), when the triggered
condition (10) is satisfied, one has

‖ei(t)‖ − ‖ei(t
i
k)‖ ≥‖eqi (t)‖ − 2dmaxnα

≥µ‖ϕi(t
i
k)‖+ τ̃ − 2dmaxnα

≥τ̃ − 2dmaxnα (43)

whereτ̃ =
√

τ
‖Γ‖ . Thus
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Fig. 1. Time evolutions of xi1(t), i = 1, 2, 3, 4.
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Fig. 2. The time evolution of ‖δ(t)‖.

tik+1 − tik ≥
τ̃ − 2dmaxnα

ω
. (44)

If τ > ‖Γ‖(2dmaxnα)
2, then tik+1 − tik > 0. Thus, the Zeno

behavior can be avoided. This completes the proof.

4. SIMULATIONS

In this section, a numerical example is provided to show
the effectiveness of the proposed event-triggered strategy.
Take the multi-agent system (5) as an example with

A =

(

0 1 2
−1 0 −3
−2 3 0

)

, B =

(

1
0
1

)

.

The communication topology of four agents is described
by Laplacian matrix

L =







1 −1 0 0
−1 3 −1 −1
0 −1 1 0
0 −1 0 1







It is easy to compute that eigenvalues of L are 0, 1, 1, 4.

The initial states are x1(0) = (2.5469,−2.2397, 1.797)T,
x2(0) = (4.551,−0.3739,−0.81)T, x3(0) = (7.9836, 12.5974,
6.4039)T , and x4(0) = (11.8527, 8.2381, 13.5127)T. Select
µ = 0.01, γ = 20, ρ = 0.1 and τ = 0.04 as parameters
of (11). The parameter of the logarithmic quantizer (1) is
chosen as α = 0.025. Based on Theorem 1, one has

P =

(

19.0627 1.0594 −2.0880
1.0594 15.5212 1.9698
−2.0880 1.9698 10.4304

)

,

K = (−16.9747 −3.0292 −8.3424) .

Fig. 1 demonstrates the time evolutions of first variables
of agents 1, 2, 3, 4. Fig. 2 shows the time evolution of
the consensus error ‖δ(t)‖. It can be seen from Fig. 2
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Fig. 3. Triggering time sequences of the ith agent(i =
1, 2, 3, 4).

that the MAS (5) can achieve bounded consensus under
the event-triggered consensus protocol (12). The triggering
sequences of each agent is depicted in Fig. 3.

5. CONCLUSION

This paper has studied bounded consensus of multi-agent
systems under an event-triggered strategy with absolute
quantization of state measurements. First, a distribut-
ed dynamic event-triggered scheme has been constructed
with the local quantized states of the neighboring agents.
Then a sufficient consensus condition has been derived
to guarantee bounded consensus with any given error,
and meanwhile the Zeno behavior has been successfully
excluded. Finally, a numerical example has been presented
to verify the effectiveness of proposed consensus protocol.
While, some issues such as quantized consensus of general
linear systems under directed topologies, improvement of
event-triggering conditions will be discussed in the near
future.
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