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∗∗ Institut de Robòtica i Informàtica Industrial (CSIC-UPC). Carrer

Llorens Artigas, 4-6, 08028 Barcelona.

Abstract: This paper presents a new set-membership estimation methodology for uncertain
switched LPV discrete-time systems subject to unknown inputs, unmeasurable time-varying
parameters and measurement noise. The proposed approach provides a guaranteed interval that
is constructed as the sum of punctual state estimation and its corresponding estimation error
limits. First, a punctual switched unknown input observer, robust against unknown inputs and
time-varying uncertainties, is constructed. The proposed switched observer design is based on
the solution of an optimization problem in terms of LMIs. Then, an outer-approximation of the
enclosure set of state estimation error is computed using the admissible bounds of state and
uncertainties. Application to vehicle state estimation is provided to show the design procedure
and the flexibility of the proposed scheme. Comparison to real data demonstrates the accuracy
and effectiveness of the obtained results.

1. INTRODUCTION

It is frequently necessary to estimate some variables de-
scribing the systems states that are not directly measur-
able for technical or economic reasons. This problem is
solved by the use of ”virtual sensors” generally called
observers. State estimation has received considerable at-
tention during the last decades [Baffet et al. 2009, Lin
and Gao 2015, Yang and Wilde 1988]. Two distinct ap-
proaches have been proposed to estimate states variables.
The first rests on conventional punctual estimators, such
as Luenberger observers [Ciccarella et al. 1993], adaptive
observers Kreisselmeier [1977], unknown inputs observers
[Koenig et al. 2008] and sliding mode observers [Drakunov
and Utkin 1995], where a specific value for the state is esti-
mated at each time instant. However, due to the presence
of uncertainties, the design of a conventional estimator
that converges in the noisy-case towards the ideal value
of the state, is often very challenging. The second method
consists of using set-membership approaches [Alamo et al.
2005, Le et al. 2013a, Puig 2010] in order to estimate a set
of admissible values (interval) for the state, and therefore,
evaluate intuitively the accuracy of the estimation.
In this paper, a combination of both approaches is used.
A new set-membership state estimation methodology, easy
to implement, with less computing time is proposed for
switched discrete-time LPV systems. The considered sys-
tem is subject to unknown inputs, unmeasurable time-
varying parameters and measurement noise. The proposed
set-membership switched observer provides a guaranteed
state interval which is constructed as the sum of punctual
estimated trajectories and corresponding estimation error
bounds.
The proposed switched observer can robustly estimate

punctual state trajectories by decoupling unknown inputs
and attenuating the effect of uncertainties. The necessary
and sufficient conditions for the existence of such an ob-
server are obtained with the aid of common quadratic Lya-
punov function and Input-to-State stability technique. A
constructive design procedure based on LMI conditions is
given. Extra degrees of freedom provided by slack variables
are used to reduce the conservativeness introduced by the
use of the common Lyapunov function.
Since zonotopes utilize linear mappings and Minkowski
sums which can be computed exactly and efficiently [Le
et al. 2013b], a zonotopic threshold analysis method is
used to compute an outer approximation of the reachable
set of state estimation error. This characterized set allows
to encompass all acceptable state estimation errors in
a very simple and accurate way. The extent of this set
informs us of the uncertainty with which the state vector
is punctually estimated. Based on this approach, it is
no longer necessary to use similarity transformations to
design cooperative interval observers. Thus, the impulsive
behavior as well as time computational complexity induced
by these similarity transformations can be avoided. Fi-
nally, numerical simulations are provided to show the fea-
sibility of the proposed scheme to estimate vehicle lateral
velocity and yaw rate enclosure sets. Comparison to real
data acquired using an instrumented vehicle demonstrates
the potential of the estimation method. In fact, since the
proposed strategies are simple to implement and do not
require a huge real-time calculation, their application to
industrial systems is suitable.
This paper is organized as follows: The problem statement
is introduced in Section 3. Section 4 is devoted to present
the main contribution of this work which is the design of
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switched unknown input observer for uncertain discrete-
time systems using a zonotopic bounding approach. Fi-
nally, in Section 5, an application of the proposed method-
ology to vehicle lateral velocity and yaw rate estimation
illustrates the interest of such approach. Conclusions are
presented in Section 6.
Notation. In the rest of this paper, IR (IR+) represents
the set of all real (positive) numbers and IRn (IRn

+) the n-
dimensional real (positive) vector space. For a vector x ∈
Rn or a matrix M ∈ Rn×n, one denotes x = max{0, x},
x = x − x or M = max{0,M}, M = M −M . For two
vectors x1 and x2, the inequalities x1 ≤ x2 (x1 ≥ x2)
are interpreted element-wise. The relation Q � 0 (resp.
Q ≺ 0) means that the matrixQ is positive (resp. negative)
definite. MT stands for the transpose of the matrix M and
In to the identity matrix of dimension n× n.

2. PRELIMINARIES

As discussed in the Introduction, set-membership tech-
niques are used in this paper. In this regard, it is necessary
to introduce some basic definitions and operations used in
zonotope and interval frameworks.

Definition 1. An unitary interval is denoted by B =
[−1; 1]. An unitary box in IRnx , is a box composed of
nx unitary intervals.

Lemma 1. [Efimov et al. 2013] Let the vector x ∈ IRnx be
a variable vector with given bounds x, x ∈ IRnx such that
x ≤ x ≤ x.

(1) If A ∈ IRnx×nx is a constant matrix, then

A+x−A−x ≤ Ax ≤ A+x−A−x. (1)

(2) If A ∈ IRnx×nx is a variable matrix such that A ≤
A ≤ A for some A, A ∈ IRnx×nx , then

A+x+ −A+
x− −A−x+ +A

−
x− ≤ Ax

≤ A+
x+ −A−

x+ −A+x− +A−x−
. (2)

where •+ = max(0, •) and •− = •+ − •.
Definition 2. [Le et al. 2013a] A zonotope of order m in
IRn is defined by the translation of the center p ∈ IRn of
an unitary hypercube image of dimension m in IRn under
a linear transformation, the zonotope X is defined by:

X = 〈p, H〉 = p⊕HB
m = {p+Hz : z ∈ B

m} (3)

Definition 3. The Minkowski sum of two sets X1 and X2

is given by X1 ⊕ X2 = {x1 + x2 : x1 ∈ X1, x2 ∈ X2}.
Property 1. The Minskowski sum of two zonotopes X1 =
p1 ⊕ H1B

m1 and X2 = p2 ⊕ H2B
m2 is also a zonotope

defined by X = X1 ⊕X2 = (p1 + p2)⊕ [H1 H2]Bm1+m2 .

Definition 4. (Zonotope interval hull [Le et al. 2013a]).
Consider the zonotope X = p⊕HBm, the smallest interval
box that contains this zonotope, i.e. its interval hull, is
computed by:

?X = p⊕ rs(H)Bn (4)

where rs(H) is a diagonal matrix such that rs(H)ii =∑m
j=1 |Hij |, i = 1, . . . , n.

3. PROBLEM STATEMENT

Let us consider the following discrete-time LPV system{
xk+1 = (A0,σ(k) + ∆Aσ(k)(ξk))xk+

(B0,σ(k) + ∆Bσ(k)(ξk))uk + Eσ(k)dk
yk = Cxk + ϑk

(5)

where xk ∈ IRnx , uk ∈ IRnu , dk ∈ IRnd , yk ∈ IRny ,
ϑk ∈ IRnϑ are the state, the control input, the unknown
input, the measurement output and noise vectors, respec-
tively. σ(k) : IR+ → I = {1, 2, ..., N} is the switch-
ing signal assumed to be available in real time. The
matrices A0,σ(k) ∈ {A0,1, A0,2, ..., A0,N} and B0,σ(k) ∈
{B0,1, B0,2, ..., B0,N} are the state space matrices assumed

to be constant and known a priori. Eσ(k) ∈ IRnx×nd and

C ∈ IRny×nx stand for the unknown input distribution
matrix and the output equation matrix, respectively. The
matrices ∆Aσ(k)(ξk) ∈ {∆A1(ξk),∆A2(ξk), ...,∆AN (ξk)}
and ∆Bσ(k)(ξk) ∈ {∆B1(ξk),∆B2(ξk), ...,∆BN (ξk)} are
assumed to be unknown but bounded representing the
uncertainty of the system caused by the unmeasurable
time-varying parameter ξk ∈ Ξ, where Ξ is an interval
box given by:

Ξ = {ξk ∈ IRnξ |ξ
k
≤ ξk ≤ ξk} (6)

For easiness of further developments, the state space
representation (5) is rewritten in the following equivalent
form: {

xk+1 = A0,σ(k)xk +B0,σ(k)uk + Eσ(k)dk + δσ(k)

yk = Cxk + ϑk
(7)

where δσ(k) = ∆Aσ(k)(ξk)xk + ∆Bσ(k)(ξk)uk.
For the system (7), a switched observer that reconstructs
the state xk without any information on the unknown
input dk can be constructed using the input uk and the
measured output yk as{

x̂k+1 = Nσ(k)x̂k +Kσ(k)yk +Gσ(k)uk −Hσ(k)yk+1

ŷk = Cx̂k
(8)

where the initial state x̂0 ∈ IRnx . Nσ(k), Kσ(k), Gσ(k) and
Hσ(k) are gain matrices with appropriate dimensions to be
determined.
The dynamics of the state estimation error ek = xk − x̂k
is given by

ek+1 = (In +Hσ(k)C)xk+1 −Nσ(k)x̂k
−Kσ(k)yk −Gσ(k)uk +Hσ(k)ϑk+1

By denoting Pσ(k) = In + Hσ(k)C and using (7), the
dynamics of the state estimation error is

ek+1 = (Pσ(k)A0,σ(k) −Kσ(k)C)xk −Nσ(k)x̂k
+(Pσ(k)B0,σ(k) −Gσ(k))uk + Pσ(k)Eσ(k)dk
+Pσ(k)δσ(k) +Hσ(k)ϑk+1 −Kσ(k)ϑk

(9)

If the following relationships hold

Nσ(k) = Pσ(k)A0,σ(k) −Kσ(k)C (10a)

Pσ(k)B0,σ(k) −Gσ(k) = 0 (10b)

Pσ(k)Eσ(k) = 0 (10c)

then, (9) is reduced to

ek+1 = Nσ(k)ek + ∆σ(k) (11)

where ∆σ(k) = [Pσ(k) Hσ(k) −Kσ(k)] [δσ(k) ϑk+1 ϑk]
T

.
From (11), one can see that dk has been decoupled under
the conditions (10c), but the effect of uncertainties ∆σ(k)

still persists. Now, suppose that we know at each time-
instant a box, denoted [ek], which includes, with guaran-
tee, all possible estimation error ek, that is

∀σ(k), ∀k ≥ 0, ek ∈ [ek] = [ek, ek] (12)

where ek and ek are the lower and upper bounds of the
box [ek]. Accordingly, we can define a box at each instant
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k, denoted [xk], which contains in a guaranteed way the
real value of the state vector xk,

∀σ(k), ∀k ≥ 0, xk ∈ [xk] = x̂k + [ek] (13)

So, an interval observer for the switched LPV system (7)
can be compactly written as

x̂k+1 = Nσ(k)x̂k +Kσ(k)yk +Gσ(k)uk −Hσ(k)yk+1 (14a)

[xk] = x̂k + [ek] (14b)

Therefore, the proposed interval estimation method (14)
rests on a combination between a punctual unknown input
switched observer and a set-membership characterization
of the estimation error. In fact, the punctual observer
in (14a) generates an estimation of the nominal state
trajectories. Afterwards, the effect of uncertainties on the
estimated trajectories is addressed using interval analysis
so that the real state vector is included in the box [xk] =
[xk, xk] defined by (14b). This ensures that all the state
trajectories consistent with parameter and initial state
vectors uncertainties are enclosed by the interval observer
(14) in a guaranteed way.

4. SWITCHED UNKNOWN INPUTS OBSERVER
DESIGN BASED ON INTERVAL ANALYSIS

In this section, a constructive method to design the
Switched Unknown Input Observer (14) for switched
discrete-time systems (7) is presented. The robustness
issue with respect to additive uncertainties δσ(k) is an-
alyzed using Common Lyapunov function and Input-to-
State Stability principle. The design consists on finding the
observer gain Kσ(k) such that the observer error dynamics
(11) is asymptotically stable when ∆σ(k) = 0 and is ISS-
stable with respect to uncertainties when ∆σ(k) 6= 0.

4.1 LMI formulation

Consider the switched discrete-time linear system de-
scribed by (7). The observer (14a) provides a punctual
state estimation x̂k if the observer gain Kσ(k) is chosen
such that the observer error dynamics is stable, and the
effect of uncertainties is attenuated. To ensure that, let
state first the following assumption.

Assumption 1. The necessary and sufficient conditions for
the existence of the SUIO (8) for the system (7) are:

(1) rank(CEσ(k)) = rank(Eσ(k)) = q , ∀σ(k);
(2) The pair (Pσ(k)A0,σ(k), C) is at least detectable ∀σ(k).

Remark 1. The first condition in Assumption 1 ensures
that equation (10c) is solvable, and a general solution can
be given as follows:

Hσ(k) = −Eσ(k)(CEσ(k))
†

+ Yσ(k)(In − (CEσ(k))(CEσ(k))
†) (15)

where (CEσ(k))
† is the generalized inverse matrix of

CEσ(k), given by

(CEσ(k))
† = ((CEσ(k))

T (CEσ(k)))
−1(CEσ(k)) (16)

and Yσ(k) is an arbitrary matrix of appropriate dimension.
For convenience of the notation, let define Uσ(k) =

−Eσ(k)(CEσ(k))
† and Jσ(k) = In − (CEσ(k))(CEσ(k))

†,
then (15) can be rewritten as

Hσ(k) = Uσ(k) + Yσ(k)Jσ(k) (17)

Remark 2. The second condition, sometimes referred as
“strong detectability condition” is equivalent to that the
transmission zeros from the unknown-input to the output
must be stable, i.e.

rank

([
sIn −A0,σ(k) Eσ(k)

C 0

])
= n+ q, (18)

holds ∀σ(k) and for all complex number s with Re(s) ≥ 0.

The next theorem provides sufficient conditions for the
state estimation error (11) to be ISS-stable under arbitrary
switching. Before proceeding, we begin by stating the
following equivalence.

Lemma 2. The following conditions are equivalent:

(1) There exists a symmetric matrix Q such that[
NTQN + (ε− 1)Q NTQ

QN Q− γIn

]
≺ 0 (19)

(2) There exist a symmetric matrix Q and a matrix S
such that [

(ε− 1)Q 0 NTST

(∗) −γIn ST

(∗) (∗) −ST − S +Q

]
≺ 0 (20)

Proof. If we apply the Schur complement with respect to
the block (3,3) of (20), we retrieve directly (19) by choosing
S = ST = Q, hence (1) implies (2). Moreover, from the
first block of (20), we have (ε−1)Q ≺ 0. Then, multiplying

(20) by T =

[
In 0 NT

0 In In

]
on the left and TT on the right,

we get (19), which establishes that (2) implies (1) and the
proof is complete. �
Theorem 1. The switched system (11) is uniformly ISS-
stable with respect to the switching signal σ(k) if there
exist a symmetric and positive definite matrix Q, matrices
S and Wi, ∀i ∈ I, a constant γ > 0 for given positive
scalars α and 0 < ε < 1 such that the following condition
holds min

Q,S,Wi,Xi
γ

(ε− 1)Q 0 ATi (In + UiC)T ST+

ATi C
T JTi X

T
i − C

TWT
i

(∗) −γIn ST

(∗) (∗) −ST − S +Q

 ≺ 0 (21)

with Wi = SKi and Xi = SYi for any switching signal
σ(k). Furthermore, the state estimation error (11) is ulti-
mately bounded and satisfies

lim
k→∞

‖ek‖2 ≤
√

γ

α(1− ε)
‖∆σ(k)‖∞ (22)

where ∆σ(k) = Pδσ(k) and the maximum norm is given by
‖∆σ(k)‖∞ = max{|∆1|, |∆2|, . . . , |∆N |}.

Proof. For the stability analysis, we use the following
common quadratic ISS-Lyapunov function

V (ek) = eTkQek, Q = QT � 0 (23)

Setting ∆V (ek) , V (ek+1)− V (ek), we have

∆V (ek) = eTk+1Qek+1 − eTkQek
and using (11), we obtain

∆V (ek) =
(
Nσ(k)ek + ∆σ(k)

)T
Q
(
Nσ(k)ek + ∆σ(k)

)
− eTkQek

= eTkN
T
σ(k)QNσ(k)ek + ∆T

σ(k)QNσ(k)ek

+eTkN
T
σ(k)Q∆σ(k) + ∆T

σ(k)Q∆σ(k) − eTkQek
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By adding the terms εeTkQek and −γ∆T
σ(k)∆σ(k), we have

∆V (ek) =

[
eTk

∆T
σ(k)

][
NT
σ(k)QNσ(k) + (ε− 1)Q NT

σ(k)Q

(∗) Q− γIn

]
×
[

ek
∆σ(k)

]
− εeTkQek + γ∆T

σ(k)∆σ(k)

(24)

Then, for all i ∈ I, the satisfaction[
NT
i QNi + (ε− 1)Q NT

i Q
(∗) Q− γIn

]
≺ 0 (25)

is equivalent to fulfill the following condition[
(ε− 1)Q 0 NT

i S
T

(∗) −γIn ST

(∗) (∗) −ST − S +Q

]
≺ 0, ∀i ∈ I (26)

according to Lemma 2. If we substitute Hi given by (17)
into Ni in (10a), the matrix inequality in (26) becomes
∀i ∈ I(ε− 1)Q 0 ATi (In + UiC)T ST+

ATi C
T JTi Y

T
i S

T − CTKT
i S

T

(∗) −γIn ST

(∗) (∗) −ST − S +Q

 ≺ 0 (27)

By using Wi = SKi and Xi = SYi, LMI (21) is found.
Then, under the conditions of the theorem, it follows from
(24) that ∀σ(k)

∆V (ek) < −εeTkQek + γ∆T
σ(k)∆σ(k) (28)

that implies

V (ek+1) < (1− ε)V (ek) + γ‖∆σ(k)‖2 (29)

Integrating (29) over the interval [0, k), we have

V (ek) ≤ (1− ε)kV (e0) + γ

k−1∑
m=0

(1− ε)k−m−1‖∆σ(m)‖2

knowing that (23) is satisfied for some β > α > 0, the
following inequality

α‖ek‖2 ≤ V (ek) ≤ β‖ek‖2 (30)

allows to deduce that

‖ek‖2 ≤
1
√
α

(
β(1− ε)k‖e0‖22 +

γ

1− ε

k−1∑
m=0

[1− ε]k−m ‖∆σ(m)‖22
) 1

2

Hence, when k → ∞ and using the maximum norm of
∆σ(k), (22) is obtained which ends the proof. �

4.2 Characterization of all possible estimation error

In a bounded-error estimation context, we are interested
in characterizing the interval of admissible values for the
state consistent with the observed data, in the sense
that the errors between model outputs and observations
fall within prior bounds. This is done by recursively
calculating a zonotopic outer-approximation of the effect
of the parameter uncertainties and measurement noise. In
this subsection, we show how to design a suitable interval
observer under the following assumptions.

Assumption 2. The initial state x0 is inside an initial
zonotope X0, implying that the initial state estimation
error e0 is inside the zonotope E0 = CX0, i.e. e0 ∈ E0.

Assumption 3. The measurement noise vector ϑk is un-
known but bounded by a set

Vϑ = {ϑ ∈ IRnϑ : |ϑk| ≤ V} (31)

Assumption 4. It is assumed that the time variations of
state and input vectors xk and uk are limited to some
admissible bounds xk, xk, uk and uk such that xk ≤ xk ≤
xk and uk ≤ uk ≤ uk.

Note that since ξk ∈ Ξ, the system matrices ∆Aσ(k)(ξk)
and ∆Bσ(k)(ξk) are bounded based on (6) as

∆Aσ(k) ≤ ∆Aσ(k)(ξk) ≤ ∆Aσ(k) (32a)

∆Bσ(k) ≤ ∆Bσ(k)(ξk) ≤ ∆Bσ(k) (32b)

Therefore, using Assumption 4, the uncertain vector δσ(k)

can be bounded by applying Lemma 1. Subsequently, and
under Assumption 3, the additive term ∆σ(k) in (11) can
be bounded by means of an interval box D given by:

D = {∆σ(k) ∈ IRnx |∆σ(k) ≤ ∆σ(k) ≤ ∆σ(k),∆σ(k),

∆σ(k) ∈ IRnx} (33)

where
∆σ(k) = P+

σ(k)
δσ(k) − P−

σ(k)
δσ(k) + (Hσ(k) −Kσ(k))V (34a)

∆σ(k) = P+
σ(k)

δσ(k) − P
−
σ(k)

δσ(k) + (Hσ(k) −Kσ(k))V (34b)
and
δσ(k) = ∆A

+
σ(k)x

+
k
−∆A+

σ(k)
x−
k
−∆A

−
σ(k)x

+
k

+ ∆A−
σ(k)

x−
k

+

∆B
+
σ(k)u

+
k
−∆B+

σ(k)
u−
k
−∆B

−
σ(k)u

+
k

+ ∆B−
σ(k)

u−
k

δσ(k) = ∆A+
σ(k)

x+
k
−∆A

+
σ(k)x

−
k
−∆A−

σ(k)
x+
k

+ ∆A
−
σ(k)x

−
k

+

∆B+
σ(k)

u+
k
−∆B

+
σ(k)u

−
k
−∆B−

σ(k)
u+
k

+ ∆B
−
σ(k)u

−
k

Furthermore, D can be rewritten as a zonotope D = ∆c⊕
H∆σ(k)

Bn, where H∆σ(k)
∈ IRnx×nx is a diagonal matrix

with the main diagonal being ∆σ(k) and ∆c is a known
and constant vector.
In this regard, the state estimation (11) can be bounded
by the zonotope ek+1 ∈ Ek+1 = 〈eck+1,Hk+1〉 with

eck+1 = Nσ(k)e
c
k (36a)

Hk+1 =
[
Nσ(k)Hk H∆σ(k)

]
(36b)

where eck+1 andHk+1 are the center and segment matrix of
the zonotope Ek+1, respectively. The equivalent compact
description of (36) is given as follows

Ek+1 = Nσ(k)Ek ⊕D (37)

An interval for the estimation error ek can be obtained by
computing the interval hull ?Ek (cf. Definition 4) of the
zonotope Ek.

5. APPLICATION TO VEHICLE LATERAL
DYNAMICS

5.1 Vehicle Model

Vehicle lateral dynamics may be modeled using a two
degree of freedom (2-DOF) model known as the ”bicycle
model” to describe the lateral and yaw motions Rajamani
[2011].
Note that vehicles traveling at high speeds may be affected
by lateral wind disturbances, resulting in lateral motion.
The acting point of the resulting force, fw, is called
the aerodynamics center (AC). The distance between the
aerodynamics center and the center of gravity is noted by
lw. Therefore, the vehicle lateral motion when subject to
wind force can be expressed using the following state space
model: [

v̇y
ψ̈

]
= Av

[
vy
ψ̇

]
+Bvδf + Evfw (38)

where
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Av =

−(cf + cr)

mvx

crlr − cf lf
mvx

−vx

crlr − cf lf
Izvx

−
crl2r + cf l

2
f

Izvx

, Bv =

[ cf

m
cf lf

Iz

]
, Ev =

 1

m
lw

Iz


where m, Iz, are the mass and the yaw moment, vx and vy
are lateral and longitudinal velocities, ψ̇ is the yaw rate,
lf , lr are distances from front and rear axle to the center
of gravity (CG). cf , cr are the cornering stiffness of front
and rear tires while δf represents the front steering angle.

In the vehicle model (38), yaw rate ψ̇ is available for
measurement. Moreover, vehicle longitudinal velocity vx
and cornering stiffness coefficients cf and cr are time-
varying. In order to fully make use of the range variations
of these uncertain parameters, the following representation
is used:

cf = cf0 + ∆cf , cr = cr0 + ∆cr (39)

where the linear part, denoted by ci0, i ∈ {r, f}, presents
a priori known nominal value. The readjustment variable,
i.e ∆ci, i ∈ {f, r} assumed to be unknown but bounded,
is added to correct the value of the cornering stiffness
coefficients in case that a change occur in road adhesion
or vehicle loading condition. Whereas, the longitudinal
velocity is considered piecewise constant, and, different
local sub-model are derived. A switching strategy that
depends on the measured velocity is implemented.
By applying the first order Euler approximation on model
(38) and taking into account the above consideration, a
discrete-time model of the form (5) is obtained where,

ξk = [∆cf ∆cr]
T ∈ Ξ. Using the switched unknown input

observer (14), the state estimate x̂k is made robust against
unknown lateral wind gusts disturbance and aforemen-
tioned uncertainties.

5.2 Simulations results

The real data used in the validation process are acquired
using a prototype instrumented vehicle in a test track
located in the city of Versailles-Satory, France. An artificial
lateral wind gust input (Figure 1) is incorporated into the
real measurements in simulation using nonlinear vehicle
model [Rajamani 2011]. Steering angle and longitudinal
velocity profiles are plotted in Figure 1. The simulation
test is performed considering three local vehicle dynamics
in which the longitudinal velocity is considered constant
and differs from one mode to another. This can be seen
as a subdivision of the range of variation of the longi-
tudinal speed in three sub-regions, for low, medium and
high speed. In the present scenario, the local longitudinal
velocity values are: v1

x = 8.5m/s, v2
x = 13.55m/s and

v3
x = 18.05m/s. The switching law presented in Figure

2 is computed as in the earlier chapters as follows:

σ(k) =

{
1 if vx ∈ [V 0

x , V
1
x [

2 if vx ∈ [V 1
x , V

2
x [

3 if vx ∈ [V 2
x , V

3
x ]

(40)

with V 0
x = 10.6m.s−1, V 1

x = 11m.s−1, V 2
x = 16m.s−1

and V 3
x = 19.8990m.s−1. Numerical simulations were per-

formed using Matlab software environment. The punctual
switched unknown input observer is initialized at x̂0 =

[0 0]
T

. According to the procedure described in Subsection
4.1, the corresponding gain matrices of the UIO (8) for the
lateral dynamics system (7) are designed 1 . The resulting

1 Details are omitted due to space limitation.

Fig. 1. Lateral wind gust input fw, steering angle δf , and longitu-
dinal velocity vx.

Fig. 2. Switching law σ(k).

attenuation level is γ = 0.0120 for ε = 0.5 and a sampling
time Ts = 0.6s.
Next, to implement the interval observer (14), the initial
state is assumed to belong to the zonotope X0 = p0 ⊕H0B

2,

where p0 = [0 0]
T

and H0 =
[

0.01 0
0 0.01

]
. The upper and

lower bounds of the state and input vector uk are defined

by: xk = −xk = [0.8 0.3]
T

, uk = uk + 0.01 and uk = uk −
0.01. Furthermore, it is assumed that the cornering stiff-
ness parameters are affected by ±10% uncertainty in their
nominal values. Thus, the box D can be easily deduced
using (33). The estimation error bounds are computed at
each sample time k from the interval hull of the zonotope
(37). The resulting bounds are then used to obtain the
interval enclosing all possible values of the state vector xk.
Figure 3 compares the punctual estimated lateral velocity

v̂y and yaw rate
ˆ̇
ψ with simulated and measured trajecto-

ries vsy and ψ̇m, respectively. In Figure 4, the enclosure of
all possible state estimation errors are shown. Finally, Fig-
ure 5 represents the guaranteed state estimation obtained
for vehicle lateral velocity and yaw rate.
The proposed switched unknown input observer provides
a successful estimation of the vehicle lateral dynamics.
Particularly, the yaw rate is precisely estimated during
steady-state and transient period when comparing to real
measurement ψ̇m. Concerning lateral velocity, the per-
formance of our observer is quite good expect when the
steering angle changes quickly. In fact, with a quick steer-
ing movement of the driver and high lateral acceleration,
lateral force increases significantly, and thus, reaches the
nonlinear region. So, a linear approximation of lateral force
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Fig. 3. Comparison of vsy and v̂y (fisrt two figures) and comparison

of ψ̇m and
ˆ̇
ψ.

Fig. 4. Enclosure of e1 = vsy − v̂y and e2 = ψ̇s − ˆ̇
ψ.

Fig. 5. Lateral velocity vy and yaw rate ψ̇.

dynamics seems not so obvious to use since cornering
stiffness coefficient cannot be identified with certainty.
Therefore, the benefit of the adaptive dynamic tire model
based estimator is evident. Admittedly, the proposed inter-
val characterization of the estimation error allows to better

understand and enhance observer performances, especially
in the experiments where sudden change in road surface is
expected. As shown in Figure 5, the simulated as well as
measured data and their corresponding nominal estimates
are inside the computed interval.

6. CONCLUSION
This paper investigates a set-membership state estima-
tion scheme for uncertain switched discrete-time systems.
The proposed methodology is based on a combination of
punctual switched unknown input observers and zonotopic
threshold analysis. It has been shown that the observer can
be made robust against parameter uncertainties and mea-
surement noise by using Input-to-State stability criteria.
By characterizing the set of all possible state estimation
errors, the worst-case residual bounds are computed using
zonotopes. This guaranteed threshold avoids generating
false alarms related to modeling errors and inaccurate
measurements. An application to vehicle robust state es-
timation is presented providing satisfactory results.
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