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Abstract: This paper addresses the design and implementation of a robust nonlinear model predictive
control (NMPC) scheme for a benchmark plant-wide control problem. The focus of our research is
on the performance of direct optimizing control for a complex large-scale process which is subject
to plant-model mismatch and external disturbances. As a benchmark case for control and monitoring
applications, the Tennessee Eastman Challenge (TEC) process has been widely employed in many
publications. We present a first NMPC implementation for this where only economics criteria are used
for the control of the process. The results obtained demonstrate the viability of plant-wide economics
optimizing NMPC. We also address the issue of robustness against model uncertainties and employ
multi-stage NMPC to tackle these. Different possible multi-stage NMPC implementations are discussed
and the trade-offs between economic performance and robustness are highlighted.

Keywords: robust NMPC, economics optimizing control, multi-stage optimization, plant-wide control,
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1. INTRODUCTION

The optimal control of large scale chemical processes that con-
sist of many interconnected units poses a number of challenges,
due to the complexity of the models, the effects of recycles,
and the presence of a large number of uncertain parameters and
disturbances. Reviews of plant-wide control (PWC) as e.g those
found in Downs and Skogestad (2011) or Vasudevan and Ran-
gaiah (2012), emphasize that the approaches can be grouped
according to the scale on which they address the control task.
Stewart et al. (2010) have shown that distributed approaches can
ensure stability and may obtain convergence to the plant-wide
optimum. The classical approach to PWC involves treating the
plant-wide optimization of the process as one big task, while the
implementation of the solution is typically done in a top-down
multi-layer approach. Some of the main challenges of PWC are
the selection of the control structure and the control hierarchy,
as highlighted by Skogestad (2000). These choices have an
impact on both the stability and the economic profitability of
the process. In this approach, the top layer optimizes the plant
profitability, usually based on a rigorous steady-state model,
while one or two more lower layers are employed for tracking
the set-points provided by the upper layer and ensuring that pro-
cess constraints are not violated (see Skogestad (2000), Engell
(2007), Ochoa et al. (2010), Skogestad (2012)). However, from
an economics point of view, the two-layer approach does not
always lead to the best results. A single layer, direct optimizing
control (DOC), or economic-oriented MPC (eMPC), structure
can bridge the gap between plant economics and low-level
control in a more systematic manner and lead to better results
(e.g Engell (2007), Engell (2009), Ellis et al. (2014)).
The rise in popularity of DOC was triggered by the evolution
of the optimization algorithms and tools, which now make it
possible to solve large scale optimization problems much more
efficiently and reliably than before, as demonstrated by e.g

Biegler and Zavala (2009) for the dynamic plant-wide control
of a polyethylene plant. Furthermore, it is now possible to
implement PWC approaches where the control task is formu-
lated solely by means of economic performance criteria and
the satisfaction of process and quality constraints is directly
implemented in the form of constraints in the optimization
problem. The application of direct optimizing or economic
MPC approach to real plants has been described e.g. in Toumi
and Engell (2005), Kuepper and Engell (2007) and Hasskerl
et al. (2018b). Plant-wide control of several units with recycles
by DOC has been studied in a simulation study by Ochoa et al.
(2010), but there still are relatively few contributions in the
literature on this topic.
Since the introduction of the Tennessee Eastman Challenge
process in 1992, numerous studies of plant-wide control of this
process have proposed low-level stabilizing control or multi-
layer structures, which we will review in Section 2 of this
article. This paper focuses on the investigation of the potential
of DOC when applied to the TEC process, more precisely
on the use of non-linear MPC methods to solve an economi-
cally motivated control problem. Our aim is to realize a PWC
structure which maximizes the plant profitability and handles
all relevant constraints. Since the profitability of the plant is
affected by disturbances and plant-model mismatch, we extend
our investigation to study the performance of a robust multi-
stage NMPC controller under the influence of uncertainty. The
results presented in this work aim at validating the use of multi-
stage NMPC in a plant-wide application and to discuss the
selection of the NMPC parameters in order to enhance plant
profitability. Furthermore, we contribute to the discussion of
the TEC and provide a point of reference for further NMPC
applications to this benchmark problem.
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2. THE TENNESSEE EASTMAN CHALLENGE PROCESS

2.1 TEC process description and dynamic model

The Tennessee Eastman Challenge (TEC) was proposed by
(Downs and Vogel, 1992) as a benchmark case for plant-wide
control strategies and process monitoring. The challenge is
based on a real industrial process, but details as the names of the
components, physical properties or kinetics have been modified
by the authors to protect the intellectual property of the com-
pany. The model of the process has already been discussed in
several papers, e.g. Yan and Ricker (1995), Vallerio et al. (2014)
or Jockenhövel et al. (2003), the last one being the formula-
tion that was selected for the implementation of the dynamic
model in this paper. Due to space limitations, only the reactor
model will be re-iterated here. This is because the reactor is
the unit which is most sensitive to disturbances and control
inputs, as will be discussed in the next section. The energy and
composition balances shown in (2) are illustrative and offer an
impression of the model complexity. For an overview of the
TEC and its full model and a description of the parameters,
please consult Downs and Vogel (1992) and Jockenhövel et al.
(2003). A very detailed analysis and a re-fitting of the model
parameters was performed by Jockenhövel (2004).
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Fig. 1. The schematic representation of the TEC process. The
main units are depicted in colour and the most relevant
process disturbances are marked with cloud signs.

Three exothermic, irreversible gas-phase reactions occur inside
the reactor. The products G and H are the result of the first two
reactions, while the third reaction yields one by-product F, as
shown in Eq. (1).

Ag +Cg +Dg → Gl
Ag +Cg +Eg → Hl
1
3

Ag +
1
3

Eg +Dg → Fl

(1)

The reactor model is given in (2). Here Ṙi represent the reaction
rates, which depend on the reaction rate coefficients ai and on
the gas volume Vg,R as well as on the partial pressure pi,R.
The variables xi give the molar concentrations. VL,R designates
the liquid volume in the reactor, ∆HR,k the heat of reaction.
TRc denotes the temperature of the cooling water and Q̇R the
transferred energy via the surface with the heat transfer coeffi-

cient kA and the temperature of incoming cooling water Tcw,in,R.
mCWR is here the mass of the cooling water.

dni,R

dt
= ṅ6yi,6− ṅ7yi,7 +

3

∑
k=1

νi,kṘk

Ṙ1 = a1 Vg,R exp(44.06− 42600
RTR

) p1.08
A,R p0.311

C,R p0.874
D,R

Ṙ2 = a2 Vg,R exp(10.27− 19500
RTR

) p1.15
A,R p0.370

C,R pE,R

Ṙ3 = a3 Vg,R exp(59.50− 59500
RTR

) pA,R (0.77pD,R + pE,R)

pi,R = γi,R xi,R psat,i(TR)

VL,R =
H

∑
i=D

ni
Mi

ρi
, PR =

F

∑
i=A

pi,R

Ṡ6 = 0.8334[
kmol

sMPa0.5 ]
√

pM− pR

Ṡ7 = 1.5355[
kmol

sMPa0.5 ]
√

pR− pSe

∆HR,k = Ṙk

H

∑
i=A

νcp,vapTr +Hk, f orm

dTR

dt
=

ṅ6(∑
H
i=A yi,6cp,vap,i)(T6−TR)− Q̇r−∑

3
k=1 ∆HR,k

∑
C
i=A ni,Rcp,vap,i +∑

H
i=D ni,Rcp,liq,i

dTRc

dt
=

ṁCWRcp,cw(Tcw,in,R−TRc)+ Q̇R

cp,cwmCWR

Q̇R =
∆T1,R−∆T2,R

ln(∆T1,R
∆T2,R

)
kAR

(2)
The full model of the TEC consists of 30 ODEs. Similarly
to the reactor model, it is based on energy and component
balances for the remaining units. Algebraic expressions, like
the total pressures in the mixing unit (Pm), the separator (Pse),
and the stripper (Pst ), as well as the liquid hold-ups in the
units, are used to impose safety and operational constraints
on the production. The units are coupled by vapour streams
S5,S6,S7,S8,S9 and by one liquid stream S10. In total the model
defines 14 algebraic expressions. In Fig. 1 also the 11 control
inputs of the TEC are depicted. Downs and Vogel (1992)
note that only the pressures and temperatures in the units, the
flowrates, stream compositions and stream temperatures can be
measured. However, in the present work we consider full state
information about the process units, focusing explicitly on the
feasibility of state-feedback NMPC schemes.

3. ECONOMIC NMPC AND MULTI-STAGE NMPC

Quite a few control approaches have so far been reported for the
Tennessee Eastman Challenge, amongst which we discuss here
only some of the optimization-based approaches. A first NMPC
application to the TEC with six manipulated control variables
was presented by Ricker and Lee (1994), which included some
additional PID loops to stabilize the process. The same group
also presented an NMPC approach which considered soft con-
straints (Yan and Ricker, 1995). A self-optimizing control ap-
proach was discussed by Larsson et al. (2001), while newer
NMPC approaches were proposed by Jockenhövel (2004), who
introduced a dynamic model of the process and performed dy-
namic optimization for reference tracking based on the original
prescriptions by Downs and Vogel (1992). Karra et al. (2008)
introduced an adaptive MPC structure and, in later work, (Za-
kharov et al., 2013) employed a two-phase NMPC. Vallerio
et al. (2014) have shown an application of multi-objective opti-
misation (Pareto optimality) for a reduced case of the TEC.
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In the present work we discuss the implementation of direct
optimizing control and multi-stage NMPC (MS-NMPC) with
the platform do-mpc (Lucia et al. (2017)). The multi-stage MPC
approach is one of the least conservative robust approaches for
handling plant model mismatch in the form of uncertain model
parameters. It was proposed for applications where the uncer-
tainty cannot be eliminated by model enhancement methods, as
e.g. model adaptation or parameter estimation. The robustness
to parametric uncertainty is realized with the help of a branch-
ing prediction tree (see Fig. 2), where the nodes represent the
future predicted states and the arcs represent the control actions
and evolutions of the parameters. This formulation results in a

Fig. 2. Plant-model mismatch represented as a scenario tree

large scale optimization problem of the form:

min
x j

k,u
j
k∀( j,k)∈I

N

∑
i=1

ωiJi(Xi,Ui), (3)

subject to:

x j
k+1 = f (xp( j)

k ,u j
k,d

r( j)
k ), ∀( j,k+1) ∈ I,

g(x j
k+1,u

j
k)≤ 0 , ∀ ( j,k+1) ∈ I,

u j
k ∈ U ,x j

k ∈ X , ∀ ( j,k) ∈ I,

u j
k = ul

k if xp( j)
k = xp(l)

k ∀ ( j,k),(l,k) ∈ I,
where g :Rnx×Rnu→Rng represents general and possibly non-
linear constraints on the states and the inputs of the control
problem evaluated at each node of the tree. The superscript j
denotes the position in the prediction horizon, while i denotes
the scenario number. k is used to address individual values in
the state and input vectors. The cost of each scenario Si with
weight ωi is denoted by Ji : Rnx×NP+1×Rnu×NP →R. The non-
anticipativity constraints ensure that the decisions u j

k with the

same parent node xp( j)
k are the same. Additionally the states and

inputs are restricted to feasible sets X and U, respectively.
The complexity of the problem increases with the number of
scenarios N, which grows exponentially with the number of
stages. Since recourse is explicitly modelled in our problem
by embedding the measurement feedback at each sampling
time, it is typically enough to consider only one or two stages
where the tree branches. This is called the robust horizon. After
the robust horizon the uncertain parameters are assumed to be
constant. This assumption reduces the size of the problem and
enables real-time implementation. For further details on the
assumptions of the multi-stage approach and a discussion about
the robustness of the method, the reader is referred to the papers
by Lucia and Engell (2012), Lucia et al. (2014) and Lucia and
Engell (2015). The do-mpc platform has been successfully used
over the past years in a number of NMPC studies. Lucia et al.

(2017) and Tatulea-Codrean et al. (2019) discussed different
details of NMPC implementation with do-mpc. Hasskerl et al.
(2018a) and Hasskerl et al. (2018b) showed real application
results of do-mpc at a reactive distillation column. In this work,
we present the first implementation of a plant-wide optimizing
control scheme using do-mpc. The efficiency of the solution
of NMPC problems for large-scale nonlinear models is greatly
enhanced by the use of efficient symbolic representations of the
process model provided by the framework CasADi (Andersson
et al., 2019) and the solution of the optimization problems by
the nonlinear solver IPOPT (Wächter and Biegler, 2006). The
platform do-mpc is built on top of these tools.

3.1 Model uncertainty and sensitivity analysis

A sensitivity analysis of the economics-oriented NMPC im-
plementation for the TEC process was carried out based on
the original information on the uncertainties and the recom-
mendations provided in Downs and Vogel (1992). The model
uncertainty and the possible disturbances are considered as
parametric disturbances and were implemented in this way in
do-mpc. A list of the uncertain parameters is given in Tab.
1 along with their nominal values. The range of uncertainty
considered here is ±20% of the nominal values except for the
temperatures, where it is ±20K. The sensitivity analysis was
conducted for a simulation time of 2 hours, which is sufficient
for reaching a steady state. The uncertainties mostly affect the
initial dynamic phase, therefore extending the simulation time
did not result in qualitatively different results. The different
parameter values were applied as constant value throughout
the entire simulation time, and the results are listed in Tab. 2.
The economic NMPC controller solves the problem given in (4)
and has prediction and control horizons equal to 2000 seconds,
realized in 20 steps (i.e. Np = 20 and sampling time = 100s).
The stage cost function Jk(x,u) comprises different parts that

Table 1. Uncertain parameters and their nominal
values according to Downs and Vogel (1992)

No. Parameter Nominal Unit

1
A/C feed ratio, B constant

(Stream 4)
xA 0.485 mol/mol

xC 0.51 mol/mol

2
B composition, A/C constant

(Stream 4)
xA 0.485 mol/mol

xB 0.005 mol/mol
xC 0.51 mol/mol

3
D feed temperature

(Stream 2)
318.15 K

4 CWR temperature 308 K
5 CWC temperature 313 K
6 A feed loss (Stream 1) 20 kmol/h

7
C header pressure loss

(Stream 4)
700 kmol/h

8 Reactor kinetics a1 1.039916 -
a2 1.0113731 -
a3 1.0 -

account for the costs and sources of revenue of the process.
The costs are labelled ci and the revenue for the products are
labelled pi. A list of the costs for the components i = A, ..F ,
as well as the cost of steam and cooling water are given in
the original paper of Downs and Vogel (1992). As for the
revenue from the products, an educated guess is to set them as
pG,H = 100 $/kmol. In addition to the economic terms in Jk, the
soft constraint penalty terms εc,c= 1..9 are included in order to
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account for the process safety and operational constraints. The
cost function and the constraints are given below:

min
x,u

NP

∑
k=1

Jk(x,u)

subject to:
ε1..9 ≥ 0
TR−423K− ε1 ≤ 0
pR−2895kPa− ε2 ≤ 0
VL,R−21.3m3− ε3 ≤ 0
−VL,R +11.8m3− ε4 ≤ 0
−VL,Se +3.3m3− ε5 ≤ 0
VL,Se−9.0m3− ε6 ≤ 0
pSe− pR +5kPa− ε7 ≤ 0
−VL,Str +3.5m3− ε8 ≤ 0
VL,Str−6.6m3− ε9 ≤ 0

where Jk(x,u) =

[
ṅ11

F

∑
D
(xi,strci)+ ṅ9

F

∑
A
(yi,seci)+

Wcomprccompr +msteamcSteam− ṅ11

H

∑
G
(xi,str pi)

]
10−6+

9

∑
c=1

εc +0.01
11

∑
j=1

(∆u j)
2.

(4)
The effect of the uncertainties on the overall eNMPC perfor-
mance is shown in Tab. 2. It can be seen that uncertainty No. 1,
which is the composition of feed stream 4, has a big influence
on the overall profit, which can become much lower than in the
nominal case. Also this is the only case which leads to con-
straint violations. A second parameter with a big effect on the
total profit is coefficient No. 8.2, the reaction rate coefficient a2.
The minimal value of these parameters results in a significantly
reduced profit, while the maximum value has a positive impact,
with both cases exhibiting above-average changes in the profit.
The other uncertainties have a relatively small impact on the
total profit, therefore it was decided to only select these two
uncertainties for the multi-stage NMPC implementation.

3.2 Scenario tree selection

Fig. 3. The result of the scenario tree structure selection: A tree
with 4 branches and a robust horizon of 1 step was selected
for the economic NMPC implementation.

Table 2. Uncertain parameters and their impact on
the total profit

No. Configuration Computation
time [s]

Profit
[$]

Constraint
violation

0 default 1349 65938 0
1 min 1192 41683 0
1 max 1197 46917 0.000511
2 min 1327 66099 0
2 max 1339 65606 0
3 min 1319 65938 0
3 max 1322 65938 0
4 min 1338 65877 0
4 max 1352 66002 0
5 min 1340 65974 0
5 max 1510 65894 0
6 min 1439 65278 0
6 max - - -
7 min 1408 63274 0
7 max - - -

8.1 min 1388 65457 0
8.1 max 1415 66218 0
8.2 min 1385 61085 0
8.2 max 1420 69956 0
8.3 min 1385 66045 0
8.3 max 1399 65831 0

With the selection of two parameters for the multi-stage NMPC
implementation, the next choice is to decide on the number
of realizations of the uncertainty for each parameter. Imple-
mentations with two and with three values for each parameter
were compared based on three decision criteria (see Fig. 4).
For the first case, the candidate values are given by the mini-
mum and the maximum of the respective parameter: α1,α2 ∈
{0.8,1.2}. For the second case, the nominal value is included
in the scenario tree, so that the candidate values are now
α1,α2 ∈ {0.8,1.0,1.2}. The length of the robust horizon was
varied between RH = 0 (nominal case) and RH = 1,2, while
keeping the length of the prediction horizon constant. A set of
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Fig. 4. Performance comparison of two economic MS-NMPC
schemes. Scenario trees with 4 branches (blue) were com-
pared to trees with 9 branches (orange).

15 simulations was performed for each of the two MS-NMPC
implementations, each one for a different uncertainty realiza-
tion sampled from the available parameter set. In each case the
controlled plant was simulated for 6 hours, with a sampling rate
of 100 seconds and a prediction horizon of 2 hours. The results
are summarized in the diagram in Fig. 4. The MS-NMPC imple-
mentations with three levels of uncertainty for each parameter
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achieved an average total profit of 151,615 $ and required an av-
erage computation time of 58 sec/iteration. In comparison, the
implementation with only 2 levels of uncertainty for each pa-
rameter achieved an average profit of 160,025 $ and an average
computation time of 21 sec/iteration. The results depicted in the
figure are normalized with respect to their highest and lowest
values. It was found that values of the robust horizon larger than
one (RH = 1) do not produce an improvement in the solution.
This can be attributed to the embedding of feedback in the MS-
NMPC structure, which makes it unnecessary to consider larger
values of the robust horizon (as discussed also in Lucia et al.
(2014)). For this test case it was found that considering only two
levels of the uncertainties produces better economics results,
while also guaranteeing constraint satisfaction and demanding
a lower computational effort. Since the constraint violation is
comparable, the second criterion was the computation time.
The implementation with only two levels of the uncertainties
is much faster and was thus selected for the discussion of the
results presented in the next section.

4. ECONOMIC NMPC PERFORMANCE UNDER THE
INFLUENCE OF UNCERTAINTY

We begin the investigation of the performance of the eNMPC
controller by selecting three control modes from the ones pro-
posed by Downs and Vogel (1992), which are combined in
the cost function given in Eq. (5). To this end, we formulated
an optimizing controller which can manage dynamic switches
between the three modes of operation. The first term in the
objective function contains the economics part, which is com-
puted based on the reactant and energy costs from the original
TEC publication. The next two terms in the function represent
the tracking of a fixed production-rate, as well as the tracking
of a fixed product composition in the stream S11. They can be
switched on or off during the simulation, by setting the param-
eter ptv,(1,2) to 1, for activation, and to 0 in order to deactivate
the term. The constraints structure is identical to the one in
Eqs. (4). The soft constraints, as well as the additional term for
input movement penalization, are added in order to implement
a smooth operation of the plant. The initial values correspond
to those reported by Jockenhövel (2004), which are the base
case values. For each case the NMPC was run with a prediction
horizon of 2 hours and a sample time of 200 seconds.

JeNMPC = 0.5

[
4

∑
j=1

ṅ j

E

∑
A
(xi, jci)− ṅ11

H

∑
G
(xi,str pi)+

+Wcomprccompr +msteamcSteam]10−6

+0.25ptv,0

[
H

∑
G
(wi,str− si)

2

]
+0.25ptv,1

[
H

∑
G
(ṅ11Mixi,str− si)

2

]
+

9

∑
c=1

εc +0.01
11

∑
j=1

(∆u j)
2.

(5)
The results shown in Fig. 5 are for a switch from purely eco-
nomics NMPC to economics combined with a fixed product
composition and fixed production rate. One can see that the
optimal control strategy leads to producing more of the compo-
nent H, because the reactants for this product are cheaper than
the reactants required for G. The profits during the first 3 hours
of operation reach a maximum of 24,970 $/h, while all the
reactor feed streams and the liquid level are at the constraints.
Therefore, the production cannot be further optimized. After 3
hours the two tracking terms are activated. This corresponds to

fixed relative demands, which in this case are a mass-ratio of
40/60 between products G and H and a combined production
rate of 14,000 kg/h. The new operating point is slightly less
profitable and the profit stabilizes at 23,460 $/h after 4 further
hours. The average computation time of the eNMPC was 10.20
sec/iteration, while the maximum was 23 seconds and the mini-
mum was 7.5 seconds. For this test case the results confirm that
this implementation is real-time feasible.
Next we show the results of multi-stage NMPC under the in-
fluence of plant-model mismatch. The optimization problem
implements a scenario tree with robust horizon RH = 1 and four
branches, as discussed in the previous section and depicted in
Fig. 3. The results in Fig. 6 were obtained for the values of the
uncertain parameters [α1,α2] = [0.9,1.1], which correspond to
a reduced purity of the stream S4 and an increase in the reaction
rate. This means that the simulator is running with a set of
values for the two parameters which do not belong to any of
the branches that are considered in the scenario tree, but are
within the assumed min-max range.

Fig. 7. The influence of random parametric uncertainty on the
performance of economic MS-NMPC with added tracking
terms. The uncertainties [α1,α2] were varied each hour.

The same two different modes of operation are shown in Fig. 6
for the multi-stage case. In the first 3 hours, a purely economic
cost function is employed. The average profit is slightly lower
than in the nominal case, which can be explained by the
necessary back-off of the robust controller and the negative
impact of the reactant impurity. At 3 hours, an additional
tracking term for the product concentrations is added to the
cost function. This results in a temporary increase on the profit
that cannot be maintained over a longer operation time. The
profit decreases even more, before eventually converging to the
value of 21,950 $/h, as the product stream stabilizes around
the desired values. The computation times for the MS-NMPC
simulation are higher due to the complexity of the NLP and
the effect of the uncertainties. An average time of approx. 35
sec/iteration was achieved for this test case. All iterations were
in the range of 28 to 50 seconds, with the iterations around t=3 h
being slightly more intensive. It is known that the convergence
time depends greatly on the choice of the linear solvers. Here
the HSL routine MA86 was used, which is well suited for large
scale problems and provides parallelization features. Another
viable alternative that we tested was the solver MA57.
In the simulation results depicted in Fig. 7, the combined
influence of the uncertain parameters on the performance of the
economic MS-NMPC is shown. It is assumed that the purity
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Fig. 5. Plant-wide optimizing NMPC with one switch of control objective. The additional tracking terms are activated at t=3 h.

Fig. 6. Multi-stage NMPC results under the influence of parametric plant-model mismatch. A control goal switch is performed,
such that the first 3 h are run with the purely economic criterion in Eq. (5) and the last 6 h are run with tracking of
concentrations in stream S11 and tracking of the production rate.

of stream S4 changes randomly every hour within the assumed
range of ±20% around the nominal value. The reaction rate
coefficient was also changed every 3 hours to cover the set [0.8,
1.0, 1.2]. The variations of the purity of reactant stream S4 cause
fluctuations in the pressure responses of the process units that
can be handled by the optimizer. The computational effort is
slightly higher for this test case, with the average computation
time being around 38 sec/iteration and the maximum time
being around 70 sec/iteration. The profitability fluctuates more
widely because some of the combinations of the uncertainties
are more profitable, while others are detrimental to the process
performance.

5. CONCLUSIONS

We have presented a new formulation of the complex plant-
wide control problem for the Tennessee Eastman benchmark
as a direct optimizing control problem which was solved using
the do-mpc platform. To our knowledge the results represent
the first reported instance of the application of eNMPC to
the TEC and demonstrate the applicability of the approach to
large scale plant-wide control problems through the careful
design of the NMPC strategy. We provided results with an
economics optimizing NMPC controlling the nominal plant
model and of a robust multi-stage NMPC controller for the
TEC with parameter variations. We analysed which MS-NMPC
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formulation is most efficient to handle errors in the parameters
that have the largest influence on the plant profit and achieved a
robust behaviour using only 4 different scenarios. Using the do-
mpc platform, which integrates state of the art algorithms and
software tools, the solution for the economics NMPC problem
is feasible in real time.
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