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Abstract: Cancer chemotherapy scheduling in the mathematics and engineering literature has
generally focused on optimal control formulations and tumor kill, using constraints on dose
magnitude and duration to implicitly mitigate toxicity. We introduce a framework for scheduling
that focuses on clinically-relevant toxicity mitigation allowing clinicians to specify toxicity limits
in terms they understand. Building from the model predictive control framework, we explicitly
use the pharmacokinetic model of drug distribution as well as pharmacodynamic models of
both antitumor effect and drug toxicity in the optimization problem. Clinical and logistical
constraints round out the treatment design problem. Rather than direct inversion, we synthesize
the optimization problem in an input-discretized form and solve via graphical processing unit
(GPU) calculation. The resulting suboptimal solution is shown to be clinically indistinguishable
from an optimal solution (calculated via nonlinear least squares (NLS) from a relaxation of
the input and logistical constraints to continuous variables). Using a docetaxel administration
case study, the algorithm controlled neutropenia within user-specified toxicity constraints while
maintaining tumor eradication rates equivalent to, or better than, clinically-implemented dosing
schedules. Changes in patient response – both antitumor efficacy and toxic drug sensitivity are
captured via a nonlinear least squares (NLS) calculation at the end of each treatment cycle and
updated in the next cycle design. By explicitly controlling treatment toxicity, this algorithm has
the potential to improve patient quality-of-life.

Keywords: Systems Medicine, Nonlinear Dynamical Modeling, Model Predictive Control,
Optimal Treatment Design, Cancer Chemotherapy, Docetaxel,
Pharmacokinetic-Pharmacodynamic Modeling, Toxicity

1. INTRODUCTION

More than 1.7 million new cases of cancer, a disease
characterized by the uncontrolled growth and spread of
malignant cells, are expected to be diagnosed in 2019;
roughly 607,000 Americans are expected to die in 2019 as a
direct result of the disease (Street, 2019). Untreated cancer
leads to organ failure and death of the host organism as a
result of either the primary tumor or metastasis. Metasta-
sis occurs when cancer cells translocate to a tissue distant
from the original tumor site; the exact metastasis pro-
cess remains undetermined (Gupta and Massagué, 2006).
Treatment modalities are selected depending on the type
and location of the cancerous tumor. When possible, the
tumor is excised surgically. However, due to the location of
certain tumors (e.g., in the brain) or the potential resulting
loss-of-function from organ removal(e.g., in the pancreas),
this is not always an option; non-localized cancers (e.g.,

hematologic cancers like leukemia) also cannot be surgi-
cally removed. Once the primary tumor is detected, unde-
tectable distant metastases likely exist, thus necessitating
full-body treatment (e.g., chemotherapy).

Docetaxel is a commonly employed anticancer drug in
both mono-agent and combination regimens (Pollard
et al., 2017; US Food and Drug Administration, 2012).
Chemotherapy, a commonly-used systemic cancer treat-
ment, takes advantage of the quick rapid proliferation
of cancer cells by preferentially attacking rapidly divid-
ing cells. Selectivity of chemotherapeutics toward diseased
cells is desired but not always achieved, leading to patient
toxicities. White blood cells are one of the most commonly
affected healthy cells during chemotherapy. The balance
between minimizing chemotoxic side-effects and maximiz-
ing elimination of cancerous cells creates a dichotomy for
clinicians, who have to select a chemotherapy schedule
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(defined as dose magnitude and dosing frequency) that
balances antitumor efficacy against tolerable toxic side-
effects. These schedules are guided by empirical evidence
from preclinical trials during the drug discovery phase
and refined through clinical testing. Formal model-based
optimization methods provide for a rigorous analysis of
this treatment trade-off, to the degree that mathematical
models of toxicity and treatment are available.

A variety of model-based methods have been used to de-
sign optimal treatment algorithms targeting tumor growth
and the subsequent elimination of cancerous cells, with
model parameters often fitted to patient data Norton
(1988); Florian, Jr. (2008). The design tools have focused
on optimal control formulations using a fixed final time-
point for treatment; most aim to minimize tumor vol-
ume at a final time, with constraints on input magni-
tude (Martin and Teo, 1994; Swan, 1986; Ledzewicz and
Schättler, 2007). Patient treatment, however, does not
have a final time defined a priori. Instead, real-time or
cycle-wise treatment decisions are driven by toxicity and
efficacy, which may change over time in a single patient
and/or across patients, such that the endpoint of disease
remission is not easily predicted (Cella et al., 2003). Thus,
treatment is given in cycles to allow clinicians to evaluate
patient response and use feedback to adjust treatment ac-
cordingly. Herein, we synthesize a model-based framework
that allows clinicians to easily assess trade-offs between
treatment efficacy and toxic side-effects.

Our first treatment design algorithm (Harrold and Parker,
2009) was based on a preclinical animal model and solved
the treatment design problem using mixed-integer lin-
ear programming. Here we employ physiologically-based
nonlinear pharmacokinetic (PK), pharmacodynamic (PD),
and toxicity models in a receding-horizon-based treatment
design framework akin to model predictive control (MPC).
Toxicity limits and clinical logistic concerns are incorpo-
rated explicitly as constraints. Tumor volume is minimized
over the treatment horizon of one or more therapy cy-
cles, subject to the constraints. To address changes in
patient response over time, tumor volume and toxicity
measurements at the end of each treatment cycle are
used to update the patient-specific model. The resulting
algorithm provides a rigorous model-based approach to
balance toxicity and efficacy, which could yield superior
patient quality-of-life.

2. METHODS

2.1 Treatment Design Algorithm

Overall, the chemotherapy scheduling problem can be
posed as follows, drawing upon the MPC framework:

min
Dd(q)

Nd∑
d=1

(N(d)) + Γu

mq∑
q=1

Dd(q)2 + ΓcycN(Nd) (1)

s.t. Drug Pharmacokinetics (2)

PD: Tumor Kill (3)

PD: Toxicity (4)
5∑

k=1

bd(k) ≤ 1∀d ∈ {1, 2, 3} (5)

Dmin
d ≤ Dd(q) ≤ Dmax

d (6)
mq∑
q=1

≤ Dtotal
d (7)

Here tumor volume (N(d)) is minimized weekly over Nd

weeks, with the problem typically solved over 1 or more
multi-week cycles. Drug doses (Dd(q), with maximum
number mq) can be penalized (via weight Γu), leading
to small doses not being administered (they contribute
toxicity, but no cancer kill), while large doses kill suffi-
ciently to overcome the penalty. A terminal penalty, Γcyc

allows preferential weighting of the end-of-cycle tumor
volume, if desired. Equation (5) is a logistics constraint
limiting chemotherapy administration to only once per
calendar work week (Monday - Friday), and no more than
3 weeks in a row in a given administration cycle. This
satisfies patient quality-of-life constraints (not visiting the
doctor more often than weekly for a drug infusion) and
hospital/health insurer cost and staffing concerns (dosing
only during the typical work week and workday). The final
two constraints, (6) and (7), bound the magnitude of each
individual dose and limit the amount of drug administered
per cycle, respectively.

2.2 Case Study and Models

This work focuses on docetaxel administration to treat
solid tumors, such as non-small cell lung, head-and-neck,
and androgen-independent (castrate-resistant) prostate
cancer (Clarke and Rivory, 1999). Common clinical sched-

ules are 100
mg
m2 every 21 days or 35

mg
m2 weekly, 3 weeks

of 4. The primary associated toxicity is neutropenia (low
absolute neutrophil count (ANC)), where toxicity grades
are shown in Table 1.

Table 1. Toxicity grades and neutrophil counts

Grade Cell Count

0 (Normal) ANC ≥ 2.0 ×106/ mL
1 1.5× 106/ mL ≤ ANC < 2.0× 106/ mL
2 1.0× 106/ mL ≤ ANC < 1.5× 106/ mL
3 0.5× 106/ mL ≤ ANC < 1.0× 106/ mL
4 ANC < 0.5× 109 / L

Physiology-based Pharmacokinetic Model Physiologically-
based pharmacokinetic (PBPK) modeling data was ob-
tained from a PK case study that administered docetaxel
to severe combined immunodeficient (SCID) mice bearing
SOV-3 human ovarian cancer xenografts (Strychor et al.,
2005; Zamboni et al., 2008; Florian, Jr., 2008). By taking
mass balances around all tissues, a compartmental de-
scription of docetaxel PBPK can be constructed as shown
in Figure 1 Florian, Jr. (2008). The model was scaled
to humans by altering tissue flowrates and volumes Sny-
der et al. (1975), and allowing the “Other” compartment
intercompartment transport rates to increase (docetaxel
is lipophilic, and humans carry a higher percentage of
body fat than mice). All other rate parameters were held
constant. Docetaxel is delivered via Intravenous (IV) ad-
ministration. Tissue compartments (except the gut and
bone marrow) were composed of vascular and extravas-
cular compartments, where extravascular compartments
included a protein-bound docetaxel concentration state
(necessitated by the significant lipophilicity and protein
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Fig. 1. Physiologically-based pharmacokinetic model for
docetaxel, as developed in Florian, Jr. (2008).

binding characteristics of docetaxel). Protein binding was
also accounted for in the bloodstream. Drug metabolism
in the liver was modeled via first-order kinetics based
on extravascular concentration. The result was a 35-state
linear dynamical model of docetaxel built in mice and
scaled to humans. This PBPK model creates challenges in
computation time, particularly during optimization, where
the model is included in a set of dynamic constraints. We
therefore reduce the linear ODE model using balanced
truncation (via the balmr command in MATLAB c©2019,
The Mathworks, Natick, MA). The 4-state reduced model
outputs are plasma concentration (for comparison to pa-
tient data), tumor concentration (to model drug-induced
kill), and marrow concentration (to capture drug-induced
toxicity to neutrophils).

2.3 Neutrophil toxicity Model

We employ a mechanism-based model of neutrophil traf-
ficking originally developed in (Ho et al., 2013), and com-
posed of 16 ODEs and 55 parameters. This model cap-
tures responses to both inflammation and chemotherapy
challenges. For the present work, the inflammatory com-
ponents of the model were removed, and model reduction
was performed to reduce state dimension and to focus
model sensitivity into a smaller number of more identi-
fiable parameters (the model is not a priori identifiable),
as outlined in (Ho, 2014). The 9-state model shown in
Figure 2 is mathematically represented as follows:

dPr(t)

dt
=
BminkG +BmaxGCSF (t)

kG +GCSF (t)

−ktox
EmaxCBM (t)

EC50 + CBM (t)
Pr(t)− ktrPr(t) (8)

dT1(t)

dt
= ktrPr(t)− ktrT1(t) (9)

dT2(t)

dt
= ktrT1(t)− ktrT2(t) (10)

Fig. 2. Reduced neutrophil toxicity model (Ho, 2014).

dT3(t)

dt
= ktrT2(t)− ktrT3(t) (11)

dNc(t)

dt
= ktrT3(t)− kdNc(t) (12)

dIL17(t)

dt
=
BGmax

∗ kN
kN +Nc(t)

− kdIL17
IL17(t) (13)

dCBM (t)

dt
=−kbmvCBM (t) + kvbmCplasma(t) (14)

dGCSFT
(t)

dt
=−kscblGCSFT

(t)− kdGCSFT
GCSFt

(t)(15)

dGCSF (t)

dt
= kIL17IL17(t)− kdGCSF

GCSF (t)

+kscblGCSF (t) (16)

The stem-cell-like progenitor cell population (Pr(t)) gen-
erates cells that mature through the maturation train
(T1(t), T2(t)) to become mature neutrophils (T3(t)) in the
bone marrow. These cells migrate to the vascular space to
become circulating neutrophils (Nc(t)), and are measur-
able as ANC. Decreases in ANC lead to production of IL−
17, through a series of cell types and signaling molecules
not explicitly represented in the reduced model. Elevated
IL−17 drives production of G-CSF, a powerful stimulator
of progenitor cells that also speeds migration of mature
neutrophils to the bloodstream. Exogenously administered
G-CSF, often used to rescue neutrophil toxicity, is released
from a subcutaneous injection site to the bloodstream,
which rapidly equilibrates with the bone marrow compart-
ment. Systemic chemotherapy kills progenitor cells and
slows the release of mature neutrophils from the marrow
into the bloodstream, causing toxic side-effects.

2.4 Docetaxel PD Efficacy Model

Tumor growth models of varying complexity have been
developed, and the seminal work of Norton (Norton, 1988)
describing breast cancer tumors offered a robust tumor
growth model that grows exponentially for small tumors
volumes, but then slows its growth rate as the tumor
expands. This is characteristic of solid tumors whose
irregular blood vessel network causes resource limitation
and challenges in delivering chemotherapeutics. A more
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recent model from Norton et al. (Norton and Massagué,
2006) explores a different hypothesis (self-seeding) for
growth that follows a similar temporal trajectory:

dN

dt
= kgrN(t)

a
c − kdieN(t)

b
c − keffN(t)D(t) (17)

Here N(t) is the total number of cancer cells, kgr and kdie
are the tumor cell growth and death rates, respectively,
and a, b, and c are constants. By setting 3 ≥ b ≥ c ≥
a ≥ 2, proliferation occurs in tumor regions with lower
fractal dimension than the region where apoptosis occurs
(Norton and Massagué, 2006). Tumor kill is size-dependent
and implemented using a bilinear term where D(t) is the
drug concentration inside the tumor and keff is the drug
effectiveness kill constant.

2.5 Generation of the Feasible Schedule Set

Clinically optimal chemotherapy schedules are obtained by
first generating a set of feasible schedules which meet or
conform to all logistic constraints. These constraints limit
a number of aspects such as the number of allowable doses
per specified time period, the allowable treatment admin-
istration times and the maximum total dose. The feasible
schedules are generated by choosing the resolutions for the
discretization of time and dose. These resolutions set the
minimum difference in time between administered treat-
ments and the minimum difference between a dose and
the next largest (or smallest) dose. The chosen values may
result from clinical concerns such as the usual length of
a clinical visit (e.g., one hour) or the common clinical in-
crement in dose (e.g., 5 mg steps). Coarser discretizations
will result in significantly fewer feasible schedules, thereby
leading to much faster simulation of the schedule set. Care
should be taken to ensure that the selected discretizations
are clinically relevant, as there is no need to discretize
the schedule to clinically irrelevant precision (e.g., nearest
second for treatment or nearest µg for dose).

A recursive Python function was implemented to generate
feasible schedules based on timing constraints, and a
second recursive function was used to find all possible
dose regimens within a defined maximum number of doses.
Regardless of the chosen discretization for dose, a zero
dose is permitted enabling schedules with fewer than the
maximum allowable number of doses to be considered.
The combinatorial set of feasible administration times and
doses is then generated and saved as a matrix of feasible
regimens in a binary format for use in the GPU simulation
step.

2.6 GPU Simulation of the Feasible Schedule Set

Utilizing C++ along with VEXCL (https://github.
com/ddemidov/vexcl), a function was written to com-
pile a GPU kernel. This kernel takes in the matrix
of all feasible schedules and solves, in parallel at each
time step (δt), the PKPD ODEs comprising the PK
model from Section 2.2.1 and the PD Equations (8)
to (17). The ODE solver used in the GPU kernel is from
the Boost odeint library (https://www.boost.org/doc/
libs/1_66_0/libs/numeric/odeint/doc/html/
index.html) and employs a Runge-Kutta DOPRI5 method.

Larger time steps lead to significantly faster solutions to
the ensemble of ODE models at the cost of accuracy, and
care must be taken to choose a δt that ensures all feasible
chemotherapy administrations fall exactly on a time step.
During runtime, after each time step, the GPU kernel
updates the objective function, which for the Docetaxel
case study presented herein, is given by Equation (1).

2.7 Dose Schedule Design

Starting from the optimization problem in equations (1)
to (7), clinicians can apply additional constraints to limit
toxicity. Relevant to the Docetaxel case study, the follow-
ing constraints are added to the problem for all days i:

Nc(i)≥ 1.0× 106/mL (18)

max ([Nc(i), Nc(i+ 1) . . . Nc(i+ 6)])≥ 1.5× 106/mL (19)

The first constraint guarantees no grade 3 toxicity. The
second forces any grade 2 toxicity to last no more than
7 consecutive days. Constraints are tested for violation
at the end of each GPU simulation. When a particular
schedule induces a toxicity constraint violation, all further
simulations that use the selected schedule and higher
doses are not simulated. The schedule is then incremented
to the next entry in the feasible set, and simulation
begins again. This process is repeated until the full set
of acceptably toxic schedules is evaluated. The optimal
schedule is the one with the lowest objective function value
from Equation (1).

2.8 Updating the Model During Treatment

Patients return to the clinic for each drug dose, as the
drugs are administered intravenously (IV). At the end of
each cycle, absolute neutrophil count is measured from
a patient blood sample. Antitumor efficacy is typically
assessed every other cycle via magnetic resonance imaging
(or other clinical imaging method). Since patient response
may vary from the model predictions, two model param-
eters are updated as measurements are collected. Drug
sensitivity (ktox in Equation (8)) is updated each cycle,
and antitumor effect (keff in Equation (17)) is updated
every other cycle, corresponding with their most infor-
mative clinical measurements at their respective rates of
collection. Parameter updates are computed via nonlinear
least squares according to the following objective function:

min
ktox,keff

(ANCmeas −Nc(Nd))2

+we ∗ (Vmeas −N(Nd))2 (20)

Then end-of-cycle (Nd) measurements of ANC and tumor
volume are compared to model simulation values. ktox
affects Nc(t), while keff drives N(t). The binary variable
we is 1 for cycles when tumor volume is measured, and 0
otherwise.

3. RESULTS

3.1 Model Validation

A sample patient fit of the PBPK model, using data
from UPCI study 01-150, is shown in Figure 3. The

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16577



0 5 10 15 20 25
10

−3

10
−2

10
−1

10
0

10
1

Time (hours)

D
o

c
. 

C
o

n
c
. 

(µ
 M

)
Patient Number: 24 −−− Dose 60mg/m

2
  

Fig. 3. Sample model fit to human patient data from
UPCI study 01-150. A single docetaxel dose of 60
mg
m2 was administered, and plasma concentrations were
measured at intervals after IV dosing.

model captures well the single-dose concentration profile
of docetaxel in plasma, demonstrating that the animal-
derived model can fit patient data adjusting only flows,
volumes, and the intercompartment transfer rates for the
“Other” compartment.

3.2 Optimal Treatment vs. Clinical Practice

Typical treatment schedules for docetaxel are 100 mg/m2

every 21 days (q21d) or 35 mg/m2 every week for three
weeks followed by one week off (qw 3 of 4)(US Food and
Drug Administration, 2012). The decision support system
(DSS) algorithm predicted an optimal dosing schedule of
55 mg/m2, 45 mg/m2, and 5 mg/m2 on days 0, 11, and
18, respectively, of a 28 day dosing cycle. Although this
schedule may be mathematically optimal, a more clinically
relevant (sub)optimal schedule is 55

mg
m2 and 50

mg
m2 on days

0 and 11 (DSS), respectively. The three schedules are
compared in Figure 4. The q21d schedule demonstrates
superior tumor kill compared to the qw 3 of 4 and DSS
over the course of 84 days. It should be noted, however that
the q21d schedule has administered 4 cycles of treatment,
or 25% more drug, compared to three cycles for DSS and
qw 3 of 4. The q21d schedule also induces significant grade
3 neutropenia, which is clinically undesirable. The toxicity
and tumor-killing effect is similar for the qw 3 of 4 and DSS
treatment schedules, but the DSS schedule only requires
two clinical visits per cycle, compared to three visits for
qw 3 of 4. This would improve patient quality-of-life and
reduce treatment costs for the hospital and insurer with
no increase in undesirable toxicity.

3.3 Managing Interpatient Variability

As patient sensitivities (efficacy, toxicity) change, the DSS
patient model can be updated to provide patient-tailored
optimal treatment. Figure 5 shows the ability of the DSS to
alter treatment due to changing sensitivity of Emax. A new
patient (ktox = 1.6) arrives for their first cycle of therapy.
The DSS nominal value for drug sensitivity is ktox = 1.0.
The first cycle of therapy is highly toxic – a grade 3
toxicity is observed, which would have been far worse if

Fig. 4. Comparison of clinical standards of practice (100
mg
m2 every 3 weeks, blue; 35

mg
m2 3 weeks of 4, red)

and algorithm-calculated docetaxel administration
(green). Top:. ANC over time, with toxicity grades
shown as horizontal lines. Middle:. Dosing day and
magnitude (in

mg
m2 ). Bottom: number of tumor cells

over time.

this patient had received the standard treatment dose of
100

mg
m2 q21d. Clinically, this patient would probably have

had dose 2 withheld until ANC recovered to near baseline,
followed by a dose reduction – the clinical method for
patient tailoring of dose and schedule. The DSS can update
ktox each cycle according to Equation (20), which returns
a new value of ktox = 1.6. For the next two cycles, the
patient is controlled within the allowable toxicity limits,
using a revised treatment schedule (three smaller doses of
40, 30, and 20 mg/m2 on days 4, 16, and 24, respectively)
rather than the 2 larger doses. This does increase clinical
costs (clinician time, patient visits), which could be made
a direct trade off by considering the cost of toxicity rescue
(∼$10,000/cycle for G-CSF, excluding patient visit needs).
Prior to cycle 4, the patient undergoes a toxicity increase
(ktox = 1.9), while the DSS is unaware (DSS ktox = 1.6).
After another significant toxicity event, the algorithm
again updates to match the patient. As before, doses are
further reduced, yielding the optimal treatment schedule of
30, 25, and 25mg/m2 on days 7, 17, and 25, respectively. It
should be noted that if ktox becomes too high, or keff goes
to zero (meaning the drug is no longer having an antitumor
effect), the DSS will return 0 for all dose magnitudes.
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Fig. 5. Simulated patient response to treatment in the pres-
ence of model mismatch. Top: patient ANC over time.
Middle: dosing day and quantity (plot) overlayed
with toxicity sensitivity for the algorithm-expected
patient (top bar) and actual patient (bottom bar).
Sensitivities (ktox) are nominal (1.0), moderate (1.6)
and severe (1.9). Doses are calculated each cycle (28
days), with algorithm parameter updates after each
cycle. Bottom:. number of tumor cells over time

4. SUMMARY

A model-based algorithm was synthesized to construct
cyclic chemotherapy administration schedules. Pharma-
cokinetic, pharmacodynamic efficacy, pharmacodynamic
toxicity, and tumor growth models are required. The
receding-horizon control is suboptimal, but allows more
flexible constraint handling and explicit use of nonlin-
ear models that challenge optimal control formulations.
Clinically-relevant constraints on toxicity are specified in
clinical language and mapped onto the toxicity model,
and further incorporation of treatment-relevant logistic
constraints impacting patients and insurers / health care
providers are easily embedded. The GPU calculations are
fast, facilitating real-time use, and the algorithm can be
updated to respond to changes in patient response (ef-
ficacy and toxicity) to treatment. This treatment design
algorithm may provide a framework for improving patient
quality-of-life, and it can be extended to other agents for
which PK and PD (toxicity) models are available.
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Norton, L. and Massagué, J. (2006). Is cancer a disease of
self-seeding? Nature medicine, 12(8), 875.

Pollard, M.E., Moskowitz, A.J., Diefenbach, M.A., and
Hall, S.J. (2017). Cost-effectiveness analysis of treat-
ments for metastatic castration resistant prostate can-
cer. Asian journal of urology, 4(1), 37–43.

Snyder, W., Cook, M., Nasset, E., Karhausen, L., Howells,
G., and Tipton, I. (1975). Report of the Task Group
on Reference Man: A Report Prepared by a Task Group
of Committee 2 of the International Commission on
Radiological Protection. Pergamon Press, Oxford.

Street, W. (2019). Cancer facts & figures 2019. American
Cancer Society: Atlanta, GA, USA.

Strychor, S., Eiseman, J.L., Parise, R.A., Egorin, M.J.,
Joseph, E., and Zamboni, W.C. (2005). Plasma, tumor,
and tissue disposition of docetaxel in scid mice bearing
skov-3 human ovarian xenografts.

Swan, G. (1986). Cancer chemotherapy: Optimal control
using the verhulst-pearl equation. Bulletin of mathe-
matical biology, 48(3-4), 381–404.

US Food and Drug Administration (2012). Highlights of
docetaxel prescribing information.

Zamboni, W.C., Strychor, S., Joseph, E., Parise, R.A.,
Egorin, M.J., and Eiseman, J.L. (2008). Tumor, tis-
sue, and plasma pharmacokinetic studies and antitumor
response studies of docetaxel in combination with 9-
nitrocamptothecin in mice bearing skov-3 human ovar-
ian xenografts. Cancer chemotherapy and pharmacology,
62(3), 417–426.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16579


