
Collision Avoidance for Multiple Micro
Aerial Vehicles using Fast Centralized
Nonlinear Model Predictive Control ?

Björn Lindqvist ∗ Sina Sharif Mansouri ∗ Pantelis Sopasakis ∗∗

George Nikolakopoulos ∗

∗Robotics Team, Department of Computer, Electrical and Space
Engineering, Lule̊a University of Technology, Lule̊a SE-97187, Sweden.
∗∗ School of Electronics, Electrical Engineering and Computer Science

(EEECS), Queen’s University Belfast and Centre for Intelligent
Autonomous Manufacturing Systems (i-AMS), United Kingdom

Abstract: This article proposes a novel control architecture using a centralized nonlinear model
predictive control (CNMPC) scheme for controlling multiple micro aerial vehicles (MAVs). The
control architecture uses an augmented state system to control multiple agents and performs
both obstacle and collision avoidance. The optimization algorithm used is OpEn, based on
the proximal averaged Newton type method for optimal control (PANOC) which provides
fast convergence for non-convex optimization problems. The objective is to perform position
reference tracking for each individual agent, while nonlinear constraints guarantee collision
avoidance and smooth control signals. To produce a trajectory that satisfies all constraints
a penalty method is applied to the nonlinear constraints. The efficacy of this proposed novel
control scheme is successfully demonstrated through simulation results and comparisons, in
terms of computation time and constraint violations, which are provided with respect to the
number of agents.
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1. INTRODUCTION

1.1 Background and Motivation

The deployment of coordinated MAV flights is gaining
increasing attention in different applications areas, such as
coordinated inspection of infrastructure (Mansouri et al.,
2018) or coordinated aerial acrobatics (Mellinger and
Kumar, 2011). Such application scenarios call for advanced
control algorithms that provide high levels of autonomy
with integrated collision avoidance, among the agents and
obstacles in the environment.

A centralized control scheme allows all agents to account
for obstacles and changes in their environment, as well
as the positions of other agents, without agent-to-agent
broadcasting. Such a control scheme must provide satis-
factory trajectories for all agents, while keeping the com-
putation time low as it is required for the control of MAVs.

Specifically, for a nonlinear model predictive control
(NMPC) scheme, the computation time is the greatest
bottleneck. But provided that the computation time is
constrained low for multiple MAVs, the customizability
of the NMPC makes it a great scheme for applying a
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centralized control. In this article, we present a nonlin-
ear constrained NMPC, based on the proximal averaged
Newton method for optimal control (PANOC) (Stella,
L. and Themelis, A. and Sopasakis, P. and Patrinos, P.,
2017; Small et al., 2019; Sathya et al., 2018) that provides
obstacle and collision avoidance for multiple agents using a
penalty method (Hermans et al., 2018), while keeping the
computation times below a desired bound of 50 ms (Small
et al., 2019), which is fast enough to ensure stability of
the MAV, but slow enough to have a sufficiently long pre-
diction in the NMPC formulation for obstacle avoidance.
A sampling time of 50 ms will thus be the benchmark for
solver time in this article.

The problem of path planning (LaValle, 2006) has been
widely studied as it a key problem in mobile robotics. In
the specific case for MAVs it comes with its own specific
challenges, such as the nonlinearity of the system dy-
namics and the tight runtime requirements, while several
approaches have been proposed in the related literature
(Goerzen et al., 2010). Popular path planners include
the potential fields (Droeschel et al., 2016), graph search
methods, such as dynamic variations of A∗ (Heng et al.,
2011) and model predictive control (Alexis et al., 2011).
The overarching goal of such path planners is to have
a reactive control system that can provide collision-free
paths in constrained environments, while accounting for
the nonlinear dynamics of the MAV at a low computation
time.
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The problem of cooperative path-planning for multiple
MAVs can be split into centralized and non-centralized
(distributed, decentralized). The distributed and decen-
tralized schemes have been widely used (Montenegro et al.,
2015; Kumaresan and Singh, 2016; Richards and How,
2004; Chao et al., 2012), where only specific data are
shared among agents. Specifically in regards to a dis-
tributed or decentralized MPC, it is a common practice
to either share the predicted trajectories (Richards and
How, 2004; Chao et al., 2012) or internally predict the
positions of other agents using a linear prediction model, to
prevent collisions (Kamel et al., 2017a). In such decentral-
ized approaches, individual agents solve lower dimensional
optimization problems, thus mitigating the heavy load of
solving one large centralized problem. However, according
to Negenborn and Hellendoorn (2010) centralized formu-
lations are computationally demanding and outperform
their distributed/decentralized counterparts.

A legitimate concern, in the centralized control archi-
tectures, is the robustness of the communication of the
vehicles to a central computing node. However, with more
stable and faster wireless networks, such as 5G and edge
computing, a centralized control scheme becomes relevant.
In such centralized control schemes, the entire position and
orientation information is available to a single comput-
ing agent, which can make informed decisions towards a
collision-free navigation of all vehicles, while this in turn
provides a better closed-loop performance. Centralized
schemes are also suitable for small MAVs that do not
have adequate computing power. Instead, such computa-
tion can, for example, be offloaded to an edge computing
system and wirelessly transmitted to the agents (Vargh-
ese et al., 2016). Centralized NMPC schemes have been
considered before, such as (Erunsal et al., 2019).

All the aforementioned cases of NMPC use some form of
SQP (sequential quadratic programming) to solve the op-
timization problem. The main drawback of SQP lies in the
need to solve a quadratic program at each iteration, which
requires inner iterations, and the requirement to compute
and store Jacobian matrices. The proposed method uses
PANOC (Stella et al., 2017; Sathya et al., 2018) as the
solver for the centralized control scheme. PANOC uses the
same oracle as the projected gradient method (Nesterov,
2018), involves only simple algebraic operations and has
a low memory and computational footprint. PANOC has
been shown to successfully fly a single MAV in an ob-
structed environment (Small et al., 2019).

1.2 Contributions

The first contribution of this article is a framework for
centralized NMPC (CNMPC) of multiple MAVs. This
framework provides collision-free paths, while avoiding ob-
stacles. We consider nonlinear dynamical models for every
aerial agent and solve a common optimization problem
to decide individual control actions and unlike distributed
approaches, we optimize over the trajectories of all agents.

Secondly, we conduct several realistic simulations to eval-
uate the proposed CNMPC approach in demanding en-
vironments (tight formations and obstacles). We analyze
the efficacy of CNMPC in terms of the required execution
time and show that this scales gracefully with the number

Fig. 1. Utilized coordinate frames, where W and B denote
the world and body coordinate frames respectively.

of agents. We also evaluate the constraint violations in
closed-loop simulations, which are found to be low.

Lastly, we briefly compare the performance of our ap-
proach to that of SQP. As it will be demonstrated, the
OpEn-based method successfully leads to collision-free
paths in all the cases, while the computation time remains
within the tight prescribed requirements of 50 ms for up
to seven agents.

2. METHODOLOGY

2.1 MAVs Kinematics

The MAV coordinate systems are depicted in Figure 1,
where (xB, yB, zB) denote the body-fixed coordinate sys-
tem, while (xW, yW, zW) denote the global coordinate sys-
tem. In this article the states of all agents are defined
in a yaw-compensated global frame of reference. The six
degrees of freedom (DoF) MAV is defined by the set of
equations (1). The full derivation of the adopted model
can be found in (Kamel et al. (2017b)).

ṗ(t) = v(t) (1a)

v̇(t) = R(φ, θ)

[
0
0
T

]
+

[
0
0
−g

]
−

[
Ax 0 0
0 Ay 0
0 0 Az

]
v(t), (1b)

φ̇(t) = 1/τφ(Kφφref(t)− φ(t)), (1c)

θ̇(t) = 1/τθ(Kθθref(t)− θ(t)), (1d)

where p = [px, py, pz]
> is the position, v = [vx, vy, vz]

> is
the linear velocity in the global frame of reference, and φ
and θ ∈ [−π, π] are the roll and pitch angles along the xW

and yW axes respectively. Moreover, R(φ(t), θ(t)) ∈ SO(3)
is a rotation matrix that describes the attitude in Euler
form, with φref ∈ R, θref ∈ R and T ≥ 0 to be the
references in roll, pitch and the total (massless) thrust
generated by the four rotors. The above model assumes
that the acceleration depends only on the magnitude and
angle of the thrust vector, produced by the motors, as
well as the linear damping terms Ax, Ay, Az ∈ R and the
gravitational acceleration g.

The attitude terms are modeled as a first-order system
between the attitude (roll/pitch) and the references φref ∈
R, θref ∈ R, with gains Kφ,Kθ ∈ R and time constants
τφ, τθ ∈ R. The aforementioned terms model the closed-
loop behavior of a low-level controller, which also implies
that the MAV is equipped with a lower-level attitude
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controller that takes thrust, roll and pitch commands and
provides motor commands for the MAV such as (Jackson
et al., 2016).

2.2 Joint Cost Function

Let the state vector of agent i be denoted by x(i) =
[p(i), v(i), φ(i), θ(i)]>, and the corresponding control action

be u(i) = [T (i), φ
(i)
ref , θ

(i)
ref ]
>. The state variables of all agents

can be collected into the vector x = [x(1), x(2), . . . , x(Na)]>

where Na is the number of agents. Likewise, we define the
vector of all control actions, u = [u(1), u(2), . . . , u(Na)]>.

The system dynamics of all Na agents are discretized with
a sampling time of Ts = 50 ms using the forward Euler
method to obtain

xk+1 = f(xk, uk). (2)

This discrete model is used as the prediction model of
NMPC. This prediction is done with receding horizon e.g.,
the prediction considers a set number of steps into the
future. We denote this as the prediction horizon, N , of the
NMPC. By associating a cost to a configuration of states
and inputs at the current time and in the prediction, a
nonlinear optimizer is tasked with finding an optimal set
of control actions, defined by the cost minimum of this cost
function.

Let x
(i)
k+j|k denote the predicted state of agent i at time

step k+j, produced at the time step k. The corresponding

control actions are denoted by u
(i)
k+j|k. Let us also denote

xk = (x
(i)
k+j|k)j,i and uk = (u

(i)
k+j|k)j,i. The controller

aims to make the state reach the prescribed set points,
while delivering smooth control inputs. To that end, we
formulate the following cost function:

J(xk,uk;uk−1|k) =

N∑
j=0

Na∑
i=1

‖x(i)
ref − x

(i)
k+j|k‖

2
Qx︸ ︷︷ ︸

State cost

+ ‖uref − u(i)
k+j|k‖

2
Qu︸ ︷︷ ︸

Input cost

+ ‖u(i)
k+j|k − u

(i)
k+j−1|k‖

2
Q∆u︸ ︷︷ ︸

Input smoothness cost

, (3)

where Qx ∈ R8×8, Qu, Q∆u ∈ R3×3 are symmetric pos-
itive definite weight matrices for the states, inputs and
input rates respectively. In (3), the first term denotes
the state cost, which penalizes deviating from a certain
state reference xref . The second term denotes the input
cost that penalizes a deviation from the steady-state in-
put uref = [g, 0, 0] i.e. the inputs that describe hovering.
Finally, to enforce smooth control actions, a third term
is added that penalizes changes in successive inputs. Note

that the first such penalty, ‖u(i)
k|k − u

(i)
k−1|k‖

2, depends on

the previous control action u
(i)
k−1|k = u

(i)
k−1.

All agents are given the same weight matrices Qx, Qu, Q∆u

and input reference uref . This approach considers a sep-
arate state reference xref for each agent, which allows
for a path-planning approach where each agent can track
an individual set-point reference. The ∆u-terms uk+j|k −
uk+j−1|k are also considered for each agent as the com-
puted control inputs will be different for every agent.

2.3 Input constraints

With the goal of being applicable to a real MAV, hard
bounds on reference angles φref , θref must be considered
as a low-level controller will only be able to stabilize the
attitude within a certain range. Since the thrust of a MAV
is limited, such hard bounds must also be applied to the
thrust input, T. Thus we define bounds on inputs as:

umin ≤ u(i)
k+j|k ≤ umax, (4)

that are considered for all agents in the system, for every
step in the prediction.

2.4 Obstacle and collision avoidance

Cylindrical Obstacle Cylinders, as well as balls and rect-
angles, are convenient geometrical shapes for enveloping
arbitrary obstacles in the environment of the aerial ve-
hicles. Since a cylindrical obstacle can well represent a
person or general obstruction, we use this geometry for
our obstacle formulation. A cylindrical obstacle can be
identified by its position, height and radius, that is, the
triplet: ξobs := (pobs, robs, lobs). Following Sathya et al.
(2018), we define the obstacle avoidance constraint to be:

hcyl(p; ξ
obs) := [pz − pobs

z + 1
2 lobs]+

[pz + pobs
z + 1

2 lobs]+[r2
obs − (px−pobs

x )2

− (py−pobs
y )2]+ = 0, (5)

where for all x ∈ R we define [x]+ = max{0, x}. In other
words, the point p = (px, py, pz) lies outside the cylinder
at hand so long as (5) holds. In the NMPC we shall require
that the above constraint is satisfied for all positions of all
agents along the prediction horizon.

Obstacles of more general shapes can be considered in a
similar fashion following (Small et al., 2019; Sathya et al.,
2018).

Collision Avoidance In a similar fashion, in order to
prevent collisions among agents we require that:

hl,i(xk) :=
[
piz,k+j|k − p

l
z,k+j|k + L

]
+

[
piz,k+j|k

+ plz,k+j|k + L
]
+

[
r2
safety − (p

(i)
x,k+j|k − p

(l)
x,k+j|k)2

− (p
(i)
y,k+j|k − p

(l)
y,k+j|k)2

]
+

= 0, (6)

for all pairs (i, l) with i, l ∈ IN[1,Na] and i < l, where
rsafety is the minimum distance that agents l and i should
be away from one another. In our NMPC formulation, we
shall impose the above constraint between all agents i and
l, i 6= l and along the prediction horizon. Note that it is not
recommended for the vehicles to fly one above the other,
as the top vehicle’s wake can have a destabilizing effect on
the lower vehicle, thus (6) imposes a high safety distance
above each agent.

2.5 Control Input Rate

We impose a constraint on the successive differences of
control actions so as to prevent an overly aggressive
behavior in the control inputs φref and θref , that is

|φ(i)
ref,k+j−1|k − φ

(i)
ref,k+j|k| ≤ ∆φmax, (7a)

|θ(i)
ref,k+j−1|k − θ

(i)
ref,k+j|k| ≤ ∆θmax, (7b)
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for j ∈ IN[0,N−1] and i ∈ IN[1,Na]. The above inequality
constraints can be written as equality constraints as fol-
lows:

[φ
(i)
ref,k+j−1|k − φ

(i)
ref,k+j|k −∆φmax]+ = 0, (8a)

[φ
(i)
ref,k+j|k − φ

(i)
ref,k+j−1|k −∆φmax]+ = 0, (8b)

and similarly for θ.

2.6 NMPC and Embedded Optimization

The requirements we outlined above lead to the formula-
tion of the following model predictive control problem for
Na agents and in presence of multiple cylindrical obstacles,
identified by ξobs

s for s ∈ IN[1,No]

Min
uk,xk

J(xk,uk;uk−1|k) (9a)

s.t. xk+j+1|k = f(xk+j|k, uk+j|k), j ∈ IN[0,N−1], (9b)

umin ≤ u(i)
k+j|k ≤ umax, j ∈ IN[0,N ], (9c)

hcyl(p
(i)
k+j|k; ξobs

s ) = 0, j ∈ IN[0,N ],

i ∈ IN[1,Na], s ∈ IN[1,No] (9d)

hl,i(xk) = 0, j ∈ IN[0,N ], i, l ∈ IN[1,Na], i < l, (9e)

Constraints (8), j ∈ IN[0,N ], i ∈ IN[1,Na], (9f)

x
(i)
k|k = x

(i)
k , i ∈ IN[1,Na], (9g)

u
(i)
k−1|k = u

(i)
k−1, i ∈ IN[1,Na]. (9h)

This problem fits into the framework of the open-source
solver OpEn (Sopasakis et al., 2020), which generates
embedded-ready source code written in Rust; a fast pro-
gramming language that comes with memory safety guar-
antees. OpEn solves parametric optimization problems of
the general form:

Minimizez∈Z `(z) (10a)

subject to:F (z) = 0, (10b)

where U is a set on which one can easily compute pro-
jections, ` is a Lipschitz-differentiable function and F is
a vector-valued mapping so that ‖F (u)‖2 is a Lipschitz-
differentiable function.

In order to write Problem (9) in the form of Problem (10),
we define the decision variable z = uk, choose Z to be the
rectangle defined by the input constraints (9c), eliminate
the system dynamics following the single shooting ap-
proach of (Small et al., 2019; Sathya et al., 2018) and define
F so as to cast all equality constraints. The quadratic
penalty method formulates gauge problems (referred to as
inner problems), which have the form: Minimizez∈Z `(z)+
c‖F (z)‖2, where c is a positive penalty parameter. The
inner problems are solved using PANOC and the penalty
parameter is increased in an outer iteration loop until
‖F (z)‖∞ drops below a specified infeasibility tolerance.

3. SIMULATION RESULTS

3.1 Simulation Model Parameters and Costs

For the presented simulations, the corresponding model
parameters can be described as in (1) and are chosen as
τφ, τθ = 0.5, Kφ,Kθ = 1, in order to approximately match
the response of a low-level controller acting on a MAV.
Additionally, g is set to 9.82 m/s2, the control horizon is set

to N = 30 which, with a sampling time of 50 ms, implies
a prediction of 1.5 s. The weights in (3) are chosen as:

Qx = diag(5, 5, 20, 3, 3, 3, 8, 8), (11a)

Qu = diag(5, 10, 10), (11b)

Q∆u = diag(10, 25, 25). (11c)

The bounds on control inputs are chosen (in SI units) as:

umin =

[
5
−0.4
−0.4

]
, umax =

[
13.5
0.4
0.4

]
. (12)

Additionally the constraints on change in the input de-
scribed in (8) are chosen as ∆φmax = 0.07 and ∆θmax =
0.07.

All simulations use four penalty iterations (except stated
otherwise) with initial penalty weight 10 and an update
factor of 10 for an exponential increase in costs associated
with violating the penalty constraints (obstacle, collision,
change in input). In the following simulations we chose
obstacles with a large lobs to discourage the MAVs to move
above the obstacle.

The state update model is the same as the nonlinear dis-
cretized prediction model with an addition of a Gaussian
noise parameter. This noise represents a general uncer-
tainty in state data, as well as an uncertainty in how the
MAVs behave based on a certain input. Adding noise to
the state update forces the optimizer to make realistic
micro-adjustments to compensate. The noise parameter
is generated with a normal Gaussian distribution with a
specified mean, µ, and standard deviation, σ2 as N (µ, σ2)
(Peebles, 2001). The noise added to each state are the
IID (independent and identically distributed) processes
ηp ∼ N (0, 0.01), ηv ∼ N (0, 0.005) and ηθ,φ ∼ N (0, 0.001),
where ηp, ηv, and ηθ,φ are the noise added to the position,
velocity, and attitude terms respectively.

3.2 Simultaneous Collision and Obstacle Avoidance

The task of the MAVs in the following simulations is to
take off to a set point. At 2.5 s a new reference set-point
is given on the opposite side of a cylindrical obstacle with
a radius of 0.8 m which forces the MAVs to translate past
the obstacle while avoiding collisions to arrive at the new
set-point.

Figure 2 shows the result by deploying four agents. The
application of the collision avoidance constraint is demon-
strated by the fact that the trajectory of the outer agents
(MAV1 and MAV4) curves out as to satisfy a distance of
0.4 m to the inner agents (MAV2 and MAV3). The distance
between MAVs can be seen in Figure 3. The safety distance
is kept to 0.4 m throughout the avoidance phase, except
very small violations at 4 and 12 s respectively, with a max-
imum of 0.04 m, which is to be expected due to the noisy
state update and limited penalty method iterations. The
computation time is found in the same figure and spikes
up to a maximum of 27 ms. The insets in the solver time
graph shows when the penalty method iterations are added
to the computation. Figure 4 shows the control inputs
applied to the state update function. The control inputs
display a relatively smooth behavior despite the added
noise and momentary constraint violations demonstrating
the application of (8), and is kept within the control input
constraints from (12).
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Fig. 2. Path of four MAVs avoiding a cylinder with radius
0.8m while keeping a distance of 0.4m.
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Fig. 3. Solver time (top) and distance between agents
(bottom) from four-agent simulation. The two insets
in the top figure show the number of outer iterations
of the penalty algorithm and the norm of the fixed-
point residual for the inner solver, which serves as a
measure of the quality of the solution.

3.3 Adding additional MAVs to Collision/Obstacle Avoi-
dance Scenario

The above mission fully demonstrate the essence of the
power of the CNMPC. All agents perform individual
reference tracking, starting in a tight formation, while
avoiding collisions with obstacles and other agents and
also keeping the control actions smooth. It is also easy to
add additional agents in the obstacle/collision avoidance
scenario e.g, the two innermost agents avoid the obstacle
and outer agents avoid collisions among each other as
the formation is changed due to the obstacle avoidance
maneuver. Thus, this configuration will be used as the
benchmark test in this article.

The considered factors are the computation time (mean
and maximum) as well as the violation of the constraints
for both safety distance and obstacles. Due to computation
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Fig. 4. Computed control inputs for four-agent simulation.
Thrust (top), Roll Reference (middle), Pitch Refer-
ence (top).

times restrictions for additional agents the penalty method
iterations are forced to be kept low. In such a way compu-
tation time is lowered at a cost of losing the guarantee that
no constraints are violated which becomes more apparent
as more agents are added.

Thus, when using OpEn, as a centralized path planner
for multiple agents, the behavior shown in Figure 6, where
the maximum constraint violations are shown, is expected.
For larger optimization problems, the constraint violations
also increase. Table 1 displays the solver times for the
simulation scenarios for additional agents, up to a total
of nine, where the computation breaks the threshold of
50 ms, with seven and eight agents barely above. Moreover,
at 8-9 agents Figure 6 shows a fast increasing violation of
the constraints. This, in combination with the increase in
solver time, shows the limit of the range of OpEn for this
specific configuration of constraints, weights and penalty
iterations.

The proposed method show significantly lower computa-
tion time compared to centralized and distributed NMPCs
solved by Sequential Quadratic Programming (SQP) using
fmincon in (Mansouri et al., 2015) for the trajectory
planning of multiple MAVs with nonlinear models and con-
straints for safety distance between the MAVs. The prob-
lem is solved with prediction horizon of three, sampling
time of 0.2 s, and only a one step prediction of Micro Aerial
Vehicle (MAV) positions are shared between the agents. In
this SQP implementation the mean of computation time
reaches to at least 47 s and 16 s with more than two agents
for centralized and distributed MPCs respectively.

The comparison with this article is not completely fair,
but it does provide a very interesting result that is demon-
strated in Figure 5 where additional agents increase both
considered solver times linearly, which is the result of
a distributed network in Mansouri et al. (2015). In the
same article, a centralized scheme results in an exponential
increase in solver time for additional agents, again using
fmincon. Demonstrated here OpEn shows a different be-
havior as more decision variables and constraints are added
in the form of additional agents.
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Table 1. Mean and maximum solver time for
simulations of 2–9 agents.

# of MAVs
Solver Time (ms)

Mean Maximum

2 1.19 11.4

3 2.02 18.8

4 2.86 26.7

5 4.43 29.8

6 5.61 40.5

7 7.08 50.0

8 8.49 51.1

9 9.93 61.3
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Fig. 5. Minimum solver time (top), Average solver time
(middle) and Maximum solver time (bottom) for
Obstacle/Collision avoidance simulations.

The aforementioned (Kamel et al., 2017a) and (Erunsal
et al., 2019) achieve real-time applicable solver times using
decentralized and centralized NMPC, while considering
two and three agents respectively, but include no analysis
for an increasing number of agents and are also very
different in their collision avoidance approach.

3.4 Demanding Collision Avoidance with four MAVs

The previous simulations have all considered a kind of
formation flight, where all agents are moving in the same
direction and the formation is broken by the obstacle
avoidance maneuver. In Figure 7 a scenario where four
agents set on a direct collision course with each other is
demonstrated. Due to the demanding scenario the penalty
method iterations were increased from four to five in this
simulation.

In this case, all agents avoid each other, while moving
from an initial position to a reference position. Figure 8
shows the distance between agents, as well as the solver
time which peaks at the threshold of 50ms for the second
computed time step. The fact that all agents almost
precisely reach the allowed distance before separating
again, while moving to the reference in such a demanding
scenario, is a great result for the collision avoidance.
This can be attributed to the nature of the centralized
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scheme, where the predicted states of all agents are solved
for/iterated simultaneously, as to orchestrate trajectories
that precisely satisfy the constraints.

4. CONCLUSIONS

This article demonstrated a novel centralized nonlinear
model predictive controller for micro aerial vehicles, us-
ing OpEn. The proposed scheme accounted for obstacles
and collision avoidance in multiple simulation scenarios
while keeping the solver time below the considered 50 ms
threshold for up to seven agents, while an analysis of solver
times and constraint violations are included for up to
nine agents performing simultaneous obstacle and collision
avoidance maneuvers. In this analysis, it was discovered
that the solver time, using OpEn, seems to scale linearly
with the number of agents, or decision variables. In the de-
scribed simulations the OpEn-based CNMPC framework
successfully completed the missions of set-point tracking
for multiple agents in demanding scenarios while keeping
the control signals smooth and without spikes. The limita-
tion of the proposed approach of using a penalty method,
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with a low number of penalty method iterations to keep the
solver times low, is considered, as the constraint violations
also increase with an increasing number of agents, and this
should be taken into account when applying the CNMPC
approach. Future works will include the application this
method to laboratory experiments to demonstrate the
efficacy of a CNMPC framework for centralized control
in a real-world real-time application.
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