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Abstract: This paper presents a predictive controller whose model is based on input-output
data of the nonlinear system to be controlled. It uses a Lipschitz interpolation technique in
which new data may be included in the database in real time, so the controller improves the
system model online. An exploration and exploitation policy is proposed, allowing the controller
to robustly and cautiously steer the system to the best reachable reference, even if the model
lacks data in such region. The conditions needed to ensure recursive feasibility in the presence
of output and input constraints and in spite of the uncertainties are given. The results are
illustrated in a simulated case study.
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1. INTRODUCTION

In the light of growing successes of machine learning
algorithms, data-based control techniques have become
increasingly popular in the control community in recent
years. Models based on data have proven to be able to
emulate the system behaviour well (Aswani et al., 2013),
and thus they come especially handy when accurate first-
principles models of the system are not available. In these
cases, a machine learning technique is used to learn and
to predict the evolution of the plant. Such techniques
may handle data in a deterministic or stochastic way,
e.g., Lipschitz interpolation (Canale et al., 2014) for the
former and Gaussian processes (Akametalu et al., 2014;
Berkenkamp and Schoellig, 2015) for the latter. These
approaches have been applied in different model predictive
controllers (MPC), as reviewed in Hewing et al. (2019).

When controlling a system, taking into account new infor-
mation from the operation of such system seems to be the
order of the day within the control research community.
It also seems intuitive that the current trajectories of the
closed-loop system could be considered in order to improve
the controller. With respect to these approaches, one may
come across terms such as online or learning. While being a
popular topic in reinforcement learning (RL) (Mnih et al.,
2015; Lillicrap et al., 2015) and adaptive control (Adetola
et al., 2009; Tanaskovic et al., 2019) , the matter of online
learning still seems to be somewhat under-researched in
data-based model-predictive control (Di Cairano et al.,
2013; Ostafew et al., 2014).

These many papers could be classified according to the use
they make of new data, like improving an initial feasible
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solution in an optimization problem (Schwenkel et al.,
2018), designing safety filters (Wabersich and Zeilinger,
2018), or improving a whole model of the system (Hewing
et al., 2018). They could also be classified regarding this
model of the system, ranging from linear models (Lorenzen
et al., 2019) to data-based models.

This paper is based on the knowledge of a data set of
past inputs and outputs trajectories of the plant, and uses
a Lipschitz interpolation technique for the model, which
has interesting properties suitable for data-based MPCs.
If the data set is dense enough to guarantee a bound on
the prediction error sufficiently small, robust MPCs can
be designed (Manzano et al., 2019b, 2020). Besides, if the
prediction model is updated online, the performance of the
controlled system may be enhanced (Limon et al., 2017).

In this paper, a learning MPC is proposed to deal with the
case of low-dense data sets. To this end, an exploration
policy is developed, which yields a cautious estimation of
the system by bounding the prediction error to the robust-
ness margin permitted by the controller. An exploitation
methodology regulates the inclusion of new data points,
preventing the data set from growing excessively.

Based on these techniques, a predictive controller for
tracking (Limon et al., 2018) is proposed. It will be able
to robustly steer the system to changing references, safely
exploring regions which lack data, while satisfying hard
constraints in both inputs and outputs and maintaining
stability and recursive feasibility.

Notation: i ∈ Iba stands for the set of integers i = a, . . . , b.
The Minkowski sum of two sets A,B is denoted A ⊕ B
and the Pontryagin difference A 	 B. Given two column
vectors v, w, (v, w) stands for [vT , wT ]T . A ball of radius
r is denoted B(r) = {x : ‖x‖ ≤ r}. A function α(·) is a
K-function if it is strictly increasing a α(0) = 0. Besides,
if it is not upper bounded, it is called a K∞-function.
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2. PROBLEM SETTING

The objective of the paper is to control a discrete time
system whose model is unknown. Only inputs u(k) ∈ Rnu

and outputs y(k) ∈ Rny measurements are available. It is
assumed that such system can be described by a nonlin-
ear auto-regressive exogenous model (NARX) (Levin and
Narendra, 1997), with the form

y(k + 1) = f(x(k), u(k)) + e(k), (1)

where the state can be represented as

x(k) = (y(k), . . . , y(k − na),

u(k − 1), . . . , u(k − nb)) , (2)

for some memory horizons na, nb ∈ N 2 . The noise is
assumed to be bounded, such that |e(k)| ≤ ē. The inputs
are constrained by u(k) ∈ U and the outputs by y(k) ∈ Y,
or, in other words, (y, u) ∈ Z.

As in Manzano et al. (2019b), the terms x(k) and u(k) are
aggregated into a joint variable, called regressor,

w(k) = (x(k), u(k)) ∈ Rnw , (3)

with nw = ny(na + 1) + nu(nb + 1).

Given a data set of previous inputs and outputs

Draw = {(ui, yi) : i = 1, . . . , Nraw},
it is aggregated as stated before, obtaining

D = {(wi, f̃(wi)) : i = 1, . . . , ND}, (4)

where f̃ stands for the noisy observation of f . The data
set containing only reggresors is accordingly named WD.

For a given reggresor (probably not included in WD) it is

possible to predict its output using a function f̂, obtained
with a machine learning technique. That is,

ŷ(k + 1) = f̂(w(k); θ,D), (5)

where θ ∈ Rnθ stands for the (hper-)parameters needed by
the chosen method.

In particular, this paper makes use of a class of Lipschitz
interpolation techniques (Beliakov, 2006) known as kinky
inference (KI) (Calliess, 2014). To this end, the ground-
truth function f is required to be Lipschitz continuous,
with Lipschitz constant L∗, such that

‖f(w1)− f(w2)‖ ≤ L∗‖w1 − w2‖.

In general, this constant L∗ is unknown. However, given
the data set D, one can estimate a lower bound as
follows (Calliess, 2016):

LD = max
(w 6=w′)∈WD

‖f̂(w)− f̂(w′)‖ − η
‖w − w′‖

, (6)

where the regularization term is set to η = 2ē.

Using this constant, KI computes each component j ∈ Iny1
of the future output as:

f̂j(q;LD,D) =
1

2
min
i∈IND

1

(
f̃i,j + LD‖q − wi‖

)
+

1

2
max
i∈IND

1

(
f̃i,j − LD‖q − wi‖

)
. (7)

2 For an analysis on how to estimate the horizons na, nb, please refer
to Manzano et al. (2019a).

This inference method has proven capable of conforming a
valid model to be used for prediction in a MPC framework
with robust stability guarantees (Manzano et al., 2020).

The estimation error between the predictor and the real
function is denoted d(k), and its maximum value µ:

‖f(x(k), u(k))− f̂(x(k), u(k))‖ = d(k) ≤ µ. (8)

Note that the data-based model (7) can be extended to
state space provided that

x̂(j + 1|k) = F̂ (x̂(j|k), u(k + j);LD,D) (9)

ŷ(j|k) =Mx̂(j|k), (10)

where M = [Iny , 0, . . . , 0] and

F̂ (x̂(j|k), u(k + j)) = (̂f(x̂(j|k), u(k + j)),

ŷ(j|k), · · · , y(k), · · · ,
y(k + j − na + 1), u(k + j),

· · · , u(k + j − nb + 1)).

3. EXPLORATION-EXPLOITATION
METHODOLOGY

When designing online learning methods, a trade-off be-
tween exploration and exploitation comes up. We use the
term exploration to measure how far from the known work-
space the system is allowed to move. By exploitation we
address the fact that obtaining a large data set may not
be the best strategy to follow, computationally speaking.
The kinky inference technique presented in the previous
section is especially suitable for online learning:

3.1 Exploration

The objective is the design of predictive controllers able
to control the system in regions with low data density. In
such areas the prediction error increases rapidly, probably
exceeding the robustness bound that the controller can
afford.

This problem can be tamed considering an exploration
technique in which the control strategy forces the system
to stay close to a safe region, where we have enough
information to guarantee a worst case upper bound of the
prediction error. This safe region is defined as

Wr =
{
w : min(‖w − wi‖) ≤ τr, ∀i ∈ IND

1

}
, (11)

for certain threshold τr ≥ 0.

The following property 3 allows the method to relate the
exploration distance τr with the estimation error bound.
Property 1. The prediction error µ is bounded by

µ = L∗τr + 2ē. (12)

Note that this bound is based on the true Lipschitz
constant L∗, which in general is unknown. In this work we
assume that this constant is known, equal to the estimated
constant LD.
Assumption 1. LD = L∗.
3 The proof is omitted in this version, due to the limited number of
pages
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(a) Initial data set
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(b) Initial safe region
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(c) New data points
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(d) Non-informative region
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(e) Updated data set
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(f) Data set after 25 iterations

Fig. 1. Exploration-exploitation algorithm

The veracity of Assumption 1 depends on the density of
the data set, and it conditions the validity of the results
presented in this paper. Previous works on the estimation
of the Lipschitz constant (Calliess, 2015) provide a Pareto
probability distribution on the Bayesian estimation of
L∗. Besides, if the probability of an underestimation is
bounded by ρ, i.e., Pr(L∗ > LD) ≤ ρ, the applicability of
this paper is extended to a confidence level (1− ρ).

3.2 Exploitation

It has been proven that the prediction error d(k) vanishes
when the density of the data set becomes infinite (Cal-
liess, 2016). In practice, adding data points to the model
increases computation times, and hence, it may not be the
ideal procedure to include every new data point observed.
Instead, in this work we propose to implement an exploita-
tion policy, adding only informative data points, that is,
those that are not close to data points already seen.

We characterize the term close by another threshold of the
distance, such that a new data point q is not informative
if it belongs to the well-known region, defined as

Wt =
{
w : min(‖w − wi‖) ≤ τt, ∀i ∈ IND

1

}
, (13)

for certain threshold 0 ≤ τt ≤ τr.

This threshold hyperparameter has to be appropriately
chosen, according to the information added by the inclu-
sion of q in D. Kingravi (2014) studied the dependence
of new data points w.r.t. the data stored in D, in the
context of Gaussian processes for learning-based control.
A procedure to prune uninformative sample points given
a Lipschitz constant estimation is given in Calliess (2014).

An example of the exploration-exploitation algorithm for
a two-dimensional input space is shown in Figure 1. In this
figure, an initial data set is considered with ND = 3. New
data points are drown randomly within the safe regionWr,
but only added if they do not belong to Wt, with τr = 0.1

and τt = 0.05. Besides, the 2-norm was chosen as metric:
‖q − w‖2. After 25 iterations ND = 68.

The data set is updated every time step, denoting D(k) the
data set at time instant k, and D(0) the initial one. Note
that the safe and the well-known regions are also time-
dependent (i.e.,Wr(k),Wt(k)). This update policy is such
that

D(k + 1) =

{
D(k) if w(k) ∈ Wt(k)

D(k) ∪ (y(k + 1), w(k)) if w(k) /∈ Wt(k).

(14)
The same occurs with the estimation of the Lipschitz con-
stant. The recalculation of LD(k) is done recursively (Cal-
liess, 2016) as per (6). It can be proven that this estimation
tends to the real L∗ when the data set becomes infinitely
dense. Computationally, this recursion is linear w.r.t. the
cardinality of the data set, O(ND), in contrast to other
existing methods (such as Gaussian processes, which are
quadratic, O(N2

D)).

Notice that from the computation point of view, the
exploration-exploitation algorithms barely increase the
calculation times. It is not necessary to calculate a closed-
form of the sets Wr(k) and Wt(k). Instead, it is only
necessary to check whether a given query point q belongs
to them. This is carried out evaluating the minimum
distance to the data set WD; that is,

q ∈
{
Wt

Wr
iff min ‖q − wi‖ ≤

{
τt
τr

, ∀i ∈ IND
1 .

It is also important to remark that these distances ‖q−wi‖
are used to make predictions for that regressor (cf. eq. (7)),
so they are already obtained in the prediction step.

4. ONLINE-LEARNING CONTROLLER

In this section, a predictive controller that makes use of
the data-based prediction model (5) and the exploration-
exploitation approach of Section 3 is presented. In order
to be able to follow references (possibly outside of the
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initial data set), we propose to use a robust MPC for track-
ing (Limon et al., 2018) that takes into account explicitly
at each time step the current safe region to guarantee
a given uncertainty bound on the predictions. MPC for
tracking is designed to guarantee stability in the presence
of sudden reference changes, even if they are not reachable,
which may be the case in the exploration scenario.

To this end, the MPC optimization problem considers an
artificial reference (us, ys) as additional decision variables.
The deviation of the system to this reference is penalised
along the prediction horizon, by means of a stage cost of
the form `(y− ys, u− us). A term VO(ys − yt) is added to
the cost function, in order to penalise the deviation of the
artificial reference to the true reference (ut, yt).

Therefore, we propose the following controller, capable of
exploring unseen regions, by forcing the system to stay in
the explored area Wr. Combined with the exploitation al-
gorithm of adding data points only if q /∈ Wt, one can step
by step move onto unexplored areas, while maintaining a
prediction error bound suitable to ensure robust stability.
The resulting optimization problem PN is:

min
u,ys,us

VN (x(k),u, us, ys; yt)

=

N−1∑
i=0

`(ŷ(i|k), u(i); ys, us)

+VO(ys − yt) (15a)

s.t. x̂(0|k) = x(k) (15b)

x̂(j + 1|k) = F̂ (x̂(j|k), u(j)), j ∈ IN−10 (15c)

ŷ(j|k) = Mx̂(j|k) (15d)

u(j) ∈ U (15e)

ŷ(j|k) ∈ Yj , j ∈ IN1 (15f)

us ∈ λU (15g)

ys = f̂(xs, us) (15h)

ys ∈ YN (15i)

ŷ(N |k) = ys (15j)

ŵ(j|k) ∈ Wr(k), j ∈ IN1 (15k)

ws ∈ Wr(k), (15`)

where xs = (ys, . . . , ys, us, . . . , us), ws = (xs, us), x̂(j|k)
stands for the predicted state at time step j given the
measurements at time step k, ŵ(j|k) is defined as in (3)
and λ / 1 is a design parameter.

Note that a terminal equality constraint is included.
Besides, a set of tightened constraints Yj is consid-
ered (Limon et al., 2002). They are defined as

Yj = Y 	 B(dj(µ)), (16)

where dj is a function of µ that can be calculated as
in Manzano et al. (2020).

The set of tightened constraints counteracts the effect
of the error between the real plant and the data-based
model(which is bounded by µ) on the constraints. Hence,
this set must not be empty for any j ∈ IN1 . This is stated
as an assumption in Manzano et al. (2020), conditioning
the feasibility of the controller.

In the proposed approach, the bound in the prediction
error within the safe regions is a design parameter (see
Property 1). This implies that in general, τr is chosen so
that YN is not empty, which is an important property from
the implementation point of view. If the error bound for
the whole state space were considered, it could be too large
to obtain non empty tightened constraints.

Given the procedure to calculate such sets (Manzano et al.,
2020), and the definition of µ in (12), the maximum
admissible value of the exploration radius τmax

r can be
explicitly obtained, provided that Assumption 1 holds.

4.1 Stability analysis

The ingredients of the optimization problem are required
to satisfy the following assumption:
Assumption 2. (1) The stage cost function `(y, u; ys, us)

is a positive definite function and `(y, u) ≤ αy(‖y −
ys‖) + αu(‖u− us‖), for two K-functions αy, αu.

(2) The offset cost function VO(ys − yt) is a subdifferen-
tiable convex positive definite function such that the
best reachable reference

y0s = arg min
ys∈YN

VO(ys − yt)

is unique; and

VO(ys − yt)− VO(y0s − yt) ≥ αO(|ys − y0s |),
for a given K∞-function αO.

Define Ys as a convex set of reachable equilibrium points,

Ys ⊆ {y : ∃us ∈ λU : f̂(xs, us) = ys}, (17)

then the following assumptions are needed to derive the
recursive feasibility of the optimization problem.
Assumption 3. YN−1 ⊆ Ys.
Assumption 4. For all x such that y ∈ YN−1 there exists

a continuous uF = κF (y) ∈ U such that f̂(x, uF ) ∈ YN .
Theorem 1. Suppose that Assumptions 1-4 hold for the
optimization problem PN . Let κN (x) be the control law
derived from the solution of PN applied using a receding
horizon policy. Then, for any x(0) ∈ Z, the system
controlled by the control law u(k) = κN (x(k)) is recursively
feasible, stable, and the constraints are always satisfied, i.e.
u(k) ∈ U , y(k) ∈ Y, ∀k. 3

Corollary 1 (Convergence). In case that the prediction
error of the model (µ(k)) tends to 0, the system converges
to the best reachable reference y0s . 3

Remark 1. Note that the online algorithm presented
here decreases the prediction error while operating the
system. However, even in the absence of the exploitation
policy (i.e. τt = 0) and infinitely dense data sets, the
maximum prediction error µ vanishes up to the level of
noise (Calliess, 2016).

5. CASE STUDY

The continuously stirred tank reactor (CSTR) presented
in Seborg et al. (1989) is considered. The manipulable
input is the reference temperature of the coolant Tr (K).
The measurable output is the concentration of the reac-
tant CA (mol/l), which evolves according to the set of
differential equations given in Manzano et al. (2019b) (as
well as the parameters). It is assumed that the concentra-
tion measurements have an error of 2% of the signal, which
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Fig. 2. Comparison between the offline and online MPCs

is generated randomly using an uniform distribution. The
constraints in the input are 300 K ≤ Tr ≤ 400 K, and in
the output 0 ≤ CA ≤ 0.88 mol/l.

5.1 Online learning

We first consider a case in which, at the beginning of
the simulation, very few data points are known, just 300
corresponding to some equilibrium points of the system.
The regressors are constructed for such data set, with
na = 2 and nb = 0. The estimation of LD(0) is 1.62.

To motivate the online inclusion of data points while
operating the system, we apply the proposed MPC (15),
with 15 references varying randomly among 340 K ≤ Tr ≤
360 K, each of them maintained for 20 s. The controller’s
parameters are set to N = 3, Q = 10, R = 1 and
O = 100. The exploration-exploitation is not considered
in this example, i.e., τr =∞ and τt ' 0.

We compare two controllers subject to the same random
noise, with and without the online updating policy, for 100
simulations. The results are represented in Figure 2. The
behaviour is measured by the performance index, defined
as

Φ =

tsim∑
i=1

`(y(i), u(i), ys(i), us(i)) + VO(ys(i)− yt(i)). (18)

The results show that the proposed controller is able to
follow the reference better than a controller that does not
update the data set, incurring into a smaller cost.

5.2 Exploring

Consider that this same CSTR has historically been op-
erated within the region comprised by 335 ≤ Tr ≤ 370 K.

Fig. 3. Input-output space showing the constraints Z, the
initial data set D(0), and the references (ut, yt).

Therefore, a large data set within this region is available,
as shown in Figure 3. Picture that the owners consider
operating the tank in other temperatures, where nothing
is known of how the system behaves.

The initial data set yields LD(0) = 1.62. Assuming this
as the true Lipschitz constant, and setting N = 2, the
maximum exploration radius such that YN is not empty
is τmax

r = 0.10 4 , provided that ē = 0.02 mol/l. The
proposed controller (15) is applied, with two piece-wise
constant references: yt = 0.14 mol/l and 0.93 mol/l, each
of them lasting 2 min. Note that both references are in
the unexplored area (Fig. 3). Besides, the second one is
not even admissible. The radius for exploitation is set to
τt = 0.002, and for exploration τr = 0.6τmax

r , to mitigate
the possible effect of the underestimation of L∗.

The result of the simulation is shown in Figure 4. Note how
the data set is increased with the points visited throughout
the operation. Observe also the trajectory of the optimal
artificial reference and its convergence to the best reach-
able steady state. The closed-loop system reaches the real
reference, even if it was not reachable in the beginning. In
the second part, the robust MPC prevents the closed-loop
system from violating the constraints, by means of the set
of tightened constraints, while steering the system to the
closest reachable state.

Without the exploration-exploitation algorithm presented
in this paper, the closed-loop system would fail to converge
to the given reference. On the other hand, if no restriction
is added on how far from known data points the system
can go, the prediction error increases immensely, being
unable to properly forecast the evolution of the plant and
therefore to fulfill the constraints.
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