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Abstract: This paper studies the robust output agreement problem for second-order multi-
agent systems with flexible topologies subject to measurement disturbances. A new distributed
control law is proposed to guarantee the robust output agreement in the sense of input-to-state
stability (ISS) as long as the union of the interconnection graphs satisfies a standard connectivity
condition. It is proved that, robust output agreement can be achieved in the presence of any
bounded measurement disturbances if the functions of the distributed control laws are radially
unbounded, and a local result can still be guaranteed if the condition of radial unboundedness
is not satisfied. Numerical simulations are employed to show the effectiveness of the main result.
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1. INTRODUCTION

Considerable efforts have been made on the distributed
control of multi-agent systems to accomplish cooperative
tasks, e.g., consensus, flocking, swarm, rendezvous and
synchronization. Representative methods include algebraic
graph theory in ?, ?, passive systems theory in ?, Lya-
punov stability theory in ?, ?, output regulation in ?, ?
and small-gain approach in ?.

The distributed control problem for agents with second-
order dynamics has been mainly studied from the perspec-
tive of second-order consensus and flocking. Great efforts
have been devoted to solving the problems under switching
information exchange topologies. Related results include
?, ?, ? and ?. Specifically, ? used potential functions to
define Lyapunov functions and the topologies are allowed
to be switching but undirected. ? presented a consensus
result for double-integrator systems based on a refined
graph theoretical method. ? studied circular formations
which did not rely on any global information but required
a directed cycle graph. Several recent results on distributed
control can also be found in ?, ?, ? and ?. It should
be pointed out that most of the papers mentioned above
do not take into account disturbances, for which specific
distributed nonlinear designs are expected. In ?, the ro-
bust consensus problem of multi-agent systems with time-
varying communication graphs subject to process noises
is studied. However, the method used for such first-order
multi-agent systems cannot be readily applied.

? This work was supported in part by NSF grants ECCS-1501044
and EPCN-1903781, in part by NSFC grants 61633007 and 61533007,
and in part by State Key Laboratory of Intelligent Control and
Decision of Complex Systems at BIT.

This paper shows the validity of the controllers with
nested loops for robust output agreement of multi-agent
systems modeled by double-integrators. From a practical
point of view, we assume that the double-integrators inter-
act with each other through the interconnection between
controllers, for coordination. In this paper, it is proved
that robust convergence of the outputs can be achieved
as long as the information exchange digraph satisfies a
mild connectivity condition. Based on the control design,
any bounded measurement disturbances can be handled if
the functions of the distributed control laws are radially
unbounded. If the condition of radial unboundedness is not
satisfied, then a local robust output agreement result can
be achieved.

2. PRELIMINARIES AND PROBLEM
FORMULATION

In this section, we first introduce some preliminaries about
digraphs and comparison functions, and then give the
problem formulation.

2.1 Notions and Preliminaries

Basic Notations The notations used in this paper are
standard. We use Z+ to denote the set of all nonnegative
integers. For any ω ∈ RN , ωT is its transpose and |ω| its
Euclidean norm. For any function x : R+ → RN , we denote
‖x‖∞ = sup{|x(t)|, t ∈ [0,∞)} ≤ ∞. For two functions
γ1, γ2 : R+ → R+, use γ1 ◦γ2 to represent the composition
of the two functions. We use Id to denote the identity
function defined on R+.

Comparison Functions For ease of presentation, two
classes of functions are introduced. A function β : R+ ×
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R+ → R+ is called a class I+L function if β ∈ KL,
β(s, 0) = s for s ∈ R+, and for any specified T > 0,
there exist continuous, positive definite and nondecreasing
functions α1, α2 which depend on T and less than the
identity function, such that for all s ∈ R+, β(s, t) ≥ α1(s)
for t ∈ [0, T ] and β(s, t) ≤ α2(s) for t ∈ [T,∞). A function
β : R×R+ → R is called a class IL function if there exist
β′, β′′ ∈ I+L such that for t ≥ 0, β(s, t) = β′(s, t) for
s ≥ 0, and β(s, t) = −β′′(−s, t) for s < 0. The definitions
of class K, K∞ and KL functions can be found in ?.

Digraph We begin by introducing some basic concepts
from graph theory; see e.g., ?. A digraph G = (N , E) is
called quasi-strongly connected (QSC) if there exists a c ∈
N , referred as the center of G, such that there is a directed
path from c to i for each i ∈ N . For a switching digraph
G(t) = (N , E(t)), we denote the union digraph over
time interval [t1, t2] as G([t1, t2]) = (N ,

⋃
t∈[t1,t2] E(t)).

A switching digraph G(t) is said to be uniformly quasi-
strongly connected (UQSC) with time constant T > 0 if
G([t, t+T ]) is QSC for all t ≥ 0. A switching digraph G(t)
has a positive edge dwell time τD > 0 if for any t ∈ [0,∞)
and for any directed edge (i1, i2) ∈ E(t), there exists a
t∗ ≥ 0 depending on t and (i1, i2) such that t ∈ [t∗, t∗+τD]
and (i1, i2) ∈ E(τ) for τ ∈ [t∗, t∗ + τD]. In this paper,
the information exchange topology between the agents is
modeled by G(t) = (N , E(t)) with N being the set of
the N agents. Let P be a finite set representing all the
possible information exchange topologies. For each p ∈ P,
if j ∈ Ni(p), then there is a directed edge (j, i) belonging
to G(P). By default, (i, i) for i ∈ N belongs to G(p) for all
p ∈ P.

Remark 1. Consider a switching digraph G(σ(t)) = (N , E(
σ(t))) with σ : [0,∞) → P, which is UQSC with time
constant T > 0 and has an edge dwell time τD > 0. If
c ∈ N is a center of G(σ([t, t + T ])), then for any N1

such that c ∈ N1, there exist i1 ∈ N1, i2 ∈ N\N1,
and te ∈ [t − τD, t + T ] such that (i1, i2) ∈ E(σ(τ)) for
τ ∈ [te, te + τD].

2.2 Problem Formulation

This paper studies the robust output agreement problem
for multi-agent systems with each agent i (i = 1, . . . , N)
described by second-order integrators:

η̇i = ζi (1)

ζ̇i = µi (2)

where [ηi, ζi]
T ∈ R2 is the state, and µi ∈ R is the control

input. In practice, ηi and ζi usually represent the position
and the velocity of agent i, respectively.

In the presence of position measurement disturbances, the
distributed control law is in the following general form:

µi = ϕi(ζi, ξi) (3)

ξi = φ̄
σ(t)
i (ηi − η1 − ωi1, . . . , ηi − ηN − ωiN ) (4)

where ωij ∈ R represents measurement disturbances,
σ : [0,∞) → P is a switching signal with P ⊂ N
being a finite set representing all the possible information
exchange topologies, and ϕi and φi are appropriately
designed functions for each i = 1, . . . , N and each p ∈ P.

The objective of this paper is to design ϕi and φi such
that a robust output agreement objective is achieved, i.e.,
there exist γω1 , γω2 ∈ K such that

lim
t→∞
|ηi(t)− ηj(t)|≤ γω1 (‖ω‖∞), i, j = 1, . . . , N (5)

lim
t→∞
|ζi(t)|≤ γω2 (‖ω‖∞), i = 1, . . . , N (6)

where ω = [ω11, . . . , ω1N , . . . , ωN1, . . . , ωNN ]T .

3. ROBUST OUTPUT AGREEMENT IN THE
PRESENCE OF MEASUREMENT DISTURBANCES

This section focuses on the robust output agreement
problem in the presence of measurement disturbances. We
first propose several properties of the controlled agents in
Subsection 3.1. Based on the properties, Subsection 3.2
presents the main result with proof given by Subsection
3.3.

3.1 Properties of the Controlled Agents

Consider a class of distributed control laws

µi = ϕi(ζi − φi(ηi − κi)) (7)

where φi, ϕi : R → R are nonincreasing and globally
Lipschitz functions, and κi is the disturbed information
available to coordination control of agent i, and is defined
as

κi =

∑
j∈Ni(σ(t)) aij(ηj + ωij)∑

j∈Ni(σ(t)) aij
(8)

where Ni(p) ⊆ {1, . . . , N} denotes the neighbor set of
agent i for each i = 1, . . . , N and each p ∈ P, constant
aij > 0 if i 6= j, and aij ≥ 0 if i = j.

By substituting control law (7)–(8) into agent (1)–(2), we
have

η̇i = ζi, (9)

ζ̇i = ϕi(ζi − φi(ηi − κi)). (10)

We first introduce a key proposition on the invariant set
property of a class of controlled agents.

Proposition 1. For i = 1, . . . , N , consider each controlled
agent defined by (9)–(10) with ϕi and φi satisfying

ϕi(0) = φi(0) = 0, (11)

ϕi(r)r < 0, φi(r)r < 0 for r 6= 0, (12)

sup
r∈R
{max ∂ϕi(r)} < 4 inf

r∈R
{min ∂φi(r)}. (13)

There exist globally Lipschitz and strictly decreasing func-
tions ψ

i
, ψi : R → R satisfying ψ

i
(0) = ψi(0) = 0,

ψ
i
(r) ≤ ψi(r) for r ∈ R, limr→∞ ψ

i
(r) = −∞ and

limr→−∞ ψi(r) = ∞ such that system (9)–(10) has the
following properties:

(1) If κi ∈ [κi, κi] with κi ≤ κi being constants, then

Si(κi, κi) =

{(ηi, ζi) : ψ
i
(ηi − κi) ≤ ζi ≤ ψi(ηi − κi)}

is an invariant set.
(2) For any specific initial state (ηi(0), ζi(0)), there exist

constants µ
i
, µi ∈ R such that

ψ
i
(ηi(0)− µ

i
) ≤ ζi(0) ≤ ψi(ηi(0)− µi). (14)
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(3) There exist β
i1

, βi1 ∈ IL which are radially un-
bounded with respect to the first argument, such that
for any specific µi, µi ∈ R, if (ηi(t), ζi(t)) ∈ Si(µi, µi)
for t ∈ [0, T ], then

µ
i
− β

i1
(µ
i
− ηi(0), t) ≤ ηi(t)

≤ βi1(ηi(0)− µi, t) + µi (15)

for t ∈ [0, T ].
(4) For any specific compact C ⊂ R, there exist β

i2
,

βi2 ∈ IL such that if (ηi(0), ζi(0)) ∈ Si(µi(0), µi(0))

with µ
i
(0) ≤ µi(0) belonging to C and κi ∈ [κi, κi]

with κi ≤ κi belonging to C, then there exist µ
i
(t)

and µi(t) satisfying

− β
i2

(κi − µi(0), t) + κi ≤ µi(t)
≤ µi(t) ≤ βi2(µi(0)− κi, t) + κi (16)

such that

(ηi(t), ζi(t)) ∈ Si(µi(t), µi(t)) (17)

for all t ≥ 0. If moreover φi is radially unbounded,
then β

i2
and βi2 can be chosen to be radially un-

bounded with respect to the first argument.

Due to space limitation, the basic idea of the proof of
Proposition 1 is given by Remark 2 and the proof of which
is placed in the technical report ?.

Remark 2. With κi considered as the external input of
agent i, the basic idea of the proof is to show that if κi is
bounded, then controlled agent i admits an invariant set
with useful properties.

For convenience of discussions, use υi =
∑
j∈Ni(σ(t)) aijηj/∑

j∈Ni(σ(t)) aij and ωi =
∑
j∈Ni(σ(t)) aijωij/

∑
j∈Ni(σ(t)) aij

to denote the interaction between the agents and weighted
measurement disturbances acting on agent i, respectively,
then κi defined by (8) can be rewritten as κi = υi + ωi.

Proposition 2 gives an estimation on the “worst-case”
divergence rate of the controlled agents.

Proposition 2. Consider the controlled multi-agent system
with each agent defined by (9)–(10) with ϕi and φi
satisfying (11)–(13) for i = 1, . . . , N . With ψ

i
, ψi and

Si defined in Proposition 1, for all measurable and locally
essentially bounded ω, there exist µ(t) and µ(t) satisfying

µ(0)−M0‖ω‖∞t ≤ µ(t) ≤ µ(t) ≤ µ(0) +M0‖ω‖∞t
(18)

such that

(ηi(t), ζi(t)) ∈ Si(µ(t), µ(t)) (19)

µ(t) ≤ ηi(t) ≤ µ(t) (20)

for all t ≥ 0, where M0 = max

{
LiφL

i
ϕ

Ls
ψ

,
LiφL

i
ϕ

Ls
ψ

}
with

ψ(r) = maxi∈N ψi(r), ψ(r) = mini∈N ψ
i
(r), Lsψ =

− supr∈R+
{maxD+ψ(r)}, Ls

ψ
= − supr∈R− {maxD+ψ(r)},

Liφ = − infr∈R{mini∈N ∂φi(r)}, and Liϕ = − infr∈R
{mini∈N ∂ϕi(r)}.

Here, D+ denotes the Dini derivative. One may consult ?
for detailed discussions on Dini derivatives. Due to space
limitation, the basic idea of the proof of Proposition 2 is

given by Remark 3, and the proof of which is placed in the
technical report ?.

Remark 3. In the proof, the idea of the plane translational
motion of the rigid body ζi = ψ(ηi−µ) is used; see e.g., ?.
Basic thought of the proof is to estimate an upper bound
of the translational motion velocity of the rigid body.

3.2 Main Result

The main result of this paper is given by Theorem 1.

Theorem 1. Consider multi-agent system (1)–(2) with
control law (7)–(8). For i = 1, . . . , N , assume that φi and
ϕi are nonincreasing and globally Lipschitz, and satisfy
(11)–(13).

• If G(σ(t)) = (N , E(σ(t))) with σ : [0,∞) → P is
UQSC and has an edge dwell-time τD > 0, then there
exist β1, β2 ∈ KL, γω1 , γ

ω
2 ∈ K∞ and constant ρ > 0

such that for all ω satisfying ‖ω‖∞ ≤ ρ, and for all
t ≥ 0,

|ηi(t)− ηj(t)|≤ max{β1(|ηi(0)− ηj(0)|, t),
γω1 (‖ω‖∞)}, (21)

|ζi(t)|≤ max{β2(|ζi(0)|, t), γω2 (‖ω‖∞)} (22)

with i, j = 1, . . . , N .
• If moreover φi is radially unbounded, then (21) and

(22) hold for all measurable and locally essentially
bounded ω.

3.3 Proof of Theorem 1

Based on Proposition 1, the basic idea of the proof is
to find appropriate µ(t) ≤ µ(t) such that the controlled
multi-agent system admits properties in the form of (19)
and (20), and the difference between µ(t) and µ(t), admits
an ISS-like property with the measurement disturbance ω
as the input.

Since ψ
i

and ψi are radially unbounded, one can find µ(0)

and µ(0) such that (19) and (20) hold for i ∈ N with t = 0.

We define two sets O1 and O2 as a partition of set N such
that

ηi(0) ≥ (µ(0) + µ(0))/2, for i ∈ O1, (23)

ηi(0) ≤ (µ(0) + µ(0))/2, for i ∈ O2. (24)

It should be mentioned that either O1 or O2 can be an
empty set, and the existence of the pair (O1,O2) may not
be unique. This does not influence the validity of the proof.

Define T ′ = N(T + 2τD + ∆T ) + ∆T with any constant
∆T > 0. According to Proposition 2, there exist µ(t) and
µ(t) satisfying (18) such that (19) and (20) hold for all
t ≥ 0. Define M = M0‖ω‖∞. And thus, for each i ∈ O1,
(ηi(t), ζi(t)) ∈ Si(µ(0) −MT ′, µ(0) + MT ′) holds for all
t ∈ [0, T ′]. With property 3 in Proposition 1, there exists
β
i1
∈ IL which is radially unbounded with respect to the

first argument such that

ηi(t) ≥ −βi1(µ(0)−MT ′ − ηi(0), t) + µ(0)−MT ′

≥ −β
i1

(
µ(0)− µ(0)

2
−MT ′, T ′) + µ(0)−MT ′

=: α1
i (µ(0)− µ(0) + 2MT ′) + µ(0)−MT ′ (25)

for t ∈ [0, T ′]. Clearly, α1
i is of class K∞ and less than Id.
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Denote N2 and i∗ as the number of elements of set O2

and the center of the union digraph G([0, T ′]), respectively.
Due to symmetry, we only consider the case of i∗ ∈ O1.
Recursively define Ik = {i1, . . . , ik} for k = 1, . . . , N2 such
that

• there exist t′i1 satisfying [t′i1 , t
′
i1

+ τD] ⊆ [0, T + 2τD]
and l1 ∈ O1 such that (l1, i1) ∈ E(σ([t′i1 , t

′
i1

+ τD]));
• for k = 2, . . . , N2, there exist t′ik satisfying [t′ik , t

′
ik

+
τD] ⊆ [(k−1)(T +2τD+∆T ), k(T +2τD+∆T )−∆T ]
and lk ∈ O1 ∪ Ik−1 such that (lk, ik) ∈ E(σ([t′ik , t

′
ik

+
τD])).

The existence of such ik is guaranteed by the UQSC prop-
erty of G, which is discussed in Remark 1. For convenience
of notations, denote I0 = ∅.
Denote µ̃(t) = µ(t) − µ(t). Note that (25) holds for
i ∈ O1 for all t ∈ [0, T ′]. It then follows that ηi(t) ≥
α1
l1

(µ̃(0) + 2MT ′) + µ(0) − MT ′ holds for i ∈ O1 ∪ I0
for all t ∈ [0, T ′]. We assume that there exists a function
α1
lk
< Id which is continuous and positive definite such

that ηi(t) ≥ α1
lk

(µ̃(0) + 2MT ′) + µ(0) − MT ′ − (k −
1)‖ω‖∞ holds for i ∈ O1 ∪ Ik−1 for all t ∈ [(k − 1)(T +
2τD + ∆T ), T ′]. In what follows, we prove the existence of
α1
lk+1

< Id which is continuous and positive definite such

that ηi(t) ≥ α1
lk+1

(µ̃(0) + 2MT ′) + µ(0) −MT ′ − k‖ω‖∞
holds for i ∈ O1 ∪ Ik for all t ∈ [k(T + 2τD + ∆T ), T ′].
1) Consider the motion of (ηik , ζik) during the time interval
t ∈ [t′ik , t

′
ik

+ τD] ⊆ [(k − 1)(T + 2τD + ∆T ), k(T + 2τD +
∆T )−∆T ]. One can show that

υik(t) =

∑
j∈Nik (σ(t))

aikjηj(t)∑
j∈Nik (σ(t))

aikj

=

∑
j∈Nik (σ(t))\{lk}

aikjηj(t) + aiklkηlk(t)∑
j∈Nik (σ(t))

aikj

≥

∑
j∈Nik (σ(t))\{lk}

aikj(µ(0)−MT ′ − (k − 1)‖ω‖∞)∑
j∈Nik (σ(t))

aikj
+

aiklk(α1
lk

(µ̃(0) + 2MT ′) + µ(0)−MT ′ − (k − 1)‖ω‖∞)∑
j∈Nik (σ(t))

aikj

= α2
ik

(µ̃(0) + 2MT ′) + µ(0)−MT ′ − (k − 1)‖ω‖∞

for t ∈ [t′ik , t
′
ik

+τD], with α2
ik

(s) = aiklkα
1
lk

(s)/
∑
j∈Nik (σ(t))

aikj for s ∈ R+, where σ(t) represents the fixed topology
during the time interval. It can be directly checked that
α2
ik

is continuous, positive definite and less than Id.

Then, with property 4 of Proposition 1, there exists β
ik2
∈

IL such that

(ηik(t), ζik(t)) ∈ Sik(µ′
ik

(t), µ(0) +MT ′) (26)

holds with µ′
ik

(t) = −β
ik2

(κik − µ
ik0
, t) + κik , κik =

mint′
ik
≤t≤t′

ik
+τD{υik(t) + ωik(t)} ≥ α2

ik
(µ̃(0) + 2MT ′) +

µ(0)−MT ′ − k‖ω‖∞ and µ
ik0

= µ(0)−Mt′ik . Then,

µ′
ik

(t) ≥− β
ik2

(α2
ik

(µ̃(0) + 2MT ′)− k‖ω‖∞ −M(T ′

− t′ik), t− t′ik) + α2
ik

(µ̃(0) + 2MT ′) + µ(0)

−MT ′ − k‖ω‖∞
≥− β

ik2
(α2
ik

(µ̃(0) + 2MT ′), t− t′ik) + α2
ik

(µ̃(0)

+ 2MT ′) + µ(0)−MT ′ − k‖ω‖∞. (27)

Thus, we have µ′
ik

(t′ik + τD) ≥ (Id − α3
ik

) ◦ α2
ik

(µ̃(0) +

2MT ′) + µ(0) −MT ′ − k‖ω‖∞ with α3
ik

(s) = β
ik2

(s, τD)

for s ∈ R+, where it can be verified that α3
ik

is of class K
and less than Id. Specially, when φi is radially unbounded,
α3
ik
∈ K∞. By Lemma 1, it also holds that (Id−α3

ik
) ∈ K∞.

2) t ∈ [t′ik + τD, T
′]. It holds that

υik(t) ≥ µ(0)−MT ′ − (k − 1)‖ω‖∞
for t ∈ [t′ik + τD, T

′]. By using property 4 of Proposition
1, we can prove that (26) holds with

µ′
ik

(t) =− β
ik2

(κ′ik − µ
′
ik0
, t) + κ′ik

where κ′ik = mint′
ik

+τD≤t≤T ′{υik(t) + ωik(t)} ≥ µ(0) −
MT ′ − k‖ω‖∞ and µ′

ik0
= µ′

ik
(t′ik + τD). Then, it follows

that

µ′
ik

(t) ≥− β
ik2

(−(Id− α3
ik

) ◦ α2
ik

(µ̃(0) + 2MT ′), t−
t′ik − τD) + µ(0)−MT ′ − k‖ω‖∞
≥α4

ik
◦ (Id− α3

ik
) ◦ α2

ik
(µ̃(0) + 2MT ′) + µ(0)

−MT ′ − k‖ω‖∞ (28)

where α4
ik

(s) = β
ik2

(s, T ′) for s ∈ R+, which is of class K
and less than Id.
3) t ∈ [k(T + 2τD + ∆T ), T ′]. Property (20) implies that
ηik(k(T + 2τD + ∆T )) ≥ µ(0) −Mk(T + 2τD + ∆T ). By
using property 3 of Proposition 1, we have

ηik(t) ≥− β
ik1

(α4
ik
◦ (Id− α3

ik
) ◦ α2

ik
(µ̃(0) + 2MT ′)−

M(T ′ − k(T + 2τD + ∆T ))− k‖ω‖∞, t− k(T

+ 2τD + ∆T )) + α4
ik
◦ (Id− α3

ik
) ◦ α2

ik
(µ̃(0)+

2MT ′) + µ(0)−MT ′ − k‖ω‖∞
≥(Id− α5

ik
) ◦ α4

ik
◦ (Id− α3

ik
) ◦ α2

ik
(µ̃(0) + 2M

T ′) + µ(0)−MT ′ − k‖ω‖∞
where α5

ik
(s) = β

ik1
(s,∆T ) for s ∈ R+. Since β

ik1
∈ IL

is radially unbounded with respect to the first argument,
one sees that α5

ik
∈ K∞ and less than Id. By also using

Lemma 1, we have (Id− α5
ik

) ∈ K∞.

By defining α1
lk+1

= (Id−α5
ik

)◦α4
ik
◦(Id−α3

ik
)◦α2

ik
, one sees

that ηi(t) ≥ α1
lk+1

(µ̃(0) + 2MT ′) + µ(0) −MT ′ − k‖ω‖∞
holds for i ∈ O1 ∪ Ik for all t ∈ [k(T + 2τD + ∆T ), T ′].
Applying this reasoning repeatedly with k = 1, . . . , N2,
and using property (25), one can show that

(ηi(T
′), ζi(T

′)) ∈ Si(µ′i(T
′), µ(0) +MT ′)

holds for all i ∈ N , with

µ′
i
(T ′) ≥α4

i ◦ (Id− α3
i ) ◦ α2

i (µ̃(0) + 2MT ′)

+ µ(0)−MT ′ −N‖ω‖∞ (29)

where α2
i is continuous, positive definite and less than Id

and α3
i , α

4
i ∈ K.

Define µ(T ′) = µ(0)+MT ′ and µ(T ′) = α̃(µ̃(0)+2MT ′)+

µ(0)−MT ′−N‖ω‖∞ with α̃ = min
i∈N
{α4

i ◦(Id−α3
i )◦α2

i , (Id−
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α5
i )◦α4

i ◦(Id−α3
i )◦α2

i }. From the definitions of α2
ik

, α3
ik

, α4
ik

and α5
ik

, we obtain that α2
i and (Id− α3

i ) are continuous,

positive definite and less than Id, and α4
i is of class K and

Id − α5
i is of class K∞. Then, α̃ is continuous, positive

definite and less than Id. Thus, we have

µ̃(T ′) ≤ µ̃(0)− α̃(µ̃(0) + 2MT ′) + 2MT ′ +N‖ω‖∞.
Recall the definition of M . By recursively applying the
reasoning above, one can show that

µ̃((k + 1)T ′) ≤µ̃(kT ′)− α̃(µ̃(kT ′) + 2M0T ′‖ω‖∞)

+ (2M0T ′ +N)‖ω‖∞, k ∈ Z+. (30)

Define µ̆(kT ′) = µ̃(kT ′) + 2M0‖ω‖∞T ′ for k ∈ Z+. Then
it follows from (30) that

µ̆((k + 1)T ′) ≤µ̆(kT ′)− α̃(µ̆(kT ′))

+ (2M0T ′ +N)‖ω‖∞, k ∈ Z+. (31)

Property (31) is in the form of standard ISS definition. If
α̃ ∈ K∞, then ISS property can be proved. The rest of the
proof studies the ISS property by considering the following
two cases regarding the radial unboundedness of φi.

For the case that φi is bounded for some i ∈ N ,
one can show that there exists a constant λ such that
limr→∞ sup α̃(r) ≥ λ. Given a positive definite ε satisfying
(Id− ε) ∈ K∞, if

‖ω‖∞ ≤
(Id− ε) ◦ λ

2 max

{
Li
φ
Liϕ
Ls
ψ

,
Li
φ
Liϕ
Ls
ψ

}
T ′ +N

=: ρ, (32)

we obtain

µ̆(kT ′) ≥γ(‖ω‖∞)⇒
µ̆((k + 1)T ′)− µ̆(kT ′) ≤ −ε ◦ α̃(µ̆(kT ′))

where γ(s) = α̃−1 ◦ (Id− ε)−1((2M0T ′+N)s) for s ∈ R+.
By a standard comparison lemma in ?, there exists a
β ∈ KL such that

µ̆(kT ′) ≤ max{β(µ̆(0), kT ′), γ(‖ω‖∞)} (33)

holds for all k ∈ Z+.

By (18), one sees that µ̃(t) ≤ µ̃(kT ′)+2M0T ′‖ω‖∞ for all
t ∈ [kT ′, (k + 1)T ′). This together with the definition of
µ̆(kT ′) yields

µ̃(t) ≤ max{β(µ̃(0) + 2M0T ′‖ω‖∞, t), γ(‖ω‖∞)} (34)

for all t ≥ 0.

Consider the case that φi is radially unbounded for all
i ∈ N . By using properties 3 and 4 in Proposition 1, one
can prove that α2

i , (Id−α3
i ), α

4
i and (Id−α5

i ) are of class
K∞ and less than Id. Thus, there exists α̃ ∈ K∞ such
that (31) holds. Clearly, (34) holds for all measurable and
locally essentially bounded ω.

From the discussions above, it always holds that (19)–(20).
Properties (21) and (22) can be proved as µ̃ satisfies (34).
This ends the proof of Theorem 1.

4. NUMERIAL SIMULATION

In this section, numerical simulation examples are em-
ployed to verify the main results. We consider a group
of six agents with indices 1, . . . , 6.

Case 1. φi is bounded for some i ∈ N . We choose
ϕi(r) = −6r and φi(r) = − sgn(r) min{0.3, 0.3r} for

i = 1, . . . , 6. Here, sgn represents the sign function. With
direct calculation, it can be verified that the selected ϕi
and φi satisfy (13).

In the simulation, the initial states of the agents are chosen
as: η1(0) = 0, η2(0) = −24, η3(0) = 36, η4(0) = −40,
η5(0) = 35, η6(0) = 20 and ζi(0) = 0 for all i = 1, . . . , 6.

The information exchange topology switches between six
digraphs Gi (i = 1, . . . , 6) with their links defined as: G1 =
{(1, 2), (3, 4), (4, 5), (6, 1)}; G2 = {(2, 3), (6, 5), (6, 1)}; G3 =
{(3, 4), (5, 6), (6, 1)}; G4 = {(2, 3), (6, 4), (6, 1)}; G5 =
{(1, 2), (6, 4), (6, 1)}; G6 = {(3, 2), (4, 5), (1, 6), (6, 1)}. The
switching sequence is shown in Figure 1. Figures 2 and 3
show the state trajectories of the agents in the presence
of measurement disturbances ωi(t) = 0.1 sin(0.01t) and
ωi(t) ≡ 2, respectively, which are in accordance with the
local robust output agreement results given by Theorem
1.
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Switching of the information exchange topology

Fig. 1. The switching sequence of the information exchange
topology.

Fig. 2. The state trajectories of the agents with ωi(t) =
0.1 sin(0.01t).
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Fig. 3. The state trajectories of the agents with ωi(t) ≡ 2.

Case 2. φi is radially unbounded for all i ∈ N . We choose
functions ϕi(r) = −6r and φi(r) = −0.3r for i = 1, . . . , 6.
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The initial states of the agents are the same with the first
case.

Figure 4 shows the state trajectories of the agents subject
to measurement disturbances ωi(t) = 6 sin(0.01t), which
is in accordance with the robust output agreement result
given by Theorem 1.

Fig. 4. The state trajectories of the agents with ωi(t) =
6 sin(0.01t).

5. CONCLUSIONS

This paper has studied the robust output agreement prob-
lem for multi-agent systems with flexible topologies sub-
ject to measurement disturbances. A class of nonlinear dis-
tributed control laws has been proposed for robust output
agreement in the sense of ISS, as long as the switching
interconnection digraph satisfies a mild connectivity con-
dition. It is proved that, robust output agreement can be
guaranteed in the presence of any bounded measurement
disturbances if the functions of the distributed control laws
are radially unbounded, while a local result can still be
achieved if the condition of radial unboundedness is not
satisfied.

Appendix A. A TECHNICAL LEMMA

Lemma 1. Consider the initial value problem

ς̇ = φ(ς), ς(0) = ς0 (A.1)

where ς ∈ R is the state, and φ is nonincreasing and locally
Lipschitz and satisfies φ(0) = 0 and rφ(r) < 0 for all
r 6= 0. For ς0 ∈ R and t ≥ 0, denote ς̄(ς0, t) as the solution.
Then, ς̄ ∈ IL. If moreover there exists a kφ > 0 such that
|φ(r)| ≤ kφ|r| for all r ∈ R and φ is radially unbounded,
then ς̄ and ς0 − ς̄ are radially unbounded with respect to
ς0.

Due to space limitation, the proof of Lemma 1 is placed
in the technical report ?.
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