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Abstract: This work addresses the problem of gait generation in underactuated compass-like biped
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or damping control action. Numerical case studies, comparisons, and critical discussions evaluate the
performance of the proposed approaches.
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1. INTRODUCTION

A passive walker is a biped robot that exhibits a free and
stable gait walking down a moderate slope under the effect of
the gravitational field only. Its motion is referred to as passive
dynamic walking and its gait as passive gait. The pioneering
study of McGeer (1990) shows that such a particular kind of
walking behavior occurs if the mechanical energy of the robot
is constant during every single step. This is true due to the dissi-
pation of the kinetic energy and the subsequent potential energy
restoration supposing perfectly inelastic impacts between the
biped’s foot and the ground.

The focus on passive dynamic walking is mainly due to some
physical similarities with the human walking and its energy
efficiency. A particular kind of passive walker, the compass-like
biped robot (CBR), synthesizes such a connection. The CBR,
despite the simplest robotic kinematic structure compared to
a human-like walking behavior, exhibits very complicated dy-
namics due to the hybrid nature of the system, as investigated
by Goswami et al. (1996). A suitable way to control such kind
of robot, exploiting its natural passive motion, is to adopt a
passivity-based approach. Starting from a Lagrangian model-
ing framework, Spong and Bullo (2002) made the biped’s gait
invariant to slope changes via a potential energy shaping con-
trol based on the controlled-Lagrangian (CL) framework. The
regulation of the biped’s forward walking speed was achieved
by Spong et al. (2007) with a potential energy shaping control
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too, successively extended with a total energy shaping approach
with the goal to make the gait more robust over uncertainties on
the initial conditions. A fully actuated biped robot model was
considered by Spong and Bullo (2002) and Spong et al. (2007),
while an underactuated compass-like biped robot (UCBR) was
considered by Holm and Spong (2008), showing the effective-
ness of a kinetic energy shaping approach to generate new
gaits. These last were characterized by quick and long steps
with satisfying robustness to uncertainties on the initial condi-
tions. On the other hand, a gait with slow and short steps was
obtained by De-León-Gómez et al. (2017) applying a control
strategy based on the interconnection and damping assignment
passivity-based control (IDA-PBC), rooted within the port-
Hamiltonian (pH) framework and introduced by Ortega et al.
(2001) and Ortega et al. (2002b). Arpenti et al. (2020) proposed
a further IDA-PBC approach to generate both quick and long
steps as well as slows and short ones.

The previous energy-based control methods define the closed-
loop system, called the target system, in terms of the desired
closed-loop energy function, interconnection, and dissipation
structure. The pairing between the open-loop and the closed-
loop system results in the so-called matching equations (MEs),
which are partial differential equations (PDEs). The control
input must satisfy the PDEs, which are the main bottleneck of
these methodologies. Donaire et al. (2016) and Crasta et al.
(2015) provide a survey review about solving the MEs. The
IDA-PBC methodology, as shown by Ortega et al. (2002a),
is carried out in two steps. The first one shapes the closed-
loop energy, assigns the equilibrium point of the closed-loop
system, and defines a possible new interconnection structure.
The second step adds damping to ensure asymptotic stability.
Some systems, as the induction machine, can not be solved
using the two steps methodology of the IDA-PBC, requiring
the simultaneous solution of the two steps methodology, as first
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done by Batlle et al. (2009). This results in the method called
simultaneous IDA-PBC (SIDA-PBC).

As seen in the first part of this introduction, the restoration of
mechanical energy is possible thanks to the (impulsive) dissi-
pation, playing a leading role in such a physical phenomenon.
Therefore, it seems natural to include dissipative forces in-
side the control action, aiming at creating new gaits. Donaire
et al. (2016) extended the results of the SIDA-PBC method
applied by Batlle et al. (2009) by introducing dissipative forces.
They showed that several controllers for mechanical systems,
designed without satisfying the two steps procedure of the
standard IDA-PBC, fall under this new class of SIDA-PBC.
Another control methodology which exploits dissipative forces
is the energy pumping-and-damping control (EPD), which re-
sults in a slight modification of the standard damping injection
term of the IDA-PBC. Such an EPD methodology was firstly
introduced by Astrom et al. (2008) to stabilize an equilibrium
point of a mechanical system, and by Yi et al. (2020) to generate
stable orbits.

The main novelties of this work are twofold: the application
of the SIDA-PBC with dissipative forces and the application
of the EPD control to generate gaits in a UCBR. To the best
of the authors’ knowledge, these methodologies were never
used to such a purpose. Besides, a particularization of the EPD
methodology, which will be referred to as energy pumping or
damping (EPOD) control, is also introduced in this paper as a
further novelty to highlight the usefulness of dissipative forces
for the generation of new UCBR gaits.

The organization of the paper is as follows. Section 2 presents
a brief review of the SIDA-PBC methodology, the IDA-PBC
with the pumping-and-damping term, and the EPOD control.
Section 3 introduces the UCBR dynamic model. In Section 4,
the design of the proposed controllers is carried out. Section 5
presents the obtained numerical results with a comparison and a
critical analysis. Finally, Section 6 presents the conclusion and
future work.

2. CONTROLLERS BACKGROUND

In this section, a brief review of the SIDA-PBC method using
dissipative forces, the EPD control, and the EPOD control are
presented.

2.1 SIDA-PBC

In this controller, the target system remains a mechanical sys-
tem, while the control law modifies i) the closed-loop inertia
matrix that defines the kinetic energy; ii) the potential energy;
iii) the interconnection and dissipation structure. Among other
advantages as the physical interpretation of the closed-loop
system, it allows the solution of the MEs algebraically. The
reader must refer to Donaire et al. (2016) for further details
about this methodology.

Consider the following open-loop pH system[
q̇
ṗ

]
=

[
0n×n In×n
−In×n 0n×n

]
∇H +

[
0n×m
G(q)

]
u, (1)

where q, p ∈ Rn are the generalised position and momenta,
respectively, while the matrix G(q) ∈Rn×m weights the control
inputs u ∈ Rm. If m is equal to n, then the system is called

fully-actuated, whereas m < n it is called under-actuated. The
function H : Rn×Rn→ R

H(q, p) =
1
2

pT M−1(q)p+V (q), (2)

is the total energy with M ∈ Rn×n the symmetric and positive
definite inertia matrix, V : Rn → R the potential energy, and
∇H stands for the gradient vector, i.e. ∇H = [∇qH ∇pH]

T
=

[∂H/∂q ∂H/∂ p]T .

Consider the target closed-loop system defined as[
q̇
ṗ

]
=

[
0n×n M−1Md

−MdM−1 0n×n

]
∇Hd +

[
0

C(q, p)

]
, (3)

where the function Hd : Rn×Rn→ R, defined as

Hd(q, p) =
1
2

pT M−1
d (q)p+Vd(q), (4)

is the desired total energy, with Md ∈ Rn×n the symmetric and
positive definite desired inertia matrix, Vd : Rn→R the desired
potential energy, and C :Rn×Rn→Rn a mapping to be defined.
The dependency on q in M, Md , V , Vd , G and C is omitted to
shorten the notation.

The ME resulting from equating (1) and (3) is

− 1
2

∇q
(

pT M−1 p
)
−∇V +Gu =

MdM−1
[

1
2

∇q
(

pT M−1
d p

)
+∇Vd

]
+C. (5)

If G(q) is full rank, both terms of (5) can be multiplied by the
left annihilator of G(q), noted as G(q)⊥, i.e. G(q)⊥G(q) = 0,
to obtain the following u-independent PDE

G⊥
[

1
2

∇q
(

pT M−1 p
)
+∇V

]
−G⊥

[
MdM−1

[
1
2

∇q
(

pT M−1
d p

)
+∇Vd

]
+C

]
= 0. (6)

As proposed by Ortega et al. (2002a), the PDE (6) can be split
into the following p-independent equation

G⊥
(
∇V −MdM−1

∇Vd
)
= 0, (7)

that is the so-called potential energy PDE (PE-PDE) (7), and
into the following p-dependent equation

G⊥
(
∇q

(
pT M−1 p

)
−MdM−1

∇q
(

pT M−1
d p

)
+2C

)
= 0, (8)

that is the so-called kinetic energy PDE (KE-PDE) (8). Since
C(q,0) = 0n, the related mapping can be expressed as

C(q, p) = Λ(q, p)M−1
d p (9)

for a matrix Λ(q, p) ∈ Rn×n defined as

Λ :=
[

Λ11 Λ12
Λ21 Λ22

]
, (10)

with Λi j some matrices of suitable dimensions. The mapping
C(q, p) must be quadratic in p and thus, without loss of gener-
ality, it can be written as

2C(q, p) =
n

∑
i=1

(
pT M−1

d QiM−1
d p

)
ei, (11)

with Qi ∈ Rn×n free matrices to be chosen and ei ∈ Rn the
Euclidean basis vector.

Therefore, the desired closed-loop dynamics can be written as[
q̇
ṗ

]
=

[
0n×n M−1Md

−MdM−1 Λ(q, p)

]
∇Hd . (12)
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A necessary condition for stability of the equilibrium point
of the closed-loop system is pT M−1

d Λ(q, p)M−1
d p ≤ 0. Notice

that this condition can be relaxed in this work since the main
objective is not the regulation of the equilibrium point, but the
gait generation. Once the MEs (7) and (8) are solved, then the
control input can be algebraically computed as

u =
(
GT G

)−1
GT [

∇qH−MdM−1
∇qHd +ΛM−1

d p
]
. (13)

Notice that the dissipative forces in the controller are repre-
sented by the mapping C, as indicated by Donaire et al. (2016).

2.2 EPD control

Contrarily to the SIDA-PBC, within the IDA-PBC there exist
two distinctive control actions, carried out separately in two
consecutive steps. The former control action, ues, is the so-
called energy-shaping that shapes the closed-loop energy, as-
signs the desired equilibrium point of the closed-loop system,
and defines a possible new interconnection structure. Such a
control action results from the solution of (7) and (8) with
the particular choice of C = J2M−1

d p, where J2 ∈ Rn×n is
a skew symmetric matrix. The latter control action, udi, is
the so-called damping-injection that adds damping to the ac-
tuated coordinates to ensure asymptotic stability, i.e. udi =
−KdGT (q)∇pHd(q, p), where Kd ∈ Rm×m is a positive semi-
definite damping matrix to be tuned. The reader must refer to
Ortega et al. (2002a) for a detailed description of the IDA-PBC
regarding under-actuated mechanical systems, and the proper-
ties of the closed-loop system.

If the energy-shaping stage is ignored, i.e. Hd(q, p) = H(q, p)
and J2 = 0, the IDA-PBC reduces to a controller which only
dissipates the initial energy of the system. Then, the resulting
control law comes out to be

u =−KdGT (q)∇pH(q, p) =−KdGT (q)M−1(q)p, (14)
while the closed-loop system (1) becomes[

q̇
ṗ

]
=

[
0n×n In×n
−In×n Rd

]
∇H, (15)

with Rd = −G(q)KdGT (q), which asymptotically converges
to its natural equilibrium, given that the passive output is
detectable. Ortega et al. (2002b) and Van Der Schaft (2017)
give additional insights about these aspects.
Remark. Because the main objective of the controller is the
gait generation, and not the asymptotic stabilization of an
equilibrium point, the classical dissipation condition Rd ≤ 0
can be relaxed. This implies that, in some regions of the state
space, the Rd matrix is positive definite while, in other regions,
it is negative definite. The same methodology was proposed
by Astrom et al. (2008) to stabilize a pendulum in its upright
position. Thanks to this modification, it is possible to refer to
this controller as an EPD.

The modification of the term (14) in an EPD controller leads to
a control law upd with the following structure

upd = Kd f (q)GT (q)M−1(q)p, (16)
with f (q) : Rn→ R a suitable function such as

f (q) =
{

f1(q)> 0 if q ∈ S
f2(q)≤ 0 if q ∈ Rn−S

(17)

where S ⊂ Rn. Through such a control law, the time derivative
of the total energy H(q, p) becomes

Ḣ(q, p) = pT M−1(q)G(q)Kd f (q)GT (q)M−1(q)p, (18)

q

Ψ

1

Hm

mm

a

b
l

g

q
2

Fig. 1. Idealized physical system of the CBR.

whose sign changes accordingly with the sign of the function
f (q). The upd term, when f (q) is such that Ḣ(q, p) ≤ 0, is a
dissipative force.

2.3 EPOD control

The control methodology presented in the previous section can
be slightly modified by designing a function f (q) which is
always positive. Albeit such a choice does not lead to an EPD
controller, it brings to a control law that is different from the
standard damping injection term of the IDA-PBC because of the
dependency on the generalised coordinate vector introduced by
f (q). It is indeed equivalent to an energy damping controller,
dissipating energy for Kd < 0. On the other hand, it reduces
to an energy pumping controller for Kd > 0. The upod term
assumes the role of a dissipative force for Kd < 0.

3. UCBR DYNAMIC MODEL

The CBR is a passive and planar walker exhibiting a stable
symmetric gait under the gravity action only. Given a certain
ground slope angle, ψ > 0, this is true whether both some
geometric conditions are satisfied and the initial conditions are
within the basin of attraction of the limit cycle representing the
stable symmetric gait in the phase plane.

The idealized physical system of the CBR is shown in Fig. 1.
The hip connects the two legs. For each step, the leg touching
the ground is referred to as a support leg, while the swinging
one is referred to as a nonsupport leg. The legs define two
angles respect to the vertical gravity axis, called support and
nonsupport angles, respectively. These two angles are referred
to as q1 and q2, respectively, along with their velocities q̇1 and
q̇2. The two angles and the related time-derivatives form the
state space of the CBR. Despite the CBR is originally consid-
ered a fully actuated system, an UCBR is instead addressed in
this work, following the approach pursued by Holm and Spong
(2008) who put in the ankle of the support leg the primary
actuation source relying on bio-mechanic arguments. The math-
ematical model describes the swing phase, that is the motion of
the nonsupport leg before the impact with the ground. At each
impact, the support and nonsupport legs are swapped.
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Defining with q = [q1 q2]
T ∈ R2 the vector of generalised

coordinates, the inertia matrix of the UCBR is

(19)M(q) =
[

m11 m12 cos(q1 − q2)
m12 cos(q1 − q2) m22

]
=

[
(mH + m)l2 + ma2 −mlbcos(q1 − q2)
−mlbcos(q1 − q2) mb2

]
,

with mH > 0 the hip mass, m > 0 the leg mass, a > 0 the
distance between the foot and the leg mass, b > 0 the distance
between the leg mass and the hip mass, and l = a + b. The
UCBR has a potential energy

V (q) = (m(a+ l)+mH l)gcos(q1)−mbgcos(q2), (20)
where g > 0 is the gravity acceleration. The pH mathematical
model of the UCBR is thus defined as in (1), (2) with G(q) =
G = [1 0]T , inertia matrix (19), and potential energy (20). The
swing phase is followed by the impact which occurs when

yh(q) = l[cos(q1 +ψ)− cos(q2 +ψ)] = 0
ẏh(q) = l[sin(q2 +ψ)q̇2− sin(q1 +ψ)q̇1]< 0

(21)

where yh ∈ R is the distance between the nonsupport leg’s foot
and the ground. An instantaneous change in the angular veloci-
ties is caused by the impact. With the assumption of a perfectly
inelastic and non slipping contact between the nonsupport leg’s
foot and the ground, as well as an instantaneous transfer from
supporting to nonsupporting one (no double-support phase ad-
mitted), such a change is described by the following equation

q̇(t+) = P(q(t−))q̇(t−), (22)

where q̇ = [q̇1 q̇2]
T is the velocity vector, while t− and t+

are the time instants just before and just after the impact,
respectively. The matrix P(q(t−)) ∈ R2×2, which is derived
applying the law of conservation of angular momentum, has
the following expression

P(q(t−)) =
[

p+11 p+12
p+21 p+22

]−1 [p−11 p−12
p−21 p−22

]
, (23)

with p+11 =ml(l−bcos(q−1 −q−2 ))+ma2+mH l2, p+12 =mb(b−
l cos(q−1 −q−2 )), p+21 =−mbl(cos(q−1 −q−2 )), p+22 =mb2, p−11 =

−mab + (mH l2 + 2mal)cos(q−1 −q−2 ), p−12 = p−21 = −mab,
p−22 = 0. The reader can refer to the work of Goswami et al.
(1996) for further details. Hence, the fully hybrid behavior of
the UCBR is given by the composition of the swing and the im-
pact phases. It is worth clarifying that it is not possible to phys-
ically realize such kind of robot due to the scuffing between the
nonsupport leg’s foot and the ground. Foot scuffing is avoided,
in real prototypes, through specific mechanical designs, as, for
instance, the one proposed by Bhounsule et al. (2012), making
the UCBR worth of investigation anyhow. In this paper, foot
scuffing is avoided by ignoring (21) whenever the nonsupport
leg is behind the supporting one, as done by Holm and Spong
(2008).

4. CONTROLLERS DESIGN

This section presents the design of the controllers. In the
SIDA-PBC design subsection, a particular family of solutions is
computed from the related MEs. First, the PE-PDE is solved by
imposing that the closed-loop and the open-loop dependency to
the potential energy with respect to q2 are equal (i.e., ∇q2V =
∇q2Vd). Then, the KE-PDE is solved by fixing the structure
of the Qi matrices. Afterwards, in the EPD control design

subsection, the function f (q) appearing in (16) is computed.
Finally, in the EPOD control design subsection, a change in
such a function f (q) is made.

4.1 SIDA-PBC design

Let

Md(q) =
(

md11(q) md12(q)
md12(q) md22(q)

)
(24)

be the desired inertia matrix and

A := MdM−1 =

[
A11 A12
A21 A22

]
(25)

the product between the desired inertia matrix and the inverse
of the open loop one. Then, the PE-PDE (7) can be re-written
as

G(q)⊥
([

∇q1V
∇q2V

]
−A

[
∇q1Vd
∇q2Vd

])
= 0. (26)

Taking into account that

G⊥(q) =
(

0
1

)
, (27)

the PE-PDE (26) can be expressed as
∇q2V −A21∇q1Vd−A22∇q2Vd = 0. (28)

The PDE (28) is solved choosing A21 = 0 and A22 = 1. Hence,
md22 = m22 and md12 = m12 cos(q1−q2). This implies that
∇q1Vd is left free to be chosen.

In order to solve the KE-PDE, folding (27) into (8) yields
∇q2

(
pT M−1 p

)
−∇q2

(
pT M−1

d p
)
+2C2 = 0. (29)

By fixing the structure of the Q2 matrix as

Q2 :=
[

Q11 Q12
Q12 Q22

]
, (30)

the component Λ22 can be written in terms of q̇1, for simplicity
reasons, and md11 , which is the only free component of the
desired inertia matrix Md(q) so far, as

Λ22 =
m12m22 sin(q1−q2)

(
m11−md11 (q)

)
2m2

12 cos2 (q1−q2)−2m22md11 (q)
q̇1. (31)

Setting Λ12 = Λ21 and Λ11 = Λ22, a family of solutions for
the KE-PDE is obtained through an appropriate selection of
md11 . By fixing the structure of the matrices Q2 and Λ, then the
mapping C(q, p) is completely defined. Therefore, the matrix
Q1 is determined intrinsically. Notice that, due to the switching
conditions (21), the equilibrium point of the closed-loop system
will be never reached if a stable limit cycle is generated. This
implies that the stability condition can be relaxed to generate
gaits.

4.2 EPD control design

Similarly to the considerations made by Holm and Spong
(2008) relying on bio-mechanic arguments, pumping energy at
the beginning of each step while dissipating it at the end

Ḣ(q, p)> 0 for ζ < q1 < π

Ḣ(q, p) = 0 for q1 = ζ

Ḣ(q, p)< 0 for −ζ < q1 < 0
(32)

seems to be an effective way to achieve larger step lengths and
shorter step periods for the generated gait. The other way round

Ḣ(q, p)< 0 for ζ < q1 < π

Ḣ(q, p) = 0 for q1 = ζ

Ḣ(q, p)> 0 for −ζ < q1 < 0
(33)
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leads instead to shorter step lengths and greater step periods
for the generated gait. The introduction of the offset ζ > 0 in
the transition between the pumping regime and the damping
one (and vice-versa) is motivated by the intuition that feeding
energy to the system in a wider region of the phase plane should
lead to a faster gait as, equivalently, subtracting it should take to
a slower one, if compared to a transition in q1 = 0. Therefore,
given (18), the controller upd which realises the sought behavior
in (32) and (33) is

upd = kd sin(q1)GT M−1(q)p, (34)

where the function f (q) = sin(q1) defines the sign of Ḣ(q, p)
once that the gain kd ∈ R is fixed.

4.3 EPOD control design

The choice f (q) = |sin(q1)q1| transforms the control ac-
tion (34) into the following energy pumping or damping con-
troller

upod = kd |sin(q1)q1|GT M−1(q)p. (35)
The control law (35) is equivalent to a damping injection
control law for kd < 0, while it pumps energy for kd > 0 in
the sense that

Ḣ(q, p)< 0 for kd < 0 and ∀ q1
Ḣ(q, p) = 0 for q1 = 0 and ∀ kd
Ḣ(q, p)> 0 for kd > 0 and ∀ q1

(36)

where the time derivative of the total energy, obtained by
substituting f (q) = |sin(q1)q1| into (18), is given by

Ḣ(q, p) = kd |sin(q1)q1|q̇1
2. (37)

5. NUMERICAL EVALUATION

5.1 Overview

In this section, numerical simulations are carried out to evaluate
the performance of the proposed approaches. The simulations
are performed on a standard personal computer, with 16 Gb of
memory, in the MATLAB environment. The dynamic model
of the UCBR (i.e., the pH model of (1) and (2) with inertia
matrix (19) and potential energy (20)) is numerically simulated
through the ODE45 routine of MATLAB with the event detec-
tion option active to evaluate the leg-ground hit. The designed
controller is implemented at a discrete-time step of 0.01 s,
while the simulations last 40 s.The employed parameters for the
UCBR system are the same used by Holm and Spong (2008):
mH = 10 kg, m = 5 kg, a = 0.5 m, b = 0.5 m, g = 9.8 m/s2, and
ψ = 3 deg.

In the literature, see for example Goswami et al. (1996), Holm
and Spong (2008) or De-León-Gómez et al. (2017), a step is
defined as two consecutive foot-ground impacts. The gaits of
the UCBR are then characterised by two parameters: the space
covered on the inclined by each step, that is referred to as step
length S, and its duration T . The provided plots are referred to
as time histories, even though they represent the evolution of S
and T for each step.

5.2 Case studies

Particular solutions of the controllers briefly revised in Sec-
tion 2 are designed to generate different gaits.

Inherently to the SIDA-PBC methodology, the desired closed-
loop potential energy is defined as

Vd(q) = (m(a+ l)+mH l)gcos(q1 + k3ψ)−mbgcos(q2),
(38)

while the selection of the md11(q) component is

md11(q) =
m2

11m22− [m11 + k2 sin(q1−q2)]m2
12 cos2 (q1−q2)

m11m22−m2
12 cos2 (q1−q2)−m22k2 sin(q1−q2)

,

(39)
with k2 a gain to be selected in order to meet the requirements
of Md(q). Hence, Λii, with i = 1,2, yields to

Λii =
m12m22ki sin2 (q1−q2)

2
(
m11m22−m2

12 cos2 (q1−q2)
) q̇1. (40)

Notice that, although Λii depends on the velocity q̇1, this is
always negative during a gait, since the the support leg rotates
always counter-clock wise (see Fig. 1). Therefore, the control
law (13) contains three gains, namely k1, k2, k3, which must
be tuned properly. Notice that, with the particular selection,
k1 = 0, k2 = 0, k3 = 0, the passive gait is recovered. With
the addressed UCBR, the passive gait is characterised by step
length S = 0.5347 m and period T = 0.7343 s.

Relatively to the EPD methodology, the offset ζ has been
experimentally tuned to π

24 rad. Such a choice leads to a
controller which exhibits gaits which are comparable with the
others presented in this work.

Six case studies will be analyzed in the following. They start
with the same initial conditions

q0 = [0.2187 −0.3234 −1.0918 −0.3772]T ,
and they are compared with the passive gait. All the gains are
experimentally tuned. The former two case studies regard the
SIDA-PBC; the third and the fourth case studies focus on the
EPD controller; the latter two case studies implement the EPOD
controller.

Case Study I: In this case study, the SIDA-PBC controller
gains have been selected as k1 = −0.01,k2 = −15,k3 = 0.92.
The obtained gait has a very small step length S = 0.1312 m
and a big time period T = 0.8639 s. The time histories of the
gait step length S and the gait period T are depicted in Fig. 2.

Case Study II: In this case study, the SIDA-PBC controller
gains have been selected as k1 = −0.15,k2 = 0,k3 = 0. The
obtained gait has a bigger step length, S = 0.6084 m, and a
smaller time period, T = 0.7144 s, than the passive gait. The
time histories of the step length S and the period T are depicted
in Fig. 3. The comparison of the obtained limit cycles in the
first two case studies with the passive gait is depicted in Fig. 4.

Case Study III: In this case study, the gain of the EPD
controller are tuned to kd = −30. The obtained gain has a
smaller step length, S = 0.4899 m, and a bigger time period,
T = 0.7418 s, than the passive gait. The time histories of the
step length S and the period T are depicted in Fig. 5.

Case Study IV: In this case study, the gain of the EPD
controller has been selected as kd = 30. The obtained gain has
a bigger step length, S = 0.5831 m, and a smaller time period,
T = 0.7227 s, than the passive gait. The time histories of the
step length S and the period T are depicted in Fig. 6. The
comparison of the limit cycles obtained in the third and fourth
case studies with the passive gait is depicted in Fig. 7.
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Fig. 2. Case Study I, SIDA-PBC, small gait obtained. Time
histories of the step length and the step period during a
test.
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Fig. 3. Case Study II, SIDA-PBC, large gait obtained. Time
histories of the step length and the step period during a
test.
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Fig. 4. Limit cycles comparison. In green, the passive gait. In
blue, the Case Study I. In red, the Case Study II. In black,
the discontinuities occurring at the impact. The arrows
indicate the time evolution.
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Fig. 5. Case Study III, EPD, small gait obtained. Time histories
of the step length and the step period during a test.

Case Study V: In this case study, the gain of the EPOD
controller has been tuned to kd = −280. The obtained gait
has a small step length S = 0.4399 m and a large time period
T = 0.7457 s. The time histories of the step length S and the
period T are depicted in Fig. 8.

Case Study VI: In this case study, the gain of the EPOD
controller has been selected as kd = 160. The obtained gait
has a bigger step length, S = 0.6394 m, and a smaller time
period, T = 0.7286 s, than the passive gait. The time histories
of the step length S and the period T are depicted in Fig. 9. The
limit cycles obtained in these two last examined case studies are
compared with the passive gait within Fig. 10.
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Fig. 6. Case Study IV, EPD, large gain obtained. Time histories
of the step length and the step period during a test.
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Fig. 7. Limit Cycles Comparison. In green, the passive gait.
In blue, the Case Study III. In red, the Case Study IV.
In black, the discontinuities occurring at the impact. The
arrows indicate the time evolution.

5.3 Performance comparison

The comparisons depicted in Fig. 4, Fig. 7, and Fig. 10 between
the limit cycles relative to all the case studies and the passive
gait, as well as the time histories of the parameters S and T
depicted in Fig. 3, Fig. 6, and Fig. 9, show that all the controllers
are comparable with respect to the generation of larger gaits
than the passive one. In particular, the EPOD can increase the
step length of the passive gait of ≈ 0.1 m, versus the ≈ 0.07 m
of the SIDA-PBC, and the≈ 0.05 m of the EPD. The maximum
period decreases of ≈ 2 s by employing the SIDA-PBC.

On the other hand, the blue limit cycles in Fig. 4, Fig. 7,
and Fig. 10 show that SIDA-PBC is more effective in creating
narrow limit cycles compared to the EPOD and the EPD. This is
certified by the time histories in Fig. 2, Fig. 5, and Fig. 8 which
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Fig. 8. Case Study V, EPOD, small gait obtained. Time histories
of the step length and the step period during a test.
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Fig. 9. Case Study VI, EPOD, large gait obtained. Time histo-
ries of the step length and the step period during a test.
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Fig. 10. Limit cycles comparison. In green, the passive gait.
In blue, the Case Study V. In red, the Case Study VI.
In black, the discontinuities occurring at the impact. The
arrows indicate the time evolution.

show that the SIDA-PBC can produce stable gaits with the
smallest step length, S = 0.1312 m, and the biggest time period,
T = 0.8639 s, than the others. Besides, comparing the results of
this work with those achieved by De-León-Gómez et al. (2017)
who employed a standard IDA-PBC, emerges that the designed
SIDA-PBC surpasses the IDA-PBC in the generation of small
gaits. As a matter of fact, the smallest gait generated by De-
León-Gómez et al. (2017) has S = 0.2012 m and T = 0.9996 s
as parameters.

Therefore, the SIDA-PBC with dissipative forces seems to be
the best choice if the sought goal is to generate gaits spreading
from very small to large ones, especially if compared to other
control strategies based on the exploitation of dissipative forces.

6. CONCLUSION AND FUTURE WORK

In this work, several control methodologies using dissipative
forces, as the SIDA-PBC, the EPD control, and the EPOD
control, were used to generate stable gaits for a UCBR. Due
to the switching conditions produced by the impact of the
swing leg with the ground, it was possible to generate a stable
gait in a UCBR by relaxing the stability condition of the
controllers mentioned above. In particular, it was possible to
show that the SIDA-PBC, with the inclusion of dissipative
forces, is efficient in the generation of gaits not exhibited
by the uncontrolled system, especially compared to EPD and
EPOD controllers. This might influence a more in-depth study
about the applications of the SIDA-PBC for the gait generation
problem. An idea is the research of a more significant set of
solutions for the MEs. A further investigation of the relationship
between gain tuning and the transient behavior of the UCBR
might be carried out. Another possible future work is the
formalization of the presented results to stabilize the gaits (i.e.,
the orbital stabilization problem), and not only to generate
them. Finally, implementation on real hardware, with the proper
adaptations to avoid foot scuffing, as mentioned at the end of
Section 3, is undoubtedly a future scope.
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