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Abstract:
This article presents a stability analysis of object grasping with a compliant multi-fingered
robot hand considering the influence of the flexibility of the grasped object on this stability.In
this stability analysis we aimed to compute the maximum disturbance that can be withstood
by a compliant hand-object system before being destabilized. Here, the case of objects with
a compliant behavior that can be synthesized in a stiffness matrix is addressed. The specific
example of beam objects and cylindrical grasps is investigated, a computation of the local
stiffness matrix of the beam object is proposed using Euler-Bernoulli theory for beam deflection
and the influence of the Young modulus of the beam on the stability is evaluated.

1. INTRODUCTION

Grasping and manipulating objects with complex grippers
such as multi-fingered hands is an challenging and arduous
task in robotics and it is still an active field of research
Grossard et al. (2014). The goal of a grasp is to maintain,
without damaging it, an object in the gripper under a def-
inite class of external disturbances. Thus the evaluation of
the quality of the grasp can help to define the best grasping
parameters depending on specific criteria (robustness, task
dependence, dexterous behavior, mechanical properties of
the grasped object, etc.).

The class of multi-fingered hands encompass numerous
types of grippers, one of which is the compliant hand.
The compliance of these hands can come either from the
fingertips, from the fingers’ segments or from the fingers’
joints. In the latter case, the compliance can be passive,
or active through the joints controller gains. This kind of
gripper is conveniently described by an object or contact-
level stiffness model.

One of the most important aspects of the grasp quality
is the stability of this grasp Bruyninckx et al. (1998)
defined for a grasp at an equilibrium. At an equilibrium
the sum of all the forces and moments acting on the grasp
equals to zero. When all these forces and moments derive
from a potential function, this equilibrium is considered
stable if the first-order derivative of the potential energy
of the grasp is null and the matrix of second-order partial
derivatives is positive definite Nguyen (1986).

The study of the stability of a grasp can be done using
numerous type of analysis or criteria, however most of
them make the assumption that the grasped object is rigid
and undeformable Roa and Suárez (2015). This type of
hypothesis simplifies greatly the complexity of the models
and the computational cost, however it limits the overall
amount of class of objects that can be grasped.

One classical way to ensure the stability of a grasp is by
inspecting the force-closure property of the grasp Murray
et al. (1994), which can be often encountered in the
dedicated literature because it implies a stable equilibrium
grasp Nguyen (1986). Although it is a useful property
when the grasped object is rigid, the same does not applies
for the flexible objects Wakamatsu et al. (1996), due to a
bounded amount of force from the grasping hand and non-
fixed contact points.

Moreover, not all the stable grasps verify the property of
force-closure Howard and Kumar (1995), and and other
stability criteria exist based on three types of factors,
namely the contact points, and the curvature and com-
pliance at these points. We addressed a part of this issue
by proposing an energy-based analysis of the grasp with
compliant hands Vollhardt et al. (2019), however this
analysis only stand for the undeformable objects.

For deformable objects, the complexity of the modeling
of the object lead to the study of alternative ways to
circumvent the issue by adding vision Mateo et al. (2015)
and learning approach Bodenhagen et al. (2014) to track
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in real time the deformation of the object and thus adapt
the grasp. An other approach consists in learning the
mechanical properties and the deformation behavior of the
grasped object via iterative learning Frank et al. (2010)
Langsfeld et al. (2016). Several other studies restricted
their applications to some specific type of deformable
object or materials, such as clothes Bell and Balkcom
(2010) or strings Bell and Balkcom (2008), or limit the
study to squeezing a planar object with two fingers Jia
et al. (2011).

This paper presents an extension of our energy-based
analysis of the grasp stability with a compliant hand
Vollhardt et al. (2019) to the flexible objects in order
to study the influence of the non-infinite rigidity of the
object on the stability of the grasp. This study takes into
consideration the elastic deformation of the fingertips as
well as the whole geometry of the hand and the compliance
brought by the servoing of the joints. Considering the
complexity of the modeling of the deformable object, we
suppose that the deformation behavior of the object can
be describe using a stiffness matrix. The specific case of
beam objects and cylindrical grasps is presented. This
analysis is task-oriented, and allows to select and tune a
grasp guaranteeing the stability towards specified external
disturbances.

The paper proposes two contributions. A modeling of the
grasping for flexible objects in section 2 and the stability
analysis of the grasping towards external disturbances in
the section 3. The section 4 presents the computation of
the stiffness matrix for the specific case of beam object and
cylindrical grasps, a case study follow in section 5, and a
conclusion is given in section 6.

2. FLEXIBLE OBJECT MODEL

This section details our contribution over the modeling
of the grasp stiffness with a flexible object grasped by a
compliant multi-fingered hand.

2.1 Rigid object approach

Considering a rigid object, Vollhardt et al. (2019) presents
a stability analysis for the grasp selection with compliant
multi-fingered. This stability analysis is based on an ener-
getic approach of the grasp, defines that the stiffness Ko

felt by the object due to the grasp is:

Ko = G
(
Csh + Jh(q)TCqJh(q)

)−1
GT (1)

with, Csh being the structural compliance of the hand,
namely the compliance contributed by the passive ele-
ments of the multi-fingered hand, such as the compliance
of the several fingertips in contact with the object for
example, Cq being the active compliance of the hand
contributed by the servoing of the joints q, Jh(q) being
the hand Jacobian depending on the fingers’ configuration
and G being the Grasp matrix.

Considering a direction of external disturbance dWext

applied on the object, Vollhardt et al. (2019) shows that
the maximal intensity αmax of the disturbance Ww

ext→obj =
αdWext , so that the grasp was able to withstand before the
object drop from it, depends on the several parameters of
the grasp. i.e. the position of the contact points Xc, the

active compliance of the hand Cq as well as the squeezing
force (also named internal forces, fi) applied by the hand
on the object to maintain it in the grasp.

The same analysis is extended to the case of non-infinite
object, given the stiffness behavior of the total grasp. This
part will be addressed in the next subsection.

2.2 Grasp stiffness of a flexible object

Let us consider a grasp with n fingertips in contact with
the object at n contact points. The position and orienta-
tion of the object is given by the homogeneous transforma-
tion gw→obj between the world coordinate frame w and the
object coordinate frame obj attached to the center of the
object. The homogeneous transformations gobj→Ck

define
the position and orientation of all the coordinate frames
Ck attached to the contact points with respect to the obj
frame. In the same way, the homogeneous transformations
gSk→Ck

defines the same position and orientation with
respect to the spatial frame Sk of each finger k, namely
their base.

Assuming a local stiffness behavior of the object, we
consider that it can be modeled by stiffness matrix Klk

expressed in the contact point frame Ck, moreover, from
(1) the stiffness felt by the object at the contact point Kc

is:
Kc =

(
Csh + Jh(q)TCqJh(q)

)−1
(2)

Considering these two stiffnesses, and taking into consider-
ation each finger separately, the grasp can be modeled by
two springs in series with Kl and Kck as their spring con-
stant, Kck being the submatrix of Kc that is responsible
for the stiffness at the contact point k (Fig. 1).

KckKlk

Ck SkObj

KckKlk

Ck
fckFCk

obj→fg

δXCk
o δXCk

Sk

Fig. 1. Simplified representation of the grasp and flexible
object for the kth contact point

Let us consider an external disturbance W o
ext→obj applied

on the center of the object in its own frame as the
summation of wrenches applied on all the n fingertips by
the object:

W o
ext→obj =

n∑
k=0

W o
obj→fgk (3)

For a given grasp at equilibrium and for the kth finger-
tip, the wrench W o

obj→fgk applied by the object on the

fingertip, the corresponding force FCk

obj→fg applied on the

kth fingertip at the contact point in its own contact frame
Ck and the contact forces fck applied by the finger on the
object at the contact point in Ck are linked by the grasp
matrix G (itself depending on the position and orientation
gobj→Ck

of Ck with respect to obj frame) as such:
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W o
obj→fgk = Gk(gobj→Ck

)FCk

obj→fgk = −Gk(gobj→Ck
)fck

(4)

Moreover we know that:{
FCk

obj→fg = Klk .δX
Ck
o

fck = −Kck .δX
Ck

Sk

(5)

δXCk
o and δXCk

Sk
are the vertical concatenation of the

instantaneous displacement and moment of center of the
object and of the base of the finger. It is important to
take note that both of these displacements result from
the combine effect of the external force WCk

ext→obj as well

as the contact forces fc = fr + λ.ker(G), fr being the
reaction forces, and λ.ker(G) the internal forces that can
be considered as a pre-load of the springs. Thus, the
contribution of the internal force is included in δXCk

Sk
.

So: {
W o
obj→fgk = GkKlkδX

Ck
o

W o
obj→fgk = −GkKckδX

Ck

Sk

(6)

By construction of the Gk matrix, it’s null space is empty,
hence there is no additional term due to the use of the
pseudoinverse as such we can say that:

⇒
{
δXCk

o = K−1lk G+
kW

o
obj→fgk

δXCk

Sk
= −K−1ck G

+
kW

o
obj→fgk

(7)

Moreover, we know that the instantaneous displacement
and moment of the center of the object with respect to
the world frame in its own contact frame δXo

ok
is related

to δXCk
o and δXCk

Sk
by:

GTk δX
o
ok

= δXCk
o − δX

Ck

Sk
(8)

So:
W o
obj→fgk = Gk

[
K−1lk +K−1ck

]−1
GTk δX

o
ok

(9)

Then if we consider all the contributions of the fingers on
the object, we have:

W o
ext→obj = G

[
K−1l +K−1c

]−1
GT δXo

o (10)

As such, we have:

δXo
o =

[
G
[
K−1l +K−1c

]−1
GT
]−1

W o
ext→obj (11)

Moreover, considering the fact that K−1c = Csh + JTh CqJh
(see [8] for more details), Csh being the structural compli-
ance of the hand and Cq being the active joint compliance
of the hand, the equation (11) becomes:

δXo
ok

=
[
G
[
K−1l + Csh + JTh CqJh

]−1
GT
]−1

W o
ext→obj

(12)
As such both the components K−1l and Csh can be put
together in a single term of structural compliance Cs:

Cs = K−1l + Csh (13)

We have then the same equation’s form as the one in the
rigid case, the only difference is that the matrix G should
be updated at each step time, because the flexibility of the
object produces displacement of contact points changing
the grasps matrix G:

δXo
ok

=
[
G
[
Cs + JTh CqJh

]−1
GT
]−1

W o
ext→obj (14)

Based on this result, we are now ready to expose the grasp
stability analysis method for a flexible grasped object.

3. STABILITY ANALYSIS

3.1 Plastic deformation energy

The impact of the object’s stiffness on the global stiffness
of the grasp has been studied in the last section, as such
it is possible to compute the displacement of the object
under a external perturbation W o

ext→obj , as well as the
displacement of the several contact points depending on
this external disturbance as well as the contact forces fc.

However, not all the contact forces are acceptable by a
flexible object. Depending on its material and mechanics,
the object will be deformed temporarily or definitely or
it can even be destroyed depending on the contact forces
applied on it. At such it is important to ensure that these
forces stay bounded.

This type of constraints can by formalized by a maximal
energy Emaxobj inputted by the contact forces on the object,
depending on its deformation.

Eobjmax =
1

2
δXoT

cmax
KlδX

o
cmax

Eobjmax =
1

2
fTcmax

K−1l fcmax

(15)

Thus, this constraint has to be checked in addition to
the friction cone constraints to ensure the stability of the
grasp.

Algorithm 1

1: function Compute Xc(λfinalfi
, Xo

c )
2: λfi = 0

3: while λfi < λfinalfi
do

4: G = ComputeG(Xo
c )

5: λfi = λfi + δλfi
6: δXc

o = −K−1l .δλfi .Ker(G)
7: Xo

c = Xo
c + δXo

c
8: end while
9: return λfi , X

o
c

10: end function

3.2 Computation of the internal forces impact on contact
points

Without external disturbance on the object, the grasp
is supposed to be at an equilibrium state, and the only
contribution to the contact forces comes from the internal
forces. Thus any variation of the internal forces δfi will
induce a small displacement δXc

c of the contact point in
its own coordinate frame:

δfi = δλ.Ker(G) = −KlδX
c
c (16)

As such:
δXc

o = K−1l .δλ.Ker(G) (17)

The fact that the grasp Matrix G is strongly dependent
on the position and orientation of the contact frame
with respect to the object frame is important here. The
computation of δXc

o is not straightforward as G should be
updated each time the contact frame moves with respect
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to the object frame. Thus, a step by step computation as
presented in Algorithm 1 could be used to solve this issue.

3.3 Grasp under external disturbances

For a three-dimensional system, with a given initial set
of n contact points located in space by the homogeneous
transformations gobj→Ci0

and gSk→Ci0
i ∈ [1, ..., n], a joint

configuration of the fingers qi, a joint compliance Cq, an
intensity of internal forces λfi , an object stiffness Kl, as
well as a maximum of deformation energy that can be
handled by the object Eobjmax

, the maximal intensity of
disturbance αmax and its corresponding energy Edwomax

is
computed by solving the optimization problem presented
in Algorithm 2.

Algorithm 2

Set gobj→Ci0
, gSk→Ci0

, qi, Cq, λfi , Kl, Eobjmax

αmax(Ci, kpij ) = max
α

α

s.t. fciz ≥ 0, i ∈ [1, ..., n],√
f2cix + f2ciy ≤ µfciz ,i ∈ [1, ..., n],

0 ≤ α,
fcK

−1
l fc < Eobjmax

,

Ww
ext→obj = αdWext ,

fci = New State(δα)

1: function New State(δWw
ext→obj)

2: // Computation of the motions of the object and
contact points due to δWext→obj

3: δW o
ext→obj(k)

← Adgobj→w
δWw

ext→obj

4: Ko(k)
←
[
G(k−1)

[
K−1l +K−1c(k−1)

]−1
GT(k−1)

]−1
5: δXo

o(k)
← Ko(k)

δW o
ext→obj(k)

6: δXc
s(k)
← K−1c(k−1)

G+
(k−1)W

o
ext→obj(k)

7: δXc
o(k)
← K−1l G+

(k−1)W
o
ext→obj(k)

8: // Calculation of the reaction forces and the stored
energy induced by the motions

9: fr(k)
← fr(k−1)

−Kc(k−1)
δXc

s(k)

10: E(k) ← E(k−1) +XoT

o(k)
G(k−1)Kc(k−1)

GT(k−1)δX
o
o(k)

11: // Update of the object and contact point pose
12: gw→obj(k)

← gw→obj(k−1)
× to hgn(δXo

o(k)
)

13: for i ∈ [1, ..., n] do
14: gobj→Ci(k)

← gobj→Ci(k−1)
× to hgn(δXci

o(k)
)

15: gSk→Ci(k)
← gSk→Ci(k−1)

× to hgn(δXci
s(k)

)

16: end for

17: // Update qi, Kc, G and Ww
ext→obj

18: qi(k) ← ikm(gSk→C(k)
)

19: Kc(k)
=
(
Cs + Jh(qi(k))CqJh(qi(k))

T
)−1

20: G← Compute G(gobj→C(k)
)

21: Ww
ext→obj(k)

←Ww
ext→obj(k)

+ δWw
ext→obj(k)

22: return (fr(k)
+ λfiKer(G(k)))

23: end function

The matrix Adgobj→w
is the adjoint transformation matrix

associated with the homogeneous transformation gobj→w,
and is used here to map the external disturbance from the
world coordinate frame w to the object coordinate frame
obj. The vectors δXc

s(k)
ans δXc

o(k)
are the concatenation of

respectively the δXCi
o and δXCi

Si
. The functions to hgn()

and ikm() are respectively in charge of computing the
homogeneous transformation corresponding to the instan-
taneous translation and moment passed as parameter and
in charge of computing the inverse kinematic for a given
Cartesian position. And Finally µ is the friction coefficient
at the contact point, used to check the friction cone con-
straints.

The function New State() is called at each step δα of the
optimization, to update the complete state of the system
depending on the small increase of disturbance intensity
δα. The stability of the system is then checked by using
the friction cone constraints and ensuring that the amount
of deformation of the object did not went through the
maximum bearable.

Hence, in the same way as the rigid case, we proposed a
comparable analysis, taking into account the properties of
the object and their impact on the stiffness, that is able
to compute the maximal amount of perturbation that the
object can withstand before falling out of the grasp, and
before being permanently damaged due to too high contact
forces.

4. SPECIFIC CASE OF BEAM OBJECTS AND
CYLINDRICAL GRASPS

It has been shown in the last section that both the rigid
and flexible grasp could be analyzed in the same way, given
the elastic behavior of the object , that can be computed
by a finite element method or in certain case defined by
an analytic expression.

In our case, we consider a cylindrical object grasped in a
hand using a cylindrical grasp as described in Fig. 3. Given
the hypothesis that the surfaces around the punctual
contact points between the object and the finger does not
change when the finger applies a force on the object, this
system can be approximated as a simply supported beam
with one load if there is no disturbances (the two fingers on
the same side as support and the one on the other as the
load), and a simply supported beam with two loads or with
one load and three supports depending on the direction
of the disturbance. So it is easy to compute beforehand
the deformation behavior of the beam, and compute the
corresponding stiffness matrix.

4.1 Simply supported beam elastic deflection

The solution of the deflection of a simply support beam
under a single load is a well known result in the literature,
as well as the two loads case using the superposition
principle. We consider that the deflection of the beam
follow the Euler-Bernoulli theory, as such only the normal
component to the beam before deflection are taken in
account. Let us take the following system presented in Fig.
2. f1, f2, f3 are the contact forces applied by the respective
fingers on the object,W is the external disturbance applied
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on the object. a, b, c being the distances between the
application points C1, C2, C3, Cw of the several forces,
L the sum of these distances, E the Young modulus of the
material of the object and Jz the second moment of area
of the beam. In this specific case, the equilibrium of the

f2

W

f3

f1

a b cx

y

C2 C3

C1 Cw

Fig. 2. Simply supported beam with two loads

forces is defined by:{
Lf3 − (a+ b)W − af1 = 0
Lf2 − cW − (b+ c)f1 = 0

(18)

So we have the deflections v1(x), v2(x) and v3(x) along the
y-axis, respectively for x ∈ [0, a], x ∈ [a, a+b], x ∈ [a+b, L]

v1(x) = − (b+ c)f1x

6LEJz
(a2 + 2a(b+ c)− x2)

− cWx

6LEJz
((a+ b)2 + 2c(a+ b)− x2)

v2(x) = −af1(L− x)

6LEJz
(a2 − 2xL+ x2)

− cWx

6LEJz
((a+ b)2 + 2c(a+ b)− x2)

v3(x) = −af1(L− x)

6LEJz
(a2 − 2xL+ x2)

− (a+ b)W (L− x)

6LEJz
((a+ b)2 − 2x(a+ b− 2c) + x2)

(19)

This deflection can be used to compute the displacement
of each contact point as well as the rotation of each contact
frame due to the forces f1, f2, f3 and W .

4.2 Local static stiffness

The study of the deflection of a beam under one or several
loads suppose that the supports are fixed in space and
do not move, as such the deflection v(x) is the absolute
displacement of each point of the beam in a world reference
frame. However, this displacement is also relative to the
straight line between the two support points C2 and C3,
as such the displacement can be split in two equal parts
between both sides of the beam if we consider that the
supports are not fixed. Hence these displacements are still
with respect to a fixed point that correspond to the center
of the object.

Let us define dC1y, dC2y and dC3y, the displacements
along the y-axis with respect to the center of the object:

dC1y =
v(a)

2

dC2y = −v(a)

2

dC3y = −v(a)

2

(20)

Moreover for a small displacement dx and a small variation
of force dF , the stiffness K is defined as:

K−1 =
dx

dF
(21)

As such using (20), (19) and (21), we can define the local
static stiffness Klyi at each contact point i with respect to
the y-axis as:

K−1ly1 =
dC1y

df1
=
a2(b+ c)2

6LEJz

K−1ly2 = −dC2y

df2
=
a2(b+ c)

6EJz

K−1ly3 = −dC3y

df3
=
a(b+ c)2

6EJz

(22)

Besides, it can be seen that:

K−1ly1 = −b+ c

L
K−1ly2 = − a

L
K−1ly3 (23)

We supposed that the elastic behavior of the system follow
the Euler-Bernoulli theory, as such no displacement is
allowed in the other directions, thus the local stiffness at
each contact point in the x-axis and z-axis are infinite,
and:

K−1lxi = K−1lzi = 0 (24)
Thus, the complete local stiffness for the i-th contact is:

K−1li =

0 0 0
0 K−1lyi 0
0 0 0

 (25)

Moreover, using the first derivative of the deflection v(x)
at the point x = 0, x = a and x = L gives us the rotation
angle around the z-axis to compute the new orientation of
each contact frame due to the deflection of the beam.

This approach enables us to construct a stiffness matrix
corresponding to the elastic behavior of a cylindrical object
using the several hypothesis defined previously as such we
can use the stability analysis for this type of system. In
the next section, we are going to present a study case
dealing with the impact of the flexibility on the stability
of cylindrical grasp system.

5. CASE STUDY

This section illustrates our analysis extended to the cylin-
drical grasps based on an example of a pick and place
task with a hand. This example will show the impact of
the flexibility of the grasped object on the stability of its
grasp.

5.1 Considered system

The following ideal 3D example relates to a grasp with
three fingers and three contact points and Coulomb fric-
tion constraints (Fig. 3). We consider in this study two dif-
ferent objects with the exact same geometry but two differ-
ent Young modulus, one at E1 = 15GPa that correspond
to some wood, and an other one greater at E2 = 69GPa
that corresponds to aluminium. The section of the object
is considered circular with a diameter of d = 10−2m,

as such its second moment of area is Jz = π(10−2)4

64 =

4.91.10−10m4. The distances a and c are both equal to
1.10−1m and b is null as the contact point C1 is placed
right in front of the center of the object. The intensity of
the internal forces applied by the fingers on the object is
fi1 = 20N , fi2 = fi3 = 10N .
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Fig. 3. 3D representation of a cylindrical grasp

5.2 Pick and Place example task

Let us consider the following pick and place task, the
object is grasped at a position A in space, and moved
to a position B along a trajectory that remains in the
horizontal plane (x, z) to which belong A and B. Thus
all the accelerations withstood by the object also remain
inside its plane (xobj , zobj). The pick and place task is
designed so that the accelerations along its trajectory
induce on the object several directions of disturbances that
are listed below:

dwext ∈


−
√
2

2
0

−
√
2

2

 ,


√
2

2
0√
2

2

 ,

[
−1
0
0

]
,

[
1
0
0

]
,


−
√
2

2
0√
2

2

 ,


√
2

2
0

−
√
2

2



(26)

5.3 Analysis for a fixed grasp

Given the pick and place task, its set of direction of
disturbances and the two different grasps, it is possible to
analysis the stability of the two systems along the several
directions of disturbances. The table I gather de results
for the maximal intensity of Ww

ext→obj for each type of
material and each direction.

Table 1. Maximal intensity of disturbance for
the tasks directions and each chosen young

modulus

dTwext
E = 15GPa E = 69GPa[

−
√
2

2
0 −
√
2

2

]
13.9 4.4[√

2

2
0

√
2

2

]
7.5 4.4[

−1 0 0
]

15.7 14.1[
1 0 0

]
15.7 14.1[

−
√
2

2
0

√
2

2

]
7.5 4.4[√

2

2
0 −
√
2

2

]
13.9 4.4

It can be seen that a flexible grasped object allows a better
stability for the several direction of disturbance chosen for
the task. However this comparison is only true for the two
chosen young modulus for the objects, that does not prove
that a flexible object always allow a better stability than
a rigid one.

5.4 Influence of the flexibility on the stability of the grasp

Given the same system, with higher internal forces (fi1 =
30N , fi2 = fi3 = 15N) and considering only one direction
of disturbance along the x-axis of the object frame, the
figure 4 shows the evolution of the maximal intensity of
the disturbance depending on the Young modulus E, E ∈
[1.5.1010, 5.1010]. It can be seen that the stability decrease
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Fig. 4. Influence of the flexibility of the grasped beam on
the stability of the grasp

with the increase of the Young modulus for interval and
this type of grasp, as such, it can be at least deduced that
the stability of the system is better with a flexible object
than a rigid one.

6. CONCLUSIONS

This paper extends a stability analysis already existing for
rigid objects to flexible objects that can have their flexible
behavior defined by a local stiffness matrix. This stability
analysis takes explicitly into account in addition to the
local stiffness matrix, the same elements as the rigid case,
that are: the whole geometry of the hand, the compliance
due to mechanical design and the control gains in the
joints.

The specific case of beam objects and cylindrical grasp
as been addressed to form the local stiffness matrix. The
influence of the flexibility on this kind of object has
been illustrated with an ideal pick and place task, for
several directions of disturbances that it induce and for two
different objects. Moreover the influence of the flexibility of
the object on the grasp stability has also been studied for
only one specific direction of disturbance and an interval
of an interval of Young modulus values, which defines the
flexibility of the object.

This analysis has shown that including flexibility in the
modeling of a grasp allow a finer model, and that the
difference between a complete rigid model and a model
with some flexibility is not negligible and thus should be
considered for object that have flexibility. In future works,
the influence of the control gains and the contacts points
on the stability of flexible object should be evaluated.
Based on these works, a control strategy adapting the
control gains, internal forces and contact point locations
could be proposed to ensure a stable grasp and cope with
external disturbances.
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