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Abstract: This paper explores the concept of periodic invariance and its use for trajectory
tracking problems subject to state and input constraints, offering important computational
advantages. In principle, traditional techniques based on receding horizon optimization are
computationally expensive due to long prediction and optimization horizons, and number of
control and state constraints in a constrained control problem. Their complexity is further
affected by additional constraints needed to ensure recursive feasibility via a controllable
invariant set. Practically, such invariant sets are difficult to obtain off-line and use them on-line.
To overcome this problem, this paper suggests to employ periodic invariant sets as a simple
set-theoretic tool for constrained reference tracking problems.
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1. INTRODUCTION

This paper presents an alternative approach to the tra-
ditional constrained tracking design methods (Bemporad,
1998). Essentially, we aim to develop an attractive frame-
work from the computational point of view that:

• guarantees recursive feasibility for a pre-defined re-
gion in the state space;
• simplified constraints in the on-line optimization.

The recursive feasibility of constrained tracking can be
guaranteed by the characterization of the maximal con-
trollable sets (Blanchini and Miani, 2000). Any initial
state within this set can generate feasible trajectories by
exploiting the controlled invariance and subsequently op-
timized with respect to a tracking criterion (Blanchini and
Miani (2000)). We note however, that the characterization
of the maximal controllable set is a notorious complex
problem both in terms of off-line effort and complexity of
the representation, which subsequently affects the on-line
computational effort. As an alternative to the explicit use
of the maximal controllable set, model predictive control
(MPC) has been widely used with its receding horizon
formulation. Recursive feasibility in MPC is related to
the existence of an invariant terminal set. In the track-
ing case, this terminal set is parameterized by a virtual
feasible trajectory (Olaru and Dumur, 2005; Limon and
Alamo, 2013; Falugi, 2015; Chisci and Zappa, 2003). This
parametrization leads to high on-line computational effort
and has been the subject of research in different studies.

Reducing the complexity of the maximal controllable set
or the terminal constraints in MPC by means of ap-
proximations can compromise the invariance property and
consequently the recursive feasibility. The present paper
revisits the concept of periodic invariance (Lee and Kou-
varitakis, 2006) that allows the relaxation of constraints
for a finite number of iterations before reinforcing into the
constraints. This property preserves the recursive feasibil-
ity of optimization-based tracking control by maintaining
a low computational effort.

Among constrained control techniques, the recent Interpo-
lation Based Control (IBC) developed in (Nguyen et al.,
2013; Scialanga and Ampountolas, 2017, 2018, 2019) is
shown to be faster than traditional optimisation-based
techniques such as MPC, while preserving stability and
performance. However its extension to tracking problems
is based on on-line operations involving invariant sets
(Soyer et al., 2020). This paper explores how IBC can be
enhanced via the periodic invariance concept to deal with
the constrained reference tracking problem, and conse-
quently to maintain a low computational effort, compared
to optimization-based methods like MPC. By using the
notion of strong and weak periodic invariance, we present
efficient algorithms for the tracking problem that guaran-
tee the recursive feasibility of IBC.

Notation: A Polytope P in the H-Representation is a
set P = {x ∈ Rn |Fx ≤ g} where F ∈ Rq×n and g ∈ Rq.
A Polyhedron denotes a bounded polytope. A Polyhedron
P in V-Representation is a set P = {

∑n
i λivi/∀i ∈

{0, . . . , n} λi ≥ 0} where {v1, ..., vn} are the vertices. The
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weighted 2-norm ‖.‖Q is defined as : ∀x ∈ Rn ‖x‖2Q =

xTQx where Q ∈ Rn×n is positive definite. J1, NK is the
set of integers between 1 and N .

2. PROBLEM FORMULATION
The dynamical system will be represented in terms of a
linear discrete-time model :

xk+1 = Axk +Buk, x0 is given,

subject to: xk ∈ X, uk ∈ U, ∀ k, (1)

where X ⊂ Rn and U ⊂ Rm are compact convex sets
containing the origin in their respective interior.

Definition 1. (Positive invariance). A set C ⊂ Rn is said
to be positively invariant for the autonomous system
xk+1 = f(xk) if for any x0 ∈ C ⇒ xk ∈ C, ∀ k ∈ Z+.

Definition 2. (Controlled invariant set). A set C ⊂ X is
said to be controlled invariant with respect to the con-
strained system (1) if for any state x0 ∈ C there exists a
sequence uk ∈ U such that xk ∈ C, ∀k ∈ Z+.

Definition 3. (Maximal Controllable Set to Ω). Given a
proper controlled invariant set Ω ⊂ X we define the
Maximal controllable set to Ω, denoted C(Ω), to be the
collection of initial states x0 ∈ X for which there exists a
finite admissible control sequence that brings x0 to Ω.

Practically, the controlled invariant set is chosen to be
as large as possible in X to avoid conservativeness. The
maximal controllable set can be approached off-line with
an iterative procedure which implies projections of polyhe-
drons that can lead to a complex representation (Nguyen
et al. (2011)). The objective in the remaining of the paper
is to introduce optimization-based tracking formulations
building on a generalised invariance property with the goal
to circumvent the off-line and on-line complexity of the
maximal controllable set.

We will present the main contribution by revisiting the
concept of periodic invariance (Lee and Kouvaritakis,
2006) that will be used to overcome the complexity in-
duced by the construction of the maximal controllable set.
A difference will be made in between a strong and weak
version of the periodic invariance, the former implying the
later. In the following, periodic invariance will be denote
as p-invariance.

Definition 4. (Strong p-invariance). A set B ⊂ X contain-
ing the origin is said to be strongly p-invariant with respect
to the constrained system (1) if there exists p ∈ N∗
such that for all state xk ∈ B, there exists a control
sequence (uk, ..., uk+p−1) ∈ Up such that xk+p ∈ B and
(xk+1, ..., xk+p−1) ∈ X.

The notion of p-invariance which assumes the same pe-
riodicity index for any point in the set. We show next
that this characteristics can be relaxed to a certain extent
and the tracking control associated carry on with simple
modifications.

Definition (Weak p-invariance) : Given a compact convex
set B ⊂ Rn and p ∈ N∗, B is said to be weakly p-invariant
with respect to the system (1) if for any state xk ∈ B there
exists r ≤ p and a control sequence (uk, ..., uk+r−1) ∈ Ur

such that xk+r ∈ B and (xk+1, ..., xk+r−1) ∈ X.

In other words, any state in B returns into B in at most p
number of steps.

3. STRONG p-INVARIANCE

The concept of strong p-invariance can be relevant to the
considered systems and the tracking objective whenever
maximal controllable set is replaced by a simpler approx-
imation thanks to the following theorem.

Theorem 5. Let Ω be a controlled invariant set containing
the origin and CN (Ω) be the maximal controllable set to
Ω. Given a set B such that Ω ⊆ B ⊂ CN . There exists an
integer p ∈ N∗ such that B is strongly p-invariant.

Proof: B ⊂ CN (Ω), so for any initial state xk ∈ B there
exists a control sequence (uk, ..., uk+N−1) ∈ UN such that
xk+N ∈ Ω ⊂ B. By fixing the periodicity index to the
maximal number of time steps N to reach Ω from B the
existence is proved. 2

In other words, a simpler inner approximation of the
maximal controllable set, while contains the attractive
controlled invariant set, is necessarily strongly periodic
invariant.

3.1 Practical Construction of Strong p-Invariance

Given B ⊂ X a convex polyhedron containing the origin
with V = {v1, ..., vNv

} its vertices and their cardinality
Nv ∈ N. The strong p-invariance of the set B with respect
to (1) can be computed by Algorithm 1 below, which
considers all the vertices of the candidate set B and tests
the minimal contraction factor that can be obtained jointly
along a time window of length ps. The search for this
contraction factor leads practically to a simple Linear
Programming (LP) problem.

Under the assumption that the candidate set is contained
in a controllable set B ⊂ CN (Ω), the procedures ends in
finite time. If this assumption does not hold, the condition
λsB ⊃ X guarantees that the algorithm will terminate in a
finite number of steps. In this framework, it is important
to observe that an explicit description of a controllable set
CN (Ω) is not necessary in the above construction.

Algorithm 1 Strong p-Invariance

Input: The pair (A,B), the sets X,U and B
Output: The periodicity index p
ps = 0, λs = 1
while λs ≥ 1 do

ps = ps + 1
Solve:

minimize
λs, ui

λs

subject to

Ak−1vi +

k−2∑
j=0

AjBui,k−2−j ∈ X

∀k ∈ J2, psK, i ∈ J1, NvK

Apsvi +

ps−1∑
j=0

AjBui,ps−1−j ∈ λsB, i ∈ J1, NvK

(uvi)i∈J1,NvK ∈ Ups

end while {λsB ⊃ X}

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6988



3.2 Strong p-Invariance Based Reference Tracking

Based on the construction of strong p-invariance, let us
now consider that the tracking control problem can use
the existence of a p-invariant set B satisfying B ⊂ C ⊂ X.

A prototype receding-horizon optimization for reference-
tracking, which employs the periodic invariance for a
linear prediction model, will be denoted O(Nh, p, xk) and
formulated as follows :

Jp(xk) = minimize
(uk, ..., uk+Nh−1)

Nh∑
i=1

‖xrefk+i − xk+i‖2Q

subject to

uk+i ∈ U , xk+i ∈ X ∀i ∈ J1, . . . ,MK,
xk+p ∈ B,

(2)

with M = max(Nh, p).

Proposition 6. O(Nh, p, xk) is feasible for all xk ∈ B.

Proof: For any state xk ∈ B, there exists a control sequence
(uk, ..., uk+p−1) ∈ Up such that (xk+1, ..., xk+p−1) ∈ X and
xk+p ∈ B. Thus, in the case of a prediction horizon with
Nh ≤ p, the problem is feasible.

If Nh > p, the argument is slightly more elaborated
and needs to rely on the invariance property of the
controlled invariant superset C. Indeed by construction
B ⊂ C ⊂ X, which implies the existence of a sequence
(uk, ..., uk+Nh−1) ∈ UNh such that (xk+1, ..., xk+Nh−1) ∈
C ⊂ X. 2

Despite the result stated in Proposition 6, one cannot
guarantee the recursive feasibility of the control strategy
that implements the first part of the optimum control
argument. This is because the one-step invariance prop-
erty on B is not certified, and thus the feasibility of the
optimization (2) on B does not imply the feasibility at
iteration k + 1, . . . as long as xk+1+p ∈ B does not hold.

To overcome the absence of recursive feasibility, a simple
procedure can be constructed to enhance the periodic
invariance property. If O(Nh, p, xk) designates the opti-
mization (2), the main idea is to monitor the result of this
optimization and to switch to a safe return strategy within
the set B whenever the closed-loop trajectory leaves B.

In order to simplify the switching criterion, the cost
functions Ji(xk) and Jp(xk) will be compared for any
xk ∈ B. As long as the first one is less costly the procedure
apply the first component of its control law. The following
proposition provides a criterion that separates the case
where the system remains in B from the case it leaves B.

Proposition 7. Given the optimized costs J1(xk) (resp
Jp(xk)) of optimizations O(Nh, 1, xk) (resp O(Nh, p, xk)).
If Jp(xk) < J1(xk) then xk+1 6∈ B.

Proof: If U∗p is the optimal solution ofO(Nh, p, xk), assume
xk+1 ∈ B, then, every constraints of O(Nh, 1, xk) are
satisfied, U∗p is a feasible solution of O(Nh, 1, xk). Thus,
the optimization ofO(Nh, 1, xk) provides a better solution,
and J1(xk) ≤ Jp(xk). 2

With this preliminary result the description of the proce-
dure using strong p-invariance for tracking with recursive
feasibility properties is presented in Algorithm 2.

Algorithm 2 Strong p-Invariance Reference Tracking

Input x0 ∈ B ⊂ X, Nsimu,Nh,(A,B),X,U,B
Output (xk)k=0,...,Nsimu

,(uk)k=0,...,Nsimu−1
k = 1, i = 1
repeat for each k

if i = 1 then
Solve O(Nh, 1, xk)→ (J∗1 , (u

1
k, ..., u

1
k+Nh−1))∗

if J∗1 < J∗p then

xk+1 = Axk +Bu1k
else

xk+1 = Axk +Bupk
i = p

end if
else

Solve O(Nh, i, xk)← (J∗i , (u
i
k, ..., u

i
k+Nh−1))∗

if J1 < Ji then
xk+1 = Axk +Bu1k
i = 1

else
xk+1 = Axk +Buik
i = i− 1

end if
end if
k = k + 1

until k = Nsimu

Proposition 8. The control law resulting from the recur-
sive implementation of the first input of the optimal
control sequence according to Algorithm 2 is recursively
feasible for any initial state x0 ∈ B.

Proof: Assume the procedure is feasible at step k. Then
the current state becomes xk+1 ∈ X and two cases have to
be considered :

• If xk+1 ∈ B, then O(Nh, p, xk+1) is feasible thanks to
Proposition 6.
• If xk+1 6∈ B, then xk+1 is part of a state sequence that

began in B. There exists an integer q ≤ p − 1 such
that the state xk+1−q ∈ B. So there exists a control
sequence (uk+1−q, ..., uk+1, ..., uk−q+p−1) ∈ Up such
that xk+1−q+p ∈ B and (xk+2−q, ..., xk−q+p) ∈ Xp−1.
Ignoring the tail, we conclude on the existence of a
control sequence (uk+1, ..., uk+1−q+p) ∈ Up−q such
that xk+2−q+p ∈ B. This concludes the proof as long
as O(Nh, p− q, xk+1) is feasible. 2

4. WEAK p-INVARIANCE

The next result formalize the relationship between strong
and weak version of the periodic invariance.

Theorem 9. If B is strongly p-invariant, then B is weakly
p-invariant. Alternatively, if ps (resp pw) denotes the result
of the computation of strong periodic invariance (resp
weak periodic invariance), then pw ≤ ps.

Proof: The proof is direct by observing that in the defini-
tion of weak invariance q = p is a feasible choice for the
number of steps for the return sequence. 2

Construction of Weak p-invariance: Given a polyhedron
B ⊂ X with set of vertices V = {v1, ..., vNv} and cardinal-
ity Nv ∈ N. The weak p-invariance index can be computed
by Algorithm 3.
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Algorithm 3 Weak p-invariance

Input: The pair (A,B), the sets X,U and B
Output: the periodicity index p
for vi ∈ V do

piw = 0; λw = 1
while λw ≥ 1 do

piw = piw + 1
Solve:

minimize
λw, (ui)i∈J1,pi

w−1K

λw

subject to

Ak−1vi +

k−2∑
j=0

AjBuk−2−j ∈ X, ∀k ∈ J2, piwK

Api
wvi +

pi
w−1∑
j=0

AjBupi
w−1−j ∈ λwB, i ∈ J1, piw − 1K

end while
end for
pw = max(p1w, ..., p

Nv
w )

Proposition 10. Given a convex compact polyhedron B
containing the origin, and {p1, ..., pNv

} and the periodicity
of vertices {v1, ..., vNv

} computed by Algorithm 3 is thus
inherited by the entire set. Then, for any state xk ∈ B,one
can use the same periodicity as its vertex component with
highest periodicity.

A tracking procedure using weak periodic invariance and
based on the optimization (2) can be proposed as in Algo-
rithm 4. The principle behind the properties of recursive
feasibility of the tracking procedure is summarized next,
the proofs following the arguments in Section 3:

• If xk ∈ B, the cost functions for an optimization
problem with 1-step invariance constraints and p-step
invariance constriants are compared.
• If the system leaves B, then every costs from 1-step to
p-steps return to B are compared. In other words, the
validation of the weak periodic invariance is tested
at each iteration in order to find the shortest return
path into B.

5. TRACKING IBC WITH p-INVARIANCE

Interpolation-Based Control (IBC) was originally devel-
oped in Nguyen et al. (2011, 2013); Nguyen (2014) as an
enhancement of Vertex Control established in Gutman and
Cwikel (1986). It guarantees the same region of attrac-
tion as predictive control as well as structural property
(smoothness) for set-point regulation problems. The IBC
adaptation for tracking is provided in Soyer et al. (2020)
and we point the reader to this reference for the details.

The IBC design is built on two convex compact controlled-
invariant sets containing the origin Ωo and Ωv, where
Ωo ⊂ Ωv ⊂ X. Ωo is called the inner set and Ωv is
called outer set. These inner and outer sets have to be
re-scaled and translated in order to contain the origin of
the dynamical system governing the tracking error. The
periodic invariance property is preserved by homogeneous
transformations.

Algorithm 4 Weak p-Invariance Reference Tracking

Input x0 ∈ B ⊂ X, Nsimu,Nh, (A,B) ,X,U,B
Output (xk)k=0,...,Nsimu

,(uk)k=0,...,Nsimu−1
k = 1, i = 1
repeat for each k

if i = 1 then
Solve O(Nh, 1, xk)→ (J∗1 , (u

1
k, ..., u

1
k+Nh−1))∗

Solve O(Nh, p, xk)→ (J∗p , (u
p
k, ..., u

p
k+Nh−1))∗

if J∗1 < J∗p then

xk+1 = Axk +Bu1k
else

xk+1 = Axk +Bupk
i = p

end if
else

Solve O(Nh, i, xk)→ (J∗i , (u
i
k, ..., u

i
k+Nh−1))∗

Solve O(Nh, i− 1, xk)
→ (J∗i−1, (u

i−1
k , ..., ui−1k+Nh−1))∗

...

Solve O(Nh, 1, xk)→ (J∗1 , (u
1
k, ..., u

1
k+Nh−1))∗

q∗ = arg min
q∈J1,iK

(Jq)

xk+1 = Axk +Buq
∗

k
i = i− 1

end if
until k = NSimu

Theorem 11. (Homogeneity of periodic invariance). Given
B strongly p-invariant (p ∈ N∗) with respect to (X,U),
then for all α ∈ [0, 1], αB is strongly p-invariant with
respect to (αX, αU).

The IBC scheme is applied within a (constrained) admis-
sible framework, thus the reference has to be feasible. In
the following procedure, a virtual reference will be con-
sidered, generated within an optimization-based reference
governor (Gilbert et al., 1995). Given the outer set Ωv

and assume its strong p-invariance, the virtual reference
and the scaling factor are solutions of the optimization

problem R(xrefk , xk):

min
(x̄k, ūk, αk)

‖xrefk − x̄k‖2

s.t. x̄k = Ax̄k +Būk, ūk ∈ (1− αk)U,
xk ∈ {x̄k} ⊕ αkΩv ⊂ Ωv.

(3)

The main idea is to solve, for the current state xk in Ωv, the

optimization problem R(xrefk , xk) and once the admissible
x̄k and ūk are computed to regulate the tracking error
by solving a IBC problem. This tracking error will be
defined as εk = x̄k − xk ∈ αkΩv and two cases have to
be considered:

• if εk+1 /∈ Ωv as a result of the IBC at step k then
we hold x̄k and ūk for maximum p steps in order to
allow εk+i ∈ Ωv for some 0 < i ≤ p. Practically, at
each iteration i, we check if εk+i ∈ B and if this is
the case we release x̄k+i and ūk+i

• if εk+1 ∈ Ωv as a result of the IBC at step k we
start from the beginning the procedure with virtual
reference design and IBC.
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Practically, the optimization (3) generates a virtual trajec-
tory which are fixed points of the system (1). Whenever

the reference to be tracked xrefk converges to a fixed point,
it can be shown that x̄k converges to a feasible fixed
point x̄ ∈ X with respect to an admissible control ū ∈ U
and the the tracking error εk asymptotically decreases to
zero using the IBC. The formal proofs are adapting the
IBC properties for the case of p-invariance similar to the
previous sections and are not presented for brevity.

6. ILLUSTRATIVE NUMERICAL EXAMPLES

Consider the linear double integrator :

x(k + 1) =

[
1 0.08
0 1

]
x(k) +

[
0.0032
0.08

]
u(k) (4)

subject to constraints:

−2.6 ≤ x1(k) ≤ 2.6,−3 ≤ x2(k) ≤ 3,−5 ≤ u(k) ≤ 5. (5)

The two techniques presented in the paper are consid-
ered for simulation and comparison: Strong and weak p-
invariant reference tracking and periodic IBC. Then two
types of trajectories are presented:

• A dynamically generated trajectory with the goal to
test and illustrate the recursive feasibility and the
reactivity of both tracking algorithms;
• A sequence of switching of fixed points which aims to

test (aside the recursive feasibility) the convergence
properties.

The inner polyhedral set Ωo = {x ∈ Rn|Fox ≤ go} consid-
ered is the Maximal Admissible Set (MAS) with respect
to a linear feedback law uk = − [16.65 6.23]xk and has
been constructed based on the procedure given in Gilbert
and Tan (1991) in polyhedral form. In order to illustrate
the complexity of the the maximal controllable set, a
controlled invariant approximation C(Ωo) is computed as
a N -step controllable set (N ∈ N∗), thanks to the iterative
procedure proposed in Nguyen et al. (2011) leading to the
polyhedral form: CN (Ωo) = {x ∈ Rn|FNx ≤ gN}.
The candidate p-invariant set is represented by a simple
inner approximation of CN (Ωo), represented in blue in
Fig.1. The same set, denoted Ωv , is used as an outer set
for the p-invariant MPC and IBC strategies.

6.1 Time-Varying (Dynamic) Trajectory

In the first simulation scenario, the reference is generated
using the dynamical model (4) based on a excitation signal
which violates drastically the imposed constraints. As a
result, the time-varying reference trajectory leaves the
state constraints set as illustrated by dashed trajectories
in Fig.1. The initial state of the system is selected on
the frontier of Ωv on a extreme state (corresponding to
zero speed if the state is interpreted in terms of position-
speed coordinates). For the comparative study, strong and
weak p-invariant sets have been constructed and the p
index has been computed using Algorithms 1 and 3 to
be p = 14. Using this low complexity set (4 vertices) the
reference tracking optimization has been solved according
to the Algorithms 2 and 4 and the results confirm the
recursive feasibility of both receding-horizon reference-
tracking algorithms.

Fig. 1. Trajectories in the state space of reference (dashed),
Strong p-invariance procedure (blue) and Weak p-
invariance procedure (red).
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Fig. 2. Temporal trajectories of reference (dashed), Strong
p-invariance (blue) and Weak p-invariance (red).
Right: Control action of Strong p-invariance (blue)
and Weak p-invariance (red).

Even if globally the behaviour is similar, a slight difference
can be observed when the state leaves B (the signals are
depicted with respect to the time in Fig. 2).

6.2 Static Reference Trajectory

In this case, the reference is a fixed-point out of the
admissible set and this reference commutes to a symmetric
fixed point out of the admissible set at a regular time
interval. The invariant set Ωv is the strongly p-invariant
set with index p = 8. Figs 3 and 4, compare strong and
weak p-invariant based reference tracking which provide a
recursive feasible control law and good performances.

Fig. 3. Trajectories in the state space of reference (dashed),
Strong p-invariance (blue) & Weak p-invariance (red).
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Fig. 4. Temporal trajectories of reference (dashed), Strong
p-invariance (blue) and Weak p-invariance (red). Left:
states; right: control.

In order to complete the design with stability (conver-
gence) guarantees for such piece-wise constant references,
an IBC for tracking is implemented using the periodic
invariance notion. The closed-loop performance is depicted
in Fig. 5, 6. It is important to observe that although the
virtual reference is a fixed point, it is updated at each
iteration, and thus leads to a sequence of feasible set-points
for the IBC procedure.

Fig. 5. Trajectories in the state space of reference (dashed),
virtual x̄ (blue cross) and state trajectory (red).
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Fig. 6. Left: time trajectories of reference (dashed), virtual
trajectory x̄ (blue) and and state trajectory (red).
Right: Control action of periodic invariant IBC.

7. CONCLUSIONS

The paper presented a novel scheme for the constrained
reference tracking control problem. The proposed opti-
mization framework guarantees recursive feasibility through
the use of low complexity periodic invariant sets that re-
place the costly (in terms of computation and complexity)
approximations of the maximal controlled invariant sets.
Moreover it has been shown that the receding horizon
optimization can be further enhanced by an interpolation-
based control scheme, and thus it guarantees the conver-
gence in the case of piecewise constant reference signals.
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