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Abstract: This paper investigates the assessment of Granger causality (GC) between jointly
Gaussian signals based on noisy or filtered measurements. To do so, a recent rank condition for
inferring GC between jointly Gaussian stochastic processes is exploited. Sufficient conditions are
derived under which GC can be reliably inferred from the second order moments of the noisy
or filtered measurements. This approach does not require a model of the underlying Gaussian
system to be identified. The noise signals are not required to be Gaussian or independent, and
the filters may be noncausal or nonminimum-phase, as long as they are stable.

Keywords: Granger causality, jointly Gaussian stochastic process, noise, filtering

1. INTRODUCTION

The analysis and control of large-scale dynamic systems
become challenging as their internal and external intercon-
nections grow in number. Lack of the knowledge about the
correct qualitative relationships between subsystems can
reduce the accuracy of identified models, and degrade the
performance of controllers. Unraveling the relationships
between time series is also of interest in other disciplines,
such as econometrics and neuroscience. For instance, in
econometrics, the relationship between domestic product
and unemployment using their observed time series is
investigated. In neuroscience, an important question is
determining whether neural activity in one region of the
brain affects, or is affected by, another region.

A powerful concept to address such problems is Granger
causality. This notion was introduced by Clive Granger
in economics in 1963 (Granger, 1963, 1980, 1988) inspired
by Norbert Wiener’s work on prediction in 1956 (Wiener,
1956). A signal x is said to cause another signal z if the
optimal expected prediction error for a future value of z is
reduced by knowing the past x and z, in comparison with if
only the past values of z are known. Subsequently, Granger
proposed a weaker definition, in terms of conditional
probabilities in (Granger, 1980, 1988) as follows. Signal
x is said to Granger cause z if the future of signal z
and past x are conditionally dependent given past z at
some time. Under a mean-square error prediction error,
the first definition coincides with the second one for jointly
Gaussian processes.

Granger causality is a statistical approach for infer-
ring qualitative causal relationships from “in vivo”, non-
invasive observations and is useful when direct experimen-
tation on a system is too expensive or risky. Contrary
to the field of system identification, where it is known a
priori that certain signals are inputs and others outputs,
? This work was partially supported by the Australian Research
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in causal inference the determination of such an input-
output relationship is one of the main questions. Further-
more, feedback can be present among all signals, so that a
categorisation into input and output may not be possible.

In (Caines and Chan, 1975), the idea of feedback-freeness
for wide-sense stationary stochastic processes is intro-
duced, which is shown to be equivalent to Granger non-
causality under linear minimum mean-square error pre-
diction. The relation between Granger non-causality and
a linear time-invariant state space representation with a
star graph structure as the topology of the network is
considered in (Józsa et al., 2019), where it is shown that
Granger non-causality is equivalent to the existence of such
a representation.

The effect of additive noise on Granger causality has
been discussed in (Solo, 2007; Nalatore et al., 2007, 2014;
Smirnov, 2013; Newbold, 1978; Anderson et al., 2019).
In (Nalatore et al., 2007, 2014), it is shown that adding
uncorrelated white noise to the original signals can cause
spurious causality between the noisy signals. Moreover,
true causality between the original signals can be hid-
den due to noise. A denoising method via Kalman filter
and expectation-maximization algorithm has been also
proposed to mitigate the effects of noise. In (Anderson
et al., 2019), the effect of additive noise on causality is
investigated, assuming that the signals and the additive
colored noises are mutually independent. The information-
theoretic tool of transfer entropy is used in (Smirnov, 2013)
to investigate Granger causality in the lack of accurate
and exhaustive information such as latent variables and
measurement noise.

The temporal order of signals and their time-reversed
counterparts are considered in (Winkler et al., 2016) to
infer causality based on Geweke’s log likelihood ratio of
variances of residuals (Geweke, 1982), and it is shown that
time reversal testing can be robust to noise measurement.
A nonlinear Cadzow method is proposed in (Rangarajan
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and Rao, 2019) to estimate the parameters of the linear
process in the presence of noise and then Geweke’s measure
of causality is exploited to infer the causality of processes
corrupted by additive noise.

The impact of filtering on Granger causality has been
investigated in (Sargent, 1987; Florin et al., 2010; Barnett
and Seth, 2011; Seth et al., 2013; Solo, 2016; Anderson
et al., 2019). In (Anderson et al., 2019), Granger causality
of stochastic processes filtered by causal, minimum-phase
linear transfer functions is investigated, and conditions
introduced so that spurious causality is not inferred. In
(Seth et al., 2013; Solo, 2016), it has been shown that
when signals are filtered separately by minimum-phase
causal linear filters, Granger causality is not affected.
Furthermore, in (Solo, 2016), it has been shown that if
the signals are separately filtered by causal nonminimum
phase filters which can be represented as multiplication
of an all-pass filter and a stable, minimum phase transfer
function, then Granger causality is not affected as well.
Otherwise, filtering can change the Granger causality.

To the best of our knowledge, in most of the literature
on Granger causality with noisy signals, the noise terms
are mutually independent from each other and from the
underlying signals of interest. Furthermore, most analyses
on Granger causality after filtering assume causal and
minimum phase filters.

Here we investigate the effects of noise on Granger causal-
ity for the case where the additive noises can be dependent
on each other and on the signals between which we wish
to investigate causality (Theorem 4 and 5). Moreover, we
propose sufficient conditions under which Granger causal-
ity can be inferred between signals filtered by non-causal
and nonminimum phase filters (Theorem 6). The approach
can be extended to nonlinear filters as well. Unlike previ-
ous works, we are not interested in investigating Granger
causality or noncausality between the noisy/filtered pro-
cesses. We wish to infer Granger causality between the
original processes using noisy/filtered measurements. In
order to derive such sufficient conditions, a rank-based
method to infer Granger causality between jointly Gaus-
sian stochastic processes introduced recently by the au-
thors in (Ahmadi et al., 2019) is used. In fact, the sufficient
conditions introduced in this paper guarantee that ranks of
matrices constructed through noisy/filtered data are equal
to the rank of a matrix representing Granger causality
of underlying jointly Gaussian stochastic processes before
noise corruption and/or filtering. The sufficient conditions
involve bounds on the perturbations introduced by the
impacts of noise/filters and the second-order statistics of
noisy/filtered data.

The rest of the paper is organized as follows: in section
2, Granger causality between jointly Gaussian signals is
formulated and recent results on assessing causality in
terms of the rank of a matrix of covariances are mentioned.
In section 3, the effect of noise is investigated and suf-
ficient conditions are presented under which the Granger
causality can be inferred correctly from the statistics of the
noisy signals. Section 4 introduces sufficient conditions for
causality investigation using the filtered signals. Section 5
concludes the paper.

Notation: Throughout this paper, the stochastic process
segments (xk)nk=` and (xk)nk=1 are denoted by xn` and xn,
respectively. For ` ≤ 1, xn` is written as (xk)nk=1 and xn`
equals empty sequence when ` > n or n < 1. When clear
from context, the full sequence (xk)∞k=1 is written as x.
Γa,b denotes the covariance between vectors a and b, the
components of the covariance matrix Γ is denoted by γ
and γMab indicates the maximum of the absolute value of
the components of covariance matrix Γa,b.

2. PROBLEM FORMULATION OF GRANGER
CAUSALITY FOR JOINTLY GAUSSIAN SIGNALS

In this section, the definition of Granger causality based on
conditional probabilities is considered. Assuming the joint
process is partially finite-order Markov, the definition re-
duces to the comparison of two conditional distributions as
shown in the following. Then a rank-based necessary and
sufficient condition is exploited to infer Granger causality
between jointly Gaussian stochastic processes.

Definition 1. (Granger Causality (Granger, 1980)). Let xk,
zk, k = 1, 2, . . . be discrete-time stochastic processes. The
stochastic process x is said to not Granger cause (GC) z
if for all k = 1, 2, . . .

P (zk+1|xk, zk) = P (zk+1|zk), with probability (w.p.) 1,
(1)

where P (·|·) denotes conditional probability measure. Oth-
erwise, if there is a nonzero probability that

P (zk+1|xk, zk) 6= P (zk+1|zk), for some k ≥ 1, (2)

then x is said to Granger cause (GC) z.

If x does not GC z, it means that given the past and the
present of z, the future value of z is always conditionally
independent of the past and the present of x. On the other
hand, x GC z means that given the past and the present
of z at some time k, the future value of z at time k + 1 is
influenced by the past and the present of x with a nonzero
probability.

We make the following assumption:

Assumption 1. (Partial Markov-m). The stochastic pro-
cess z is said to be partially Markov of order m ≥ 1 in x
and z if P (zk+1|xk, zk) = P (zk+1|xkk−m+1, z

k
k−m+1), w.p.1.

Note that partial Markovanity is weaker than joint Marko-
vanity, which is usually assumed in the literature e.g.
(Geweke, 1982; Quinn et al., 2011, 2015; Kontoyiannis and
Skoularidou, 2016).

Under the Assumption 1, (1) can be written as follows:

P (zk+1|xkk−m+1, z
k
k−m+1) = P (zk+1|zk), w.p. 1. (3)

And hence, (3) can be used to infer Granger noncausality.
Note that (3) is not a conditional independence due to
the nonnestedness of the condition part of RHS in the
condition part of LHS. For simplicity, we assume that both
of the stochastic processes x and z are scalar-valued.

Theorem 1. (Ahmadi et al., 2019) Let x, z be jointly sta-
tionary Gaussian signals satisfying Assumption 1. Further
assume that there is no deterministic relationship between
xkk−m+1 and zk.

• x does not Granger cause z if and only if

rank(Cx→zG (m, k)) = min{m, k}, ∀k ≥ 1, (4)
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where the causality matrix Cx→zG (m, `), ` ≥ 1 is
defined as:

Cx→zG (m, `) := [ Γz∗,x̃ Γz∗,z̃ Γz∗,zo ] , (5)

z∗ := zk+1
k−m+1, z̃ := zkk−m+1, zo := zk−mk−`+1, and

x̃ := xkk−m+1.
• if (4) holds, then z is marginally Markov-m, i.e.

P (zk+1|zk) = P (zk+1|zkk−m+1). (6)

�

The causality matrix in (5) depends on the cross-
covariances between x and z and the autocovariances of
z, but not on the autocovariances of x. For k ≥ `−1 ≥ m,
the matrices Γz∗,x̃, Γz∗,z̃, and Γz∗,zo have size (m+1)×m,
(m+ 1)×m, and (m+ 1)× (`−m), respectively.

The causality matrix Cx→zG (m, k) has a fixed number of
rows (m+ 1) with a growing number k+m of columns as
k > m. Hence, Granger causality inference over a growing
horizon k + m is not a simple task, as expected. On the
other hand, a sufficient condition to verify that x Granger
causes z can be derived as follows:

Lemma 2. (Ahmadi et al., 2019) Let x, z be jointly Gaus-
sian, stationary, scalar stochastic processes and z be par-
tial Markov-m. Assume that

[
xkk−m+1z

k
]

has positive
definite covariance matrix at given time k > m, i.e. no
deterministic relationship exists between xkk−m+1 and zk.

If there exists some q ∈ (m, k] such that the matrix
Cx→zG (m, q) is full rank, then x Granger causes z. �

In the following sections, we use the rank-based approach
to infer Granger causality between signals in the presence
of noise and filtering.

3. GRANGER CAUSALITY INFERENCE USING
DATA CORRUPTED BY ADDITIVE NOISE

In this section, the effect of noise on inferring Granger
causality (GC) is investigated.

Consider two jointly Gaussian stationary stochastic pro-
cesses x and z observed in noise:

x′k := xk + exk, (7)

z′k := zk + ezk. (8)

The noise terms exk and ezk are stationary, but can be
correlated to each other and the signals xk and zk, and
are not necessarily Gaussian. The signals xk, zk and the
noise terms are jointly stationary.

From (5) it is obvious that if only the signal x is corrupted
by noise independent of z, then the noise does not change
the rank of the causality matrix Cx→zG (m, k) because this
matrix does not depend on the auto-covariances of x.

In the following, we introduce conditions under which GC
between the original signals is not lost due to additive
noise.

The covariances of the observed signals (x′k and z′k) are
given by:

γz′x′(κ) = γzx(κ) + γzex(κ) + γezx(κ) + γezex(κ), (9)

γz′z′(κ) = γzz(κ) + γzez (κ) + γezz(κ) + γezez (κ). (10)

In order to infer GC between x and z, we need to obtain
the covariances included in causality matrix Cx→zG (m, q).
The relation between causality matrix Cx→zG (m, q) and
the matrix created by the covariances of observed signals
(Cx

′→z′(m, q)) is as follows:

Cx
′→z′(m, q) := Cx→zG (m, q) + C ′(m, q), (11)

where C ′(m, q) is obtained using (9) and (10).

Note that we need to find the rank of the causality
matrix Cx→zG (m, q), but do not have access to x and z. As
we can estimate the auto- and cross-covariances between
observed signals x′ and z′, the problem of interest is what
we can infer about the rank of the causality matrix by
using estimates of second-order statistics computed from
noisy data. We first state Eckart-Young-Mirsky matrix
approximation theorem from linear algebra:

Theorem 3. (Eckart and Young, 1936; Mirsky, 1960) Let
the matrix M ∈ Rl×s have rank r and singular value
decomposition M =

∑r
i=1 σiuiv

T
i , where ui, vj , 1 ≤ i, j ≤

r are orthonormal vectors and σ1 ≥ σ2 ≥ · · · ≥ σr(> 0)
are the singular values.

If p < r, then

min
rank(X)=p

‖M −X‖2 = ‖M −Mp‖2 = σp+1, (12)

where Mp =
∑p
i=1 σiuiv

T
i . �

Using the Eckart-Young-Mirsky matrix approximation
theorem, we know that if the matrix obtained using ob-
served data Cx

′→z′(m, q) is full rank and its smallest
singular value satisfies

σmin(Cx
′→z′(m, q)) > ‖C ′(m, q)‖2, (13)

then Cx→zG (m, q) remains full rank which means that x
Granger causes z using Lemma 2.

Note that both sides of (13) depend on the noise processes.
We first investigate whether (13) may ever be satisfied. We
can show that if

‖C ′(m, q)‖2 <
σmin(Cx→zG (m, q))

2
, (14)

then (13) holds. The RHS of (14) only depends on the
underlying jointly Gaussian process. Hence, we have shown
that there exist noise processes satisfying (13).

Upper bounds on ‖C ′(m, q)‖2 can be obtained as follows:∣∣γz′x′(κ)− γzx(κ)
∣∣ ≤ γMzex + γMezx + γMezex , (15)∣∣γz′z′(κ)− γzz(κ)
∣∣ ≤ 2γMzez + γMezez , (16)

where γMab denotes the maximum of absolute value of the
covariances between signals a and b.

For A = [aij ] ∈ Rs×t, we have ‖A‖2 ≤
√
s‖A‖∞ and

‖A‖2 ≤
√
t‖A‖1 where ‖A‖∞ := max1≤i≤s

∑t
j=1 |aij |,

and ‖A‖1 := max1≤j≤t
∑s
i=1 |aij | (Golub and Van Loan,

1996). Therefore, we have:

‖C ′(m, q)‖∞ ≤ m(γMzex + γMezx + γMezex) + q(2γMzez + γMezez ),
(17)

and moreover:

‖C ′(m, q)‖1 ≤(m+ 1) max
{
γMzex + γMezx + γMezex ,

2γMzez + γMezez
}
. (18)

It follows that
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Theorem 4. Let x, z be jointly Gaussian, stationary, scalar
stochastic processes, and let z be partial Markov-m. As-
sume that

[
xkk−m+1z

k
]

has positive definite covariance
matrix at a given time k > m.

Suppose there exists some q ∈ (m, k] such that the matrix

Cx
′→z′(m, q), involving covariances of the observed signals

x′k and z′k, is full-rank. Then x Granger causes z, provided
that one of the two following conditions is satisfied:

m(γMzex + γMezx + γMezex) + q(2γMzez + γMezez ) <
σ′min√
m+ 1

,

(19)
or

max
{
γMzex + γMezx + γMezex , 2γ

M
zez + γMezez

}
<

σ′min

(m+ 1)
√
m+ q

,

(20)

where σ′min is the smallest singular value of Cx
′→z′(m, q)

and γM is the maximum of absolute value of the covari-
ances between the corresponding signals. �

Remark 1. Theorem 4 states that Granger causality of the
stochastic processes can be inferred through the second-
order statistics of noisy data provided that the pertur-
bation due to noisy data measured by ‖C ′(m, q)‖2 is
smaller than σ′min. Under such circumstances, the full rank

of Cx
′→z′(m, q) implies full rank of Cx→zG (m, q). Thus x

Granger causes z by Lemma 2. Note that we cannot inter-
pret the rank of Cx

′→z′(m, q) as an indicator of Granger
causality between noisy signals since the assumptions in
Theorem 1 and Lemma 2 are not necessarily satisfied any-
more. However, we use this matrix to investigate the rank
of the causality matrix Cx→zG (m, q), which is a criterion to
infer whether x Granger causes z as stated in Theorem 1
and Lemma 2.

Remark 2. In Theorem 4, the noise is not necessarily
Gaussian. They can be dependent on each other and/or
on the stochastic processes x and z. However, we need
a priori knowledge of the maximum covariances between
such noises and between the noises and the processes x
and z to infer Granger causality.

Note that both sides of (19) and (20) depend on the
second-order statistics of the noise. In the following, we
derive a condition in terms of the underlying Gaussian
stochastic process. Using (18) and (14), we can find a
sufficient condition on the second-order noise statistics as
follows, such that we can infer the causality using second-
order statistics of corrupted signals through Theorem 4.

max
{
γMzex + γMezx + γMezex ,

2γMzez + γMezez
}
<
σmin(Cx→zG (m, q))

2(m+ 1)
√
m+ q

. (21)

Note that the RHS of (21) depends just on the underlying
jointly Gaussian stochastic process and its LHS depends
on the second-order statistics of noises.

Now let us consider the case where the sum of covariances
between the additive noise and the underlying processes
decay exponentially in κ, i.e.

|γzex(κ) + γezx(κ) + γezex(κ)| ≤ azxe−bzx|κ|, (22)

and

|γzez (κ) + γezz(κ) + γezez (κ)| ≤ azze−bzz|κ|. (23)

where azx, azz, bzx, bzz > 0. Note that such bounds can be
obtained by imposing similar bounds on γzex(κ), γezx(κ),
γezex(κ), γzez (κ), and γezez (κ) individually.

For the stochastic processes with exponentially decaying
covariances, tighter upper bounds on the norm of C ′(m, q)
can be obtained. We have the following result:

Theorem 5. Let x, z be jointly Gaussian, stationary, scalar
stochastic processes, and let z be partial Markov-m. As-
sume that

[
xkk−m+1z

k
]

has positive definite covariance
matrix at a given time k > m and that (22)-(23) hold.
Suppose there exists some q ∈ (m, k] such that the matrix

Cx
′→z′(m, q), involving covariances of the observed signals

x′k and z′k, is full-rank. Then x Granger causes z, provided
that one of the two following conditions is satisfied:

max
{
f(azx, bzx,m, i) + f(azz, bzz, q, i)

}
<

σ′min√
m+ 1

,

(24)
or

max
{
g(azx, bzx), g(azz, bzz)

}
<

σ′min√
m+ q

, (25)

where the maximum taken over i = 0, . . . ,m− dm+1
2 e in

(24), d.e is the ceiling function, σ′min is the smallest singular

value of Cx
′→z′(m, q),

f(a, b, c, d) := a
eb(d

m+1
2 e+d)(e−b + e−bc)− eb − 1

1− eb
, (26)

g(a, b) := a
e−b(m−d

m−1
2 e) − eb − 1 + e−bd

m−1
2 e

1− eb
, (27)

and azx, azz, bzx, bzz > 0 are defined in (22)-(23). �

Remark 3. Theorem 5 is a refined version of Theorem
4 which introduces tighter upper bounds on ‖C ′(m, q)‖2
in (13) while excluding periodic noise processes. Granger
causality of such periodic processes can be inferred through
Theorem 4.

In the following section, the impact of filtering on inferring
Granger causality is addressed.

4. GRANGER CAUSALITY INFERENCE UNDER
FILTERING

Consider filtered jointly Gaussian stationary stochastic
processes x and z:

xfk = hxx(k) ∗ xk + hxz(k) ∗ zk, (28)

zfk = hzx(k) ∗ xk + hzz(k) ∗ zk, (29)

where xfk and zfk denote the filtered signals, hxx(k),hxz(k),
hzx(k) and hzz(k) are impulse responses of stable filters,
and ∗ denotes convolution operator. The filters can be non-
causal and non-minimum phase.

Let us consider the relation between the causality matrix
Cx→zG (m, q) of the unfiltered processes, and its counterpart

Cx
f→zf (m, q) constructed from the filtered signals. The

difference between these two matrices is called Cf (m, q) :=

Cx→zG (m, q) − Cx
f→zf (m, q). Theorem 3 implies that if

the smallest singular value of Cx
f→zf (m, q) is greater

than ‖Cf (m, q)‖2, then the causality matrix Cx→zG (m, q)
constructed by the signals before filtering remains full
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rank. By Lemma 2, this implies that x Granger causes
(GC) z.

Next we find an upper bound on ‖Cf (m, q)‖2. To do so,
we investigate the perturbations γzfxf (κ) − γzx(κ) and
γzfzf (κ) − γzz(κ). Since the filters are stable and the
jointly Gaussian stochastic processes are stationary, the
covariances between filtered signals, which can be obtained
by standard linear convolution in terms of the covariances
of the unfiltered signals, in the form of infinite sums
are convergent. In the following, upper bounds on the
difference between the covariances of the filtered signals
and the covariances of the original signals are derived.

An upper bound ∆zx(κ) on |γzfxf (κ) − γzx(κ)| can be
obtained as follows:

∆zx(κ) :=

∞∑
i=−∞

∞∑
n=−∞

∣∣hxx(i)hzx(n)
∣∣∣∣γxx(n+ κ− i)

∣∣
+

∞∑
i=−∞

∞∑
r=−∞

∣∣hxx(i)hzz(r)
∣∣∣∣γzx(r + κ− i)

∣∣Ir 6=i
+

∞∑
j=−∞

∞∑
n=−∞

∣∣hxz(j)hzx(n)
∣∣∣∣γzx(j − n− κ)

∣∣Ij 6=n+2κ

+

∞∑
j=−∞

∞∑
r=−∞

∣∣hxz(j)hzz(r)∣∣∣∣γzz(−κ+ j − r)
∣∣

+
∣∣γzx(κ)

∣∣∣∣∣∣∣
∞∑

j=−∞
hxz(j)hzx(j − 2κ)+

∞∑
i=−∞

hxx(i)hzz(i)− 1

∣∣∣∣∣, (30)

where I is the indicator function. And upper bound ∆zz(κ)
on |γzfzf (κ)− γzz(κ)| can be derived as follows:

∆zz(κ) :=

∞∑
n=−∞

∞∑
i=−∞

∣∣hzx(n)hzx(i)
∣∣∣∣γxx(κ− i+ n)

∣∣+
∞∑

n=−∞

∞∑
j=−∞

∣∣hzx(n)hzz(j)
∣∣∣∣γzx(j − κ− n)

∣∣+
∞∑

r=−∞

∞∑
i=−∞

∣∣hzz(r)hzx(i)
∣∣∣∣γzx(κ− i+ r)

∣∣+
∞∑

r=−∞

∞∑
j=−∞

∣∣hzz(r)hzz(j)∣∣∣∣γzz(κ− j + r)
∣∣Ij 6=r+

∣∣γzz(κ)
∣∣ ∞∑
r=−∞

∣∣h2zz(r)− 1
∣∣. (31)

Let us now assume that maxima of the absolute values of
auto- and cross-covariances of the original processes are
known a priori (γMxx, γMzx and γMzz). By replacing the auto-
and cross-covariances in (30) and (31) with their maxima,
we can find upper bounds on ∆zx(κ) and ∆zz(κ) which
do not depend on κ, and are denoted by ∆M

zx and ∆M
zz ,

respectively. We can then obtain upper bounds on the
norms of the perturbation between the causality matrix

Cx→zG (m, q) and Cx
f→zf (m, q) using similar techniques as

in Section 3 as follows:

‖Cf (m, q)‖∞ ≤m∆M
zx + q∆M

zz , (32)

and

‖Cf (m, q)‖1 ≤(m+ 1) max
{

∆M
zx,∆

M
zz

}
. (33)

Hence, we have:

Theorem 6. Let x, z be jointly Gaussian stationary, scalar
stochastic processes, and let z be partial Markov-m. As-
sume that

[
xkk−m+1z

k
]

has positive definite covariance
matrix at a given time k > m.
Suppose there exists some q ∈ (m, k] such that the matrix

Cx
f→zf (m, q), involving covariances of the filtered signals,

is full-rank. Then x Granger causes z, provided that one
of the two following conditions is satisfied:

m∆M
zx + q∆M

zz <
σfmin√
m+ 1

, (34)

or

max
{

∆M
zx,∆

M
zz

}
<

σfmin

(m+ 1)
√
m+ q

, (35)

where σfmin is the smallest singular value of Cx
f→zf (m, q)

and ∆M
zx and ∆M

zz are the upper bounds on (30) and (31)
derived using the maximum magnitudes of the covariances
(γMxx, γMzx and γMzz). �

Remark 4. Note that conditions (34) and/or (35) guaran-

tee that if the matrix Cx
f→zf (m, q) is full rank, then the

causality matrix Cx→zG (m, q), which is constructed by the
second-order statistics of the underlying Gaussian stochas-
tic processes, is also full rank. Lemma 2 then implies that

x Granger causes z. Note that the matrix Cx
f→zf (m, q)

cannot be used to infer Granger causality between filtered
signals due to violations of assumptions of Theorem 1
and Lemma 2. We use this matrix as a mathematical
object carrying information about the rank of the causality
matrix Cx→zG (m, q).

Depending on the underlying jointly Gaussian stochastic
process, the filters can be chosen such that we are able
to infer the Granger causality through Theorem 6. As
mentioned in Section 3, we have the relation

‖Cf (m, q)‖2 <
σmin(Cx→zG (m, q))

2
(36)

guaranteeing that σmin(Cf (m, q)) > ‖Cf (m, q)‖2. There-
fore, if the parameters of the filters satisfy

max
{

∆M
zx,∆

M
zz

}
<
σmin(Cx→zG (m, q))

2(m+ 1)
√
m+ q

, (37)

then the sufficient condition (35) in Theorem 6 holds.

Remark 5. If the covariances decay to zero with lag κ,
tighter conditions can be obtained. For instance, if they
decay exponentially with κ, then the sufficient conditions
in Theorem 6 become

max
i=0,...,m

{ m−i∑
κ=1−i

∆f
zx(κ) +

q−i∑
κ=1−i

∆f
zz(κ)

}
<

σfmin√
m+ 1

,

(38)
or

max
i=1,...,m
j=1,...,q

{ i−m∑
κ=i

∆f
zx(κ),

m−j∑
κ=j

∆f
zz(κ)

}
<

σfmin√
m+ q

. (39)

where ∆f
zx(κ) and ∆f

zz(κ) are bounds on the covariance
magnitudes.

Remark 6. Filters in the approach introduced in this pa-
per can be noncausal and/or nonminimum phase. It is
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required to know bounds on the magnitudes of the cor-
relation coefficients of the underlying jointly Gaussian
stochastic processes a priori to infer the Granger causality.

Remark 7. Note that the approach can be used for non-
linear filters as well e.g. Volterra filters.

5. CONCLUSION

This paper studies Granger causality between jointly
Gaussian, partially Markov-m signals using the fact that
Granger causality between such stochastic processes can
be determined by a full-rank condition of a matrix con-
structed by covariances between the signals.

Exploiting the properties of the rank-based condition for
Granger causality, the Granger causality between signals
corrupted by additive noise terms was investigated. Suf-
ficient conditions involving the second-order statistics of
the noisy signals were derived which guaranteed Granger
causality between the noise free jointly Gaussian stochastic
processes.

Furthermore, impacts of filtering of stochastic processes
were investigated. Sufficient conditions were introduced
under which Granger causality of the stochastic processes
before filtering can be inferred using the second-order
statistics of the filtered signals. The stable filters can
be non-causal and nonminimum-phase. Note that the
approach introduced in this paper can be exploited to
investigate Granger causality of jointly Gaussian processes
under the simultaneous impacts of both noise and filtering.

The approach does not require the statistics of the un-
derlying Gaussian signals to be estimated, or a system
model to be identified, unlike most literature addressing
the inference of Granger causality.
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