
     

PROCESS TOMOGRAPHY FOR MODEL FREE ADAPTIVE CONTROL 

(MFAC) VIA FLOW REGIME IDENTIFICATION IN MULTIPHASE FLOWS 
 

Ru Yan*, Håkon Viumdal **, 

Saba Mylvaganam*** 
 

University of South-Eastern Norway, Department of EE, IT and Cybernetics, Campus Porsgrunn 

Norway 

*ruyans@gmail.com 

** Hakon.Viumdal@usn.no 

*** saba.mylvaganam@usn.no 

Abstract: Multiphase flows are frequently found with oil/gas/water/sand in the oil & gas industries, in 

processes handling dry particulates such as fluidized bed and particulate flow and slurries and 

sedimentation, to quote a few industrial applications.  All these processes have different flow regimes with 

characteristic distribution of the different materials in the flow.  With increasing sensor data from processes 
and associated possibilities for data fusion, process tomography offers non-intrusive real time sensing 

methods for identifying these flow regimes, which in certain cases can lead to hazards to personnel and 

plants in the process industries. In this paper, two scenarios of control using process tomography are 

presented from the oil and gas industries and powder technology. Twin plane Electrical Capacitance 

Tomography (ECT) with a plethora of other sensors for measuring pressure, flow rate in two phase flow 

involving water and air is one application. The other is particulate flow in a fluidized bed.  In the case of 

water and air, ECT was used in a multiphase flow loop with different combinations of air and water mass 

flow rates enabling the generation of different flow regimes. In the case of particulate flow, different 

scenarios of flow conditions were generated using particulates and observing the flow regimes based on 

the distribution and flow rate of the particulates. For the identification of flow regimes, capacitance values 

from the 12-electrode ECT module at a rate of 100 frames in 200ms, were logged in for data analytics. In 

the final stages of using the processed data, in the case of two-phase flow 5 outputs consisting of the 
identified flow regimes, viz. plug, slug, annular, stratified and wavy flows were used as inputs for control 

and decision making. Similarly, in particulate flow ECT data were used to estimate the air velocity for 

fluidization as well as in identifying slug and plug flow, which are valuable to the process engineer in 

determining the range of air velocities for safe operation of the system used for particulate transport, often 

involving fluidization bed and pipelines. Tomography is used to discern features and tomometry is used in 

implementing the algorithms. 

Keywords: Process tomography, Electrical Capacitance Tomography (ECT), sensor data fusion, flow 

regime, process safety, neural networks, multiphase flow, fluidized bed column (FBC), Model Free 

Adaptive Control (MFAC) 

1. INTRODUCTION 

Process tomography/tomometry can assist the measurement 

and control engineers in the process industries with valuable 

data about the process using non-invasive and non-intrusive 

sensors and the fusion of data from these sensors. Electrical 

Impedance Tomography (EIT)/ Tomometry (EITm), Electrical 

Capacitance Tomography (ECT)/ Tomometry (ECTm), 

Electrical Resistance Tomography (ERT)/ Tomometry 

(ERTm), have been successfully applied in the identification 

of different flow regimes and material distributions in 
multiphase flow involving liquids and gases as well as air and 

particulates. Abnormal and dangerous flow conditions in 

multiphase flow processes involving unusual distribution of 

materials and their velocities in the process vessels or 

pipelines, can in certain cases lead to hazardous conditions, 

which have to be detected or preferably predicted with swift 

and suitable response to alleviate the incumbent disasters to 

personnel and property. Process tomography with the 

combination of sensor data fusion can lead to process 

operations with low maintenance costs with reduced security 

risks to personnel. Flow conditions in processes involving 

multiphase flows with liquids, gas and particulates are flow 

regimes, volume fractions of the different phases, size of 
bubbles and the frequencies of their occurrences, size of slugs 

and the frequencies of occurrences etc. Estimation of these 

parameters on-line with non-intrusive sensing will help the 

process designers to develop sensor systems, data acquisition 
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from these and algorithms for alerting the process engineers, 

who can without delay adjust process parameters such as flow 

of the individual components of flow or even shut down the 

flow by deactivating the crucial actuators such as pumps, 

valves, throttles etc.   

Simplified models using tell-tale values of few critical 

parameters, e.g. from a process tomographic module, as their 

inputs can help the process engineers to make decisions, to 

decide on a suitable and swift action. For making such 

decisions when the processes are running, measurement and/or 
soft sensor-based Model Free Adaptive Control (MFAC) 

algorithms are used to decide on suitable control actions, 

(Pradeep et al, 2012a). These methods after undergoing 

multiple tests can be used to design MFAC algorithms which 

can be supplementary to conventional control algorithms.  

 

Processes with multiphase flow involving mixture of liquids, 

gases and particulates have very seldom a homogenous 

mixture of all these individual phases. High pressure variations 

involving slugs of oil/water and gas or air and particulates can 

lead to hazardous situations. Early warning of process 
parameters of flow regimes, slug size etc. in a mix indicating 

impending danger, can help to avoid serious damages. The 

process tomographic systems and techniques described in this 

paper show the possibilities of realizing MFAC for safer 

operation of processes with multiphase flows. 

1.1 Multiphase rig for two phase (air/water) flow 

A simplified P&ID diagram of a multiphase flow loop for 

generating desired flow regimes with air, water and oil as the 

phases in the flow is shown in Fig. 1, which shows the sensors 

and actuators relevant monitoring and generating the relevant 

flow regimes.   

Two Coriolis flow meters (‘FT’) with an uncertainty of 

0.01kg/min, are located immediately before the ECT module, 

for measuring mass flow rates of air and water. Differential 

pressure transmitters (‘PDT’) are used for monitoring the 

pressure drop between the ends of the test section with the ECT 

module. The gamma radiation meter (‘GD’) estimates the 
phase fraction over the pipe cross-section based on the 

differing absorption coefficients of air, water and oil. The 

control valves and pumps constitute the actuators in the system 

and adjusts the amount of each phase to attain various 

compositions of the phases, i.e. fractions of oil, water and air. 

From extensive tests run with different fractions of oil, water 

and air, different desired flow regimes can be generated in the 

rig. For the two-phase flow studies with air and water, the test 

matrix with the details of air and water flow rates leading to 

various flow regimes are presented in (Johansen et al, 2018).  

1.2 Particulate flow 

A fluidized bed column (FBC) used in this study for observing 

fluidization of particles and their flow in a vertical pipe section 

with focus on the flow regimes is shown in Fig. 2. The focus 

in the usage of ECT module in these tests are to identify the 
regimes fixed bed, fluidisation and slugging. For these three 

flow regimes, starting point of fluidization and air inflow 

velocity for generating bubbling flow can be observed through 

the vertical transparent pipe section. 

Based on these observations, control methods based on air 

inflow velocity can be developed for generating different flow 

regimes. The vertical FBC used in this study with the twin 

plane ECT-module is shown in Fig. 2. with a corresponding 

schematic diagram showing the major modules in Fig. 2. 

(right).  

 

Fig. 1. P&ID for the flow rig with ECT-module, sensors and 
actuators. This paper focusses on two phase flow with air and 

water.  Tests performed at room temperature and atmospheric 

pressure. FT/FC-Flow Transmitter/Controller, GD – Gamma 

Radiation Meter for density measurements, PDT-Differential 

Pressure Transmitter 

 

 

Fig. 2. Picture of FBC and ECT -module. Schematic 

diagram of the FBC with installed twin plane ECT sensor 

(right). 

2. ECT MEASUREMENTS 

In both systems shown in Fig. 1 and Fig. 2, the ECT-modules 
give an array of capacitance values. An ECT module usually 

has all the electrodes distributed along the periphery of the 

pipeline.  For an ECT-module with N-electrodes in one plane, 

a typical set of normalized capacitance measurements can be 

presented in a matrix form as: 

                       𝐶𝑁(𝑖, 𝑗, 𝑡) = {
𝐶𝑁(𝑖, 𝑗, 𝑡), 𝑖 < 𝑗

0, 𝑖 ≥ 𝑗
                     (1)   

where CN is the normalized capacitance measurements; i = 1 

…, N; j = 1, 2, …, N and t represents time. 

Equation (1) leads to a N×N upper triangular matrix with zeros 

on its diagonal elements, since typical ECT measurement 
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systems skip the repetitions of the same inter-electrode 

combinations, because at any instant t, Cij(t) = Cji(t), for the 

raw capacitances measured at any two electrodes i and j of the 

ECT-module. Thus, for a set of measurements, usually called 

a “frame”, the complete capacitance matrix is given by: 

𝐶𝑁(𝑡)(𝑢,𝑣) =

{
𝐶𝑁(𝑖, 𝑗, 𝑡),   𝑢 ≤ 𝑣;    𝑖 = 𝑢;    𝑗 = 𝑁 + 𝑢 − 𝑣

𝐶𝑁(𝑗, 𝑖, 𝑡),   𝑢 > 𝑣;    𝑖 = 𝑁 − 𝑢 + 𝑣;    𝑗 = 𝑣
     (2) 

where, u and v are the index of row and column in the matrix 

respectively, u = 1, …, (N-1); v = 1, …, (N-1).  

Different approaches are presented in this paper for fusing 

these raw capacitance data for a MFAC of multiphase flow of 

liquids, particulates and gases/air. One method is based on 

using these data from each frame as inputs to a neural network 

and fusing the data to get the flow regimes as the output. The 

other method is based on calculating the eigenvalues of (N-1) 

× (N-1) and taking the leading eigenvalues from the matrices 

for all the frames analyzed. The maximal eigenvalues in each 

vector is pointed out as the leading eigenvalue of each 
corresponding capacitance measurement frame. The work by 

Fang & Cumberbatch (2005), opened a new direction in EIT 

generally and reinforced the concept of ECTm.  

The third method is based on using k- Nearest Neighbour (k-

NN) algorithms.  The fourth method is using cascades of 

Support Vector Machines (SVM)  

3. FLOW REGIME IDENTIFICATION 

3.1 Water-air flow in a horizontal pipe 

In monitoring and control of multiphase flow in the oil and gas 

industries, accurate information of the the flow regimes helps 

the process engineers to be prepared to handle unusual 

pressure build-up due to the occurrence of large bubbles, the 

sizes of which could extend to hundreds of pipe diameters, 

(Wang et al, 2006).  These unusually large bubbles, plugs, and 

slugs in multiphase flow can lead to the creation of high-
pressure zones in the pipeline. Because of such high-pressure 

zones, the pipelines and their supporting structures can break 

down. Fig. 3 shows the frequently encountered multiphase 

flow regimes including bubbles, plugs, slugs, wavy and 

annular flows in horizontal pipelines, (Thome, 2004).  

 
Fig. 3. Commonly encountered flow regimes in horizontal 

multiphase flow, Thome (2004) and modified. 

3.2 Fluidised Bed Columns and Particulate Transport 

Similarly, in particulate transport involving fluidized bed, as 

shown in Fig. 4, the transition zones travers the pattern of 
starting with packed bed, via bubbling/slugging, turbulent and 

fast fluidization regime and finally leading  to the pneumatic 

transport of the particulates. 

 

Fig. 4. Commonly encountered flow regimes in particulate 

flow in fluidized bed columns (FBC), Yan (2016). 

4. DETECTION OF FLOW REGIMES  

In this section, some techniques will be presented for analysing 

the ECT data to identify flow regimes and if necessary, image 

the flow phenomena. Both multiphase flow with air and water 

and particulate flow involving FBCs are taken as case studies 

for non-invasive flow regime identification and as an 

immediate follow-up initiating MFAC of the processes for 

avoiding hazardous situations. Autonomous and timely 

detection of flow regimes and the transition zones between 

some of them non-invasively using ECT can help to design 

MFAC algorithms which can be used along with other 

algorithms. In earlier works, applying regression and 
prediction techniques with artificial neural networks, good 

results were achieved for selected parameters such as level of 

liquid, gas etc. in static multiphase studies using stationary 

pipe sections with ECT. Using pilot scale multiphase flow 

experiments with a dedicated multiphase rig and FBC for 

particulate flow studies, this work has focused on flows 

involving at times some complex transitions between flow 

regimes, using advanced neural network structures for pattern 

recognition and clustering.  

4.1 Identification of Flow Regimes in Air-Water Two Phase 

Flows in Horizontal Pipelines 

Artificial neural networks are used for developing soft/virtual 

sensors and exhibit enhanced ability to mask spurious effects 

due to unwanted /unimportant parameters. In recent years, due 

to improvement of hardware with respect to processing speed 
and memory capacities, and enhanced neural network training 

algorithms, deep learning (DL) is becoming more and more 

popular. DL has become one of the main drivers in many new 

applications in almost all fields.  

Deep Belief Network (DBN) belongs to the category of deep 

learning models and is used to extract representative features 

in a data set. By using DBN, a model free multiphase flow 

regime identifier can be developed as schematically illustrated 

in Fig. 5.  

 

Fig. 5.  DBN based flow regime identifier in MFAC mode 

using ECTm. 
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4.1.1 Construction of DBN  

DBN is a composition of series fully connected Restricted 

Boltzmann Machines (RBM). RBM is a shallow neural 

network that only consists two layers: visible/ input layer and 

hidden layer. The energy function E given in (1) describes the 

system stability, with lower energy associated with optimized 

parameters, weights and bias etc. of RBM, (Hinton, 2010). 

𝐸(𝑣, ℎ) = − ∑ 𝑎𝑖𝑣𝑖𝑖 𝜖 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 − ∑ 𝑏𝑖ℎ𝑖𝑗𝜖 ℎ𝑖𝑑𝑑𝑒𝑛 − ∑ 𝑣𝑖ℎ𝑗𝑤𝑖𝑗𝑖,𝑗     (3) 

where 𝑣𝑖, ℎ𝑗  are the states variables of visible unit i and hidden 

unit j respectively; 𝑎𝑖, 𝑏𝑗 are the corresponding biases with 𝑤𝑖𝑗 

the weights between the visible and hidden unit.  The objective 

of the training of RBM is to achieve the optimised parameter 

set {𝑎𝑖 , 𝑏𝑗 , 𝑤𝑖𝑗}.  

In a DBN, RBMs are connected in series, as shown in Fig. 6(b) 

with 2-hidden layers of DBN, where the outputs from the 

hidden layers in the previous RBM will be the inputs to the 

visible layer of the following RBM. By combing these RBMs, 
the DBN functions as an effective multilayer feature extractor 

capable of recognizing inherent patterns in big data.   

4.1.2 Pre-processing the Measurement Data 

Since each flow regime is a continuous phenomenon in space 
and time, to identify these flow regimes correctly, each sample 

of the time series fed into the neural network should contain 

enough information with good both spatial and temporal 

resolutions. The technical specification of ECT system 

discussed in this paper is given in Table 1.  

Table 1: ECT Module technical specifications 

ECT sensor • Single plane; 

• 12 electrodes per sensor plane; 

• (66 individual capacitance 

measurements in each frame). 

Sampling frequency • 500 frame per second 

 

Per training sample with 00 frames (obtained in 0.2s), there are 

6600 capacitance values, implying 6600 neurons at the input 

layer of the DBN. This large number will, in a time consuming 

and low efficiency training, put heavy demands on the system 

memory. Therefore, prior to the training of DBN, dimensional 

reduction of the inputs from each frame is necessary.  

The method used here for the reduction of dimensions employs 

statistical analysis of the ECTm data as they are gathered. The 

mean value (Pm), quantiles (Pqua) at [0.1, 0.25, 0.5, 0.75, 0.9] 

and kurtosis (Pkur), leading to a total of 7 variables are used to 

represent the 66 measurements per frame, thus reducing the 

data almost by a factor of 10. Each training sample has 100 

frames, thus the total number in each training sample is 

reduced from 6600 to 700, as illustrated in Fig. 6(a).  

The DBN used consists of 2 RBMs. The structure of the DBN 

is given in Fig. 6(b).  In the 1st RBM, there are 200 neurons in 

the hidden layer. In the 2nd RBM, the number of neurons in its 
hidden layer is set to 100. Finally, the hidden layer output form 

2nd RBM is fully connected to a feedforward neural network 

with 5 neurons (to represent five different flow regimes) in the 

output layer.

 

 

Fig. 6. (a) Pre-processing of ECT data for deep learning analytics for real time flow regime identification; (b) Structure of 

DBN with two RBMs. 700 neurons as inputs with the capacitance values from 100 frames and 5 different flow regimes as 

outputs. 

 

4.1.3 Training of DBN and results 

The process of DBN training can be divided into two phases: 

pre-training (unsupervised) and fine-tuning (supervised), with 

the following steps: 

• Training: 1st RBM until it reaches stability; then fix the 

achieved weights and biases for this RBM. 

• Training 2nd or the following RBM: use the outputs from 

previous RBM’s hidden layer, as inputs. Then training the 

RBM until it reaches stability. After training, the 

optimised weights and biases are selected.  
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• Fine-tuning: Adding an output layer, see the output layer 

Fig. 6(b); perform supervised training of the whole DBN 

by using forward propagation - backpropagation method 

to update the weights and biases as training normal 

feedforward neural network.  

During the RBM training process, from step 1) and 2), the 

updating algorithms for the parameter set {𝑎𝑖 , 𝑏𝑗 , 𝑤𝑖𝑗}  are 

given in (4) - (6). 

                      𝛥𝑎𝑖 = 𝜂(〈𝑣𝑖〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖〉𝑚𝑜𝑑𝑒𝑙)                           (4) 

                     𝛥𝑏𝑗 = 𝜂(〈ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙)                           (5) 

                 𝛥𝑤𝑖𝑗 = 𝜂(〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙)                   (6) 

where 𝛥  indicates the changes in 𝑎𝑖 , 𝑏𝑗 , 𝑤𝑖𝑗  after each 

training epoch; 𝜂  is learning rate; 〈. 〉 indicate reconstructed 

sample at corresponding hidden layer, ℎ, and visiable layer, 𝑣. 

In step 3), the activation function used for output layer is 

logistic sigmoid function, given in (7). 

                                    𝑓(𝑥) =
1

1+𝑒−𝑥                                    (7) 

The total data set is divided into two main parts: training & 

validation set and test set. For the training & validation dataset, 

the necessary measurements are taken for similar inlet flow 

conditions.  80% of the training & validation data were used 

for training, and the remaining were used for validation. 

Further, to verify its robustness, the trained model was tested 

by using the test data set from different in-let flow conditions.  

4.2 Identification of Flow Regimes in Fluidized Beds 

Fig. 7 shows the reconstructed 3D images of the bubble 

movement under different air inflow conditions. From the 

reconstructed movements of bubbles presented in Fig. 7, in the 

first three experiments (at airflows from 290 to 329 SLM) can 

be identified as 'bubbling' regime. However, already during the 

3rd experiment, features indicating ‘slugging’ can be 

observed. From the 4th experiment (at an airflow of 340SLM), 

the flow has a transitional tendency from 'bubbling' to 
'slugging'. When the airflow increased to 380SLM and to even 

higher speeds (from 8th to 12th experiment), the bubbles tend 

to occupy almost the entire cross section of the sensor plane. 

The flows corresponding to those observed during the 8th to 

12th experiments belong to the 'turbulent’ and ‘fast 

fluidization’ regimes.

 

 

Fig. 7. Reconstructed bubble images with airflow varying from 290 to 340 SLM. ‘blue’ indicates the bubble generated from 

the lower ECT sensor plane (p1, relatively close to the bottom of FBC and air inlet area); ‘red’ indicates the bubble generated 

from upper ECT sensor plane (p2). Adapted from Yan et al (2019). 

4.2.1 Identification using Leading Eigenvalues 

Fig. 8 (a) shows the variations of the RMS values of the ratio 

of the leading eigenvalues at planes p1 and p2. As can be seen, 

in the first 3 experiments, the RMS values do not increase 

much; from the 4th to 7th experiments, the RMS values 

increase significantly with increasing air inflow velocity; from 

8th to 10th experiments the RMS values are more stable again 

until to the last two experiments.  

 

(a) 

 

(b) 

Fig. 8. (a) RMS of the ratios of leading eigenvalues for 

capacitance matrices measured at p1 and p2; the red dot-line 

plot is the corresponding air velocity; (b) KDE plot: Data 

distribution of 10-sec averaged leading eigenvalues between 

p1 and p2. 

 
Fig. 8 (b) shows the Gaussian Kernel Density Estimate (KDE) 

plot, which shows the distribution of 10 second averaged 
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leading eigenvalues between the two sensor planes P1 and P2. 

The KDE curves from each experiment show clusters with the 

following pattern:  

• Group 1: first two experiments are in this group;  

• Group 1-2 (transition): from the 3rd experiment, the 

KDE curve starts to ‘connect’ to the next one;  

• Group 2: from the 4th experiment, the KDE curves 

shows more clustering with “centers”;  

• Group 3: from the 7th experiment, the KDE curves start 

to overlap each other; 

• Group 4: from 11th to 12th experiment, isolated islands 

(cap) is formed with respect to the other KDE curves.  

From these clusters by using KDE and leading eigenvalues, the 

raw capacitance values help to form the capacitance matrices for 

each frame, whose leading eigenvalues show characteristic 

patterns showing significant “fingerprint” behaviour, which 

can be associated with the different flow regimes. Fusion of 

these data features can enhance the identification process. 

However, for a reliable control of the particulate flow 

behaviour in the FBC, the above observations are not enough 

for using them as inputs to the control system.  Therefore, in 
the following sub-section 4.2.2, the classification results by 

using SVM are given. 

4.2.2. k-NN vs Stacked SVM model 

Since there are mainly three types of flow regimes of interest 
in the context of this study, viz. ‘bubbling’, ‘slugging’ and 

‘turbulent to pneumatic’ conveying, we need soft-sensing 

strategies to identify non-intrusively using the ECT system.  

Using k-Nearest Neighbor (k-NN) method for classification 

with Minkowski distance, number of neighbors: 2, 3, 6, 7 and 

weights of each points: uniform weights; weighted equally, we 

get the nice classification shown Fig. 9. The inputs to k-NN 

are: X: one second averaged leading eigenvalues pair: [‘p1’,  

‘p2’] and Y (target): 1 / ‘bubbling’; 2/ ‘slugging’ and 3 

/‘others’).  

 

Fig. 9. Classification using k-NN showing the different 
regimes according to the numbering scheme used for the 

experiments with characteristic flow regimes. 

Achieved accuracies are given in Table 2. The highest 

accuracy is for ‘k=3’.  However, as can be observed in Fig.9, 

the model overfits the data. The model with ‘k=6’ gives higher 

accuracy without overfitting.  

Table 2: Accuracy of k-NN model at different k numbers 

 k=2 k=3 k=6 k=7 

Accuracy  0.90 0.91 0.89 0.88 

 

Similarly, in the results shown in this section, a stack-SVM 

(composed of two individual SVMs), radial basis function 

(RBF) kernel, is trained. In this stack of two blocks of SVM, 

two separate SVMs are used to classify 'bubbling / not 
bubbling' and 'slugging / turbulent and else' successively as 

illustrated in Fig. 10.  

For providing a ‘quick response’, the leading eigenvalues are 

averaged per second instead of 10 seconds (used in the case of 

KDE of Fig. 8(b)). The inputs to stack-SVM are leading 

eigenvalues from lower sensor plane (p1) and upper sensor 

plane (p2), averaged over a period of one second.  In Fig. 10, 

the dot size is dependent on the difference between the 

corresponding leading eigenvalues at the planes, p1 and p2.   

 

Fig. 10. Overview of trained stacked SVM results; where 1st 

SVM (red hyperplane) is used to classify 'bubbling' and 

others; 2nd SVM (blue hyperplane) is used to classify between 

'slugging' and 'turbulent, others’. 

The hyperplanes from the stack-SVM are also presented in 

Fig. 10. The first SVM gives an accuracy of 95.6%; and the 
second SVM gives an accuracy of 91.2%; the total stack-SVM 

gives an accuracy of 87%.  

The first SVM (red hyperplane) is for recognition if the regime 

is ‘bubbling’ or not, performing at an accuracy of 95.6%; the 

second SVM (blue hyperplane) is for identifying the flow 

regime of ‘bubbling & slugging’ or ‘turbulent, others’, giving 

an accuracy of 91.2%.  

The combination of the first SVM and the second SVM, gives 

for all these three flow regimes of interest an accuracy of 

identification of 87 %. This is an acceptable result, especially 

as there are unclear transitions between the three flow regimes 

under scrutiny. 

In summary, the k-NN model can provide a bit higher accuracy 

(approx. 2% in this case) than the SVM model. While, due to 

the differences in the working mechanisms of k-NN and SVM, 

training and running of SVM model is simpler than k-NN 

model. SVM uses smaller training set (support vectors) and 
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needs less computation power. Training the k-NN model using 

different k numbers for determining the “best value” for k is a 

computationally demanding process, especially for a large 

dataset. In field applications, the SVM model has quicker 

response than that of k-NN model. Therefore, for the current 

application, the SVM model is a more suitable solution than 

the k-NN model. 

5. MFAC USING TOMOGRAPHY 

5.1 Flow regime identification and control of multiphase flow 

By using a DBN to process the measurements from a single 

plane ECT sensor, the frequently encountered flow regimes, 

plug/ slug/ annular/ stratify/ wavy, can be identified with high 

accuracy, see Table 3. Based on all training / validation / test 

results, categorizing both ‘Slug’ and ‘Plug’ as a single regime 
(e.g. ‘large bubble’), the identification accuracy is above 86%, 

(86% from training results, 100% from validation results and 

96% from test results). These techniques do have some wrong 

identifications, which are almost intrinsic due to the similar 

features of some of the flow regimes. 

Table 2: Accuracy of DNN model from training, 

validation and testing  

 Plug Slug Annular  Stratified  Wavy 

Training 0.77 0.84 1 0.98 1 

Validation 0.71 0.85 1 1 0.95 

Test 0.88 0.84 1 0* 1 
*all being misclassified to ‘wavy (92%) and ‘slug’ (8%) 

 

From the validation and test results, 14% and 4% of samples 

of ‘Slug’ flow have been misclassified as either ‘Stratified’ or 
‘Wavy’ flows, due to the similarity of their features found in 

short time-windows of 0.2 second. Due to the same reason, 

from the samples of ‘Stratified’ flow, 92% of them has been 

misclassified as ‘Wavy’ and 8% been misclassified as ‘Slug’. 

This type of misclassification can be easily avoided, by fusing 

the data from the differential pressure measurements, ‘DP’ in 

Fig. 1, since there are significant differences between DP 

measurements during intermittent and relatively stable flow 

conditions.   

By using ECTm data as inputs to DBN and pressure 

measurements, a model free adaptive controller (MFAC) can 
be easily implemented in processes involving multiphase 

flows. In a conventional model based predictive control (MPC) 

the functioning of the MPC heavily relies on the accuracy of 

the model and control algorithms. In fact, in many 

applications, due to the substantial number of parameters 

involved in multiphase flow-based process, designing an MPC 

to tackle all flow conditions is a big challenge. In comparison, 

Fig. 11 presents the configuration of a MFAC based on DBN, 

which doesn’t require any dedicated model. By changing the 

strategy from MPC to MFAC control or to a workable blend 

of MPC and MFAC, the process engineer will have an 

increased advantage in preventing hazards.  

 

Fig. 11. Flow chart of FBC controller design scenario based 

on a signal plane ECT sensor based on some machine-

learning algorithms. 

5.2 Flow regime identification and control of FBC  

Using variations in ECT image pixel data, a stack of 3D 

images of bubbles is reconstructed using, time series from both 

sensor planes in a twin plane ECT-module. From these 

reconstructed 3D images, the difference between various flow 

regimes can be observed and identified with good accuracy. 

This is a method based on image processing.  

The bubble velocity and bubble frequency are estimated using 

the CVR data from both ECT sensor planes. From the results 

based on this method, we find that this method can be applied 

to identify bubble characteristics and bubble coalescence 

numerically.  Further, using a stack-SVM, the main fluidizing 

flow regimes can be identified through clustering the pattern 

from the averaged volume ratio from both sensor planes. The 

stack-SVM classification / identification results can deliver a 

unique output, such as a single number (index), e.g.  '1' for 

bubbling, '2' for slugging, and so on.  Therefore, the stacked 

SVM method has the potential for applications in real time 

control of processes involving FBC.  

These results give useful information in identifying bubble 

velocity, frequency, location, coalescence and fluidization and 

flow regime identification.  Thus, we suggest an automatic in-

line real time control strategy of processes involving FBC 

based on these machine-learning methods as illustrated in Fig. 

12.   

 

Fig. 12. Flow chart of an FBC controller design scenario 

based on ECT sensor based on some machine-learning 

algorithms. 

Fig. 13 shows a scenario of using the ECT data by fusing them 

with conventional sensor data usually available in the process 

industries. The system architecture suggested in Fig. 13 has 
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been realized in conjunction with the two processes described 

in this paper. A cross-platform application involving 

LabVIEW and DELTA V has been also realized for robotic 

applications. Just for illustrations, MATRIKON OPC server is 

selected for this application. 

 

Fig. 13. Flow chart of a MFAC with the main components - 

design scenario based on ECT sensor and other sensors, 

Courtesy, Aleksander Tokle Poverud, USN. A scenario 

relevant to the process industries. ECT-Electrical Capacitance 

Tomograph, PT-Pressure Transmitter, FT- Flow Transmitter 

etc. Python is increasingly used in the process industries for 

some of the tasks listed here.  

 

6. CONCLUSIONS 

The pilot scale multiphase flow rig and the fluidised bed 

column have been used as typical examples of using data from 

ECT modules for identifying flow regimes and using these 

data in detecting operational hazards. With the ever-increasing 
use of cloud services for computing and developments in near 

sensor signal processing techniques, these methodologies open 

a machine learning approach to MFAC using raw data from 

the sensors used in the process and data from process 

tomographic modules.  As shown in Fig. 12, these routines can 

be integrated in the already existing systems used for process 

measurements and control. 

The approach presented here using MFAC falls under the class 

of “black-box models”, used in complex non-linear process 

modeling and can be enhanced by explainable machine 

learning approaches involving “gray box models”, with inputs 

from well proved models, at least partly describing the process. 
In an earlier work, ECT data have been used to enhance the 

CFD modeling of three phase flow, Pradeep et al, 2012b. The 

approach presented here is easy to use, and the necessary codes 

can be adapted quickly with the swift updating of the codes to 

address newly found features.  

This paper presents the possibility of using process 

tomography for MFAC, based on some publications of its 

authors in the tomographic literature. There are already 

elements of the strategies discussed here used in predictive 

maintenance. 
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