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Abstract: Nonlinear optimal control problems are frequently transformed into nonlinear pro-
gramming problems for which the solving process is generally time-consuming. In this paper, a
linear direct transcription method is proposed for nonlinear optimal control problems. Taking
advantage of the state-dependent coefficient parameterization method and the spectral dis-
cretization method, the nonlinear optimal control problem is successively linearized and turned
into a sequence of efficiently solvable mixed linear complementarity problems. The proposed
direct transcription method is linear in two ways: the nonlinear system is linearized using
state-dependent coefficient parameterization; the resulting quadratic programming problem is
converted into a mixed linear complementarity problem. Simulations are implemented, and
numerical results verify the effectiveness and efficiency of the proposed method.

Keywords: nonlinear optimal control, quadratic programming, mixed linear complementarity
problem.

1. INTRODUCTION

Nonlinear optimal control has a wide range of applications
in areas like hypersonic gliding reentry vehicle trajectory
optimization, process control and spacecraft maneuvering.
However, in most cases, analytic solutions only exist for
linear optimal control problems. Generally speaking, one
should resort to numerical methods to implement optimal
feedback for nonlinear systems.

Numerical methods for nonlinear optimal control problems
have been widely studied, and numerous approaches have
been proposed since 1960s. In Betts (1998), theses methods
are classified into direct and indirect methods. In direct
methods, the optimal control problem is discretized using
methods like spectral collocation, and then it is usually
turned into a nonlinear programming problem (NLP).
Whereas the optimality condition is derived in the indirect
methods, and numerical schemes are frequently employed
to solve the resultant two-point boundary value problem
(TPBVP) (see Peng (2013) and the references therein).

A state-dependent Riccati equation (SDRE) method is
proposed for nonlinear infinite-horizon optimal control
problems in Mracek (1998). In the SDRE method, the
nonlinear system is expressed in a linear-like form us-
ing state-dependent coefficient (SDC) parameterization,
which is also known as extended linearization. Then the
sub-optimal control law is obtained by solving a linear
quadratic regulator (LQR) problem in each step (Huang
(2017)). Similarly, the SDRE method is also extended to
finite-horizon problems, where state-dependent differential
Riccati equations (SDDREs) should be solved in each step
(see Heydari (2013)).

The SDRE/SDDRE method has been widely investigated
because of its superior performance in design flexibility
and numerical efficiency. Despite the fact that it is de-
signed for optimal control problems, in most cases, the
SDRE/SDDRE method fails to meet the optimality con-
ditions. The reason for this is that the SDRE/SDDRE
method only considers the linerized dynamics at current
time step t = t0. It implies that, in the SDRE/SDDRE
method, the controller is just computed based on the
dynamics at t = t0, i.e., ẋ = A (x(t0))x + B(x (t0))u,
which further leads to the fact that the nonlinearity and
evolution of the dynamics is not considered as a whole
(Wang (2019)).

Based on the quasilinearization technique, in Li (2016),
the optimal controller is calculated by linearizing the sys-
tem using Taylor expansions. The Hamiltonian canonical
equations and optimality conditions are then discretized
using spectral collocation methods. Thus it belongs to the
category of indirect methods (Betts (1998)). In Gomroki
(2017), the successive state-dependent coefficient param-
eterization technique is combined with the spectral dis-
cretization method, and it transforms the optimal con-
trol problem into a sequence of quadratic programming
problem. The convergence of this successive linearization
technique is also proved for unconstrained problems in
Banks (2000) and Çimen (2004). However, the resultant
quadratic programming problem is inherently a nonlinear
programming problem. Compared with the SDRE method,
though a more accurate solution can be obtained, the em-
ployment of the quadratic programming techniques leads
to a significant decrease in computational efficiency.

While nonlinear programming techniques are frequently
used in previously proposed direct methods, a linear direct
transcription method is proposed in this paper for a class
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of constrained nonlinear optimal control problems. Tak-
ing advantage of the successive state-dependent coefficient
parameterization and direct transcription techniques, the
nonlinear optimal problem is transformed into a sequence
of efficiently solvable mixed linear complementarity prob-
lems. The proposed direct transcription method is linear
in two aspects: the nonlinear system is linearized using
state-dependent coefficient parameterization; the resulting
optimization problem is turned into an efficiently solvable
mixed linear complementarity problem (MLCP). Simu-
lations also demonstrate the significant improvement in
numerical efficiency.

2. PROBLEM FORMULATION

In this paper, we consider the optimal control problem for
the control-affine nonlinear system

ẋ = f (x) + g (x)u, x(t0) = x0 (1)

where x ∈ Rn and u ∈ Rm are the state and input,
respectively. And f : Rn → Rn and g : Rn → Rn×m are
continuously differentiable functions defined on a compact
set Ω ∈ Rn. The constraints on the state and input are
given by

h(x,u) ≤ 0. (2)

Specifically, box constraints on the state and control are
considered in this paper, and they can also be expressed
elementwise as

αl
min ≤ xl ≤ αl

max, l = 1, · · · , n, (3a)

βl
min ≤ ul ≤ βl

max, l = 1, · · · ,m. (3b)

The performance index is defined as

J(x0) =
1

2

∫ tf

t0

(
||x||2Q + ||u||2R

)
dt (4)

where Q and R are positive definite matrices.

The problem considered in this paper is to find the optimal
control for the system (1) with constraints (3) and cost
functions (4). Besides, the well-posedness of the optimal
control problem is also assumed in this paper.

3. LINEAR DIRECT TRANSCRIPTION METHOD

3.1 Direct Transcription Using Spectral Discretization

Numerous methods have been proposed to solved the
continuous-time optimal control problems, and pseu-
dospectral method is one of the most frequently used
algorithms (Rao (2010)). Pseudospectral method em-
ploys a direct transcription framework, in which different
kinds of collocation points, such as the Legendre-Gauss
(LG) points, Legendre-Gauss-Radau (LGR) points and
Legendre-Gauss-Lobatto (LGL) points, have been used to
discretize the considered system. In this paper, the LGR
collocation points are used to discretize the optimal control
problems (Wang (2019)).

The LGR points lie in the interval [−1, 1). Firstly, the
domain transformation function

t = φ(τ) =
tf − t0

2
τ +

t0 + tf
2

(5)

and its derivative

T (τ) = φ̇(τ) =
tf − t0

2
(6)

are employed to change the considered time domain t ∈
[t0, tf ] into τ ∈ [−1, 1].

Let −1 = τ1 < · · · < τN < +1 denote the LGR points. The
state and control are approximated by (Wang (2019),Wang
(2020))

x(τ) ≈
N∑
j=1

Lj(τ)x(τj) (7a)

u(τ) ≈
N∑
j=1

Lj(τ)u(τj) (7b)

where Lj(τ) is the Lagrange interpolation basis function
which is given by

Lj(τ) =

N∏
i=1,i6=j

τ − τi
τj − τi

, j = 1, · · · , N. (8)

The time derivative of the state is calculated as

ẋ(τ) ≈
N∑
j=1

L̇j(τ)x(τj). (9)

Evaluate the derivatives at the LGR collocation points,
and one has (Wang (2019))

ẋ(τi) ≈
N∑
j=1

L̇j(τi)x(τj), i = 1, · · · , N. (10)

Taking advantage of the Gauss quadrature rule, the per-
formance index is computed using

J ≈ tf − t0
4

N∑
i=1

wi

(
||x(τi)||2Q + ||u(τi)||2R

)
(11)

where wi is the corresponding quadrature weight.

Define the differentiation matrix (Wang (2019))

Di,j = L̇j(τi), i = 1, · · · , N ; j = 1, · · · , N. (12)

By collocating at the LGR points, the nonlinear system is
transformed into the equation

N∑
j=1

Di,jx(τj) = T (τi)[f(x(τi)) + gu(τi)] (13)

Then based on the direct transcription procedure, one
obtains the nonlinear programming problem

min
x,u

tf − t0
4

N∑
i=1

wi

(
||x(τi)||2Q + ||u(τi)||2R

)
s.t.

N∑
j=1

Di,jx(τj)− T (τi)[f(x(τi)) + gu(τi)] = 0

h(x(τi),u(τi)) ≤ 0

To guarantee the existence of a solution to the discretized
problem, the following relaxed problem

min
x,u

tf − t0
4

N∑
i=1

wi

(
||x(τi)||2Q + ||u(τi)||2R

)
s.t.

∥∥∥∥∥∥
N∑
j=1

Di,jx(τj)− T (τi)[f(x(τi)) + gu(τi)]

∥∥∥∥∥∥
∞

≤ ε

h(x(τi),u(τi)) ≤ ε
is frequently introduced (Ross (2012)).
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The direct transcription method shown above is often
termed as the pseudospectral method, and it has been
applied to many areas like zero-propellant maneuvers of
the International Space Station (Ross (2012)). Though
many off-the-shelf commercial solvers are available for the
resultant nonlinear programming problem, the solving pro-
cess for the pseudospectral method is still time consuming.

3.2 Successive Linearization Based on State-Dependent
Coefficient Parameterization

State-dependent coefficient parameterization, i.e., extended
linearization, is a method of factorizing the nonlinear sys-
tem into a linear-like structure, see Çimen (2010),Wang
(2019) and Wang (2020). Under the mild assumption that
f(0) = 0 and f(·) ∈ C1(Ω), there should exist at least
one parameterization structure such that the considered
nonlinear system (1) can be expressed as

ẋ = A(x)x+B(x)u (14)

where

A(x)x = f(x) (15a)

B(x) = g(x). (15b)

Here A : Rn×n → Rn is a nonlinear state-dependent
matrix-valued function.

In this paper, it is assumed that the considered optimal
control problems are well-posed and the optimal controls
also exist. Different from the SDRE method which takes
the nonlinear dynamics as a linearized system, the pro-
posed method takes the whole time horizon into account
and calculates the optimal control in an iterative manner
(Çimen (2004),Wang (2019),Wang (2020)). In the kth it-
eration, the linearized system is given by

ẋk = Ak(t)xk +Bk(t)uk, xk(t0) = x0 (16)

where Ak(t) = A (xk−1(t)) and Bk(t) = B (xk(t)), and
the state and control in the kth iteration are defined
by xk = [x1k, x

2
k, . . . , x

n
k ]T and uk = [u1k, u

2
k, . . . , u

m
k ]T ,

respectively. The performance index in the kth iteration
is given by

Jk(x0) =
1

2

∫ tf

t0

||xk||2Q + ||uk||2Rdt. (17)

Taking advantage of the domain transformation method
in Section 3.1, the linearized system is transformed into

ẋk = T (τ) [Ak(τ)xk +Bk(τ)uk] . (18)

Note that the boundary condition for the new finite-
horizon optimal control problem is

xk(−1) = x0. (19)

And the performance index is given by

Jk(x0) =
1

2
T (τ)

∫ 1

−1
||xk||2Q + ||uk||2Rdt. (20)

Similar to Section 3.1, the sequence of linear time-varying
optimal control problems can also be discretized and
solved based on spectral collocation methods.

As in Section 3.1, the differential equation (18) is dis-
cretized and transformed into the linear equations

N∑
j=1

Di,jxk(τj)− T (τi)[Ak−1(τi)xk(τi)−

Bk−1(τi)uk(τi)] = 0, 1 ≤ i ≤ N. (21)

The box constraints are then given by

αl
min ≤ xlk(τi) ≤ αl

max, l = 1, · · · , n, (22a)

βl
min ≤ ulk(τi) ≤ βl

max, l = 1, · · · ,m. (22b)

The direct transcription of the linearized system is as fol-
lows. Discretize the objective function (20) using Gaussian
quadrature method and one has

Jk ≈
tf − t0

4

N∑
i=1

T (τi)wi

(
||xk(τi)||2Q + ||uk(τi)||2R

)
. (23)

Taking the states and controls at the LGR collocation
points, i.e., the vector

γk =[x1k(τ1), . . . , x1k(τN ), . . . , xnk (τ1), . . . , xnk (τN ),

u1k(τ1), . . . , umk (τN )]T (24)

as the variables, the discretized optimal control problem,
i.e., objective function (23) and constraints (19), (21) and
(22), can be reformulated into the quadratic programming
problem

min
γk

1

2
γT
k Hγk

s.t. Akγk = bk (25)

Ckγk ≥ dk
where Ak, bk, Ck and dk are the matrix and vector
corresponding to the equality and inequality constraints.
It is also straightforward to see that H is the matrix
with scaled Q and R on its diagonal. It is assumed that
the quadratic programming problem (24) obtained in each
iteration has at least one feasible solution.

3.3 Mixed Linear Complementarity Problem

As shown in Gomroki (2017), successive extended lin-
earization can improve the efficiency for solving non-
linear optimal control problems. However, the obtained
quadratic programming problem is inherently a nonlinear
programming problem. The computational efficiency can
be significantly improved by transforming it into mixed
linear complementarity problem. Based on the method of
Lagrange multipliers, by incorporating the multipliers λk

and µk, the Lagrangian for the optimization problem (24)
is given by

L(γk,λk,µk)=
1

2
γT
k Hγk−λT

k (Akγk−bk)−µT
k (Ckγk−dk) .

(26)
The KKT (Karush-Kuhn-Tucher) conditions for the opti-
mization problem yield

Hγk −ATλk − CTµk = 0

Akγk − bk = 0

Ckγk − dk ≥ 0

µT
k (Ckγk − dk) = 0

µT
k ≥ 0

By introducing a slack variable

νk = Ckγk − dk (27)

for inequality constraints, the KKT conditions can be
rewritten into the mixed linear complementarity problem
(MLCP)[

0
νk

]
=

[
−bk
−dk

]
+

[
Ak

Ck

]
H−1

[
AT

k CTk
] [λk

µk

]
(28)
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νk ≥ 0

µk ≥ 0

νT
k µk = 0

The mixed linear complementarity problem is an impor-
tant paradigm in mathematical programming. Due to its
high efficiency, it has been widely used in many time
critical applications like computer graphics, linear model
predictive control (Bemporad (2009)) and so on.

The mixed linear complementarity problem is not a stan-
dard optimization problem, since it does not aim to min-
imize or maximize any objective function. However, the
mixed linear complementarity problem can be efficiently
solved using well-developed numerical methods, such as
the celebrated Lemke’s method (Cottle (2009),Li (2016)).

The Lemke’s method solves the mixed linear comple-
mentarity problem in a direct way. The Lemke’s method
firstly incorporates an artificial variable into the consid-
ered mixed linear complementary problem, and then the
introduced variable is driven to zero using a sequence of
Gauss-Jordan pivoting. The Lemke’s method is able to
find a solution in a finite number of steps. The readers can
refer to Cottle (2009) for more details on the mixed linear
complementarity problem and Lemke’s method.

After solving the mixed linear complementarity problem
for λk and µk, the state and control for the optimal control
problem are given by

γk = H−1
(
AT

k λk + CTk µk

)
. (29)

It should also be noted that when only equality constraints
Akγk = bk are considered, the KKT conditions yield[

H AT
k

Ak 0

] [
γk
λk

]
=

[
0
bk

]
. (30)

The system of linear equations (30) can be efficiently
solved using basic matrix operations.

Remark 1. The primal problem (24) and the dual problem
(27) is equivalent. It is straightforward to verify that the
matrix H is positive definite, and the equality and inequal-
ity constraint functions are both affine, then the quadratic
programming problem (24) is a convex optimization prob-
lem. Since the Slater’s condition holds, i.e., the feasible
solutions are assumed to exist in each iteration, then the
strong duality holds between the primal problem (24) and
the dual problem (27) (Boyd (2004)).

In each iteration, the mixed linear complementarity prob-
lem (27) is solved and xk(τi) and uk(τi) is calculated. Then
the solution xk(τi) and λk(τi) will be substituted into the
next iteration. The solving process will be repeated until
the defined relative error between the last two iterations
is less than a specified threshold ε, i.e.,

|Jk − Jk−1|
Jk

≤ ε. (31)

4. NUMERICAL SIMULATIONS

The attitude stabilization problem for an axisymmetric
spacecraft is considered in this section. The numerical
simulations are conducted using MATLAB R2018b on a
laptop equipped with 2.30 GHz CPU and 4.0 GB RAM.

The dynamic equations of the spacecraft are taken from
Tsiotras (1999) and it is given by

ẋ1 = amx2 + u1
ẋ2 = −amx1 + u2

ẋ3 = mx4 + x2x3x4 + (x1/2)(1 + x23 − x24)

ẋ4 = −mx3 + x1x3x4 + (x2/2)(1 + x24 − x23)

(32)

where x1 and x2 represent angular velocities of the space-
craft, and x3 and x4 denote the states related to the Euler
angles. As in Tsiotras (1999), the parameters are set to
a = 0.5 and m = −0.5. Let x = [x1, x2, x3, x4]T and
u = [u1, u2]T . The cost function is defined by

J =

∫ tf

t0

xTx+ uTu dt. (33)

The time horizon is set to tf − t0 = 5s. In the state-
dependent coefficient parameterization, the nonzero ele-
ments of A(x) are given by (Wang (2019))

A12 = − 1
4 , A21 = 1

4 , A31 = 1
2 ,

A32 = x3x4, A33 = 1
2x1x3, A34 = − 1

2 −
1
2x1x4,

A41 = x3x4, A42 = 1
2 , A43 = − 1

2x2x3 + 1
2 ,

A44 = 1
2x2x4.

To verify the effectiveness and efficiency of the proposed
linear transcription method, two simulations are imple-
mented. The performance is compared with the SDDRE
method (Heydari (2013)) with integral control modifica-
tion (Çimen (2010),Huang (2017)), pseudospectral method
(Ross (2012),Rao (2010)) and quadratic programming
based direct method (Gomroki (2017)).

4.1 Optimal Control Under Input Saturation

In this section, the nonlinear optimal control problem with
only input saturation is considered. The initial state is
x0 = [0.35,−0.4,−0.35, 0.3]T and the input constraints
are |u1| ≤ 0.15 and |u2| ≤ 0.15. The pseudospectral
method is known as an accurate method for constrained
optimal control problems, and the SDDRE method can
also conveniently deal with input saturation, so these two
method are also implemented to evaluate the numerical
performance of the proposed numerical method. In the
linear direct transcription method, 40 collocation points
are employed.

The state trajectories and the controls are shown in Fig. 1,
2 and 3. It can be seen that the input constraints are satis-
fied in all of these methods. More importantly, the compar-
isons also show that the linear direct transcription method
and the pseudospectral method agree with each other very
well, implying that the linear direct transcription method
calculates a relatively accurate trajectory. The SDDRE
method also successfully handles the input saturation.
But as observed in Fig. 3, the SDDRE controller exhibits
chattering phenomenon, which is undesirable for practical
applications.

4.2 Optimal Control Under Input and State Constraints

In this section, both input and state constraints are
taken into consideration. The initial state is x0 =
[0.5, 0,−0.5,−0.5]T and the constraints are |x2| ≤ 0.2 and
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Fig. 1. Trajectories of x1 and x2 under input constraints

 

Fig. 2. Trajectories of x3 and x4 under input constraints

 

Fig. 3. Time history of u1 and u2 under input constraints

|u1| ≤ 0.25. To evaluate the efficiency of the proposed
method, the quadratic programming based method in
Gomroki (2017) is also implemented in this section. Specif-
ically, the MATLAB syntax quadprog is used to solve
the resultant quadratic programming problem. Besides,
60 collocation points are employed in the simulations. For
these two methods, 10 iterations are carried out, and the
numerical results for each iteration are shown in Table 1.

The algorithms are also run for 100 times to obtain the
average computation time. The average times for these
two methods are shown in Table 2.

 

Fig. 4. Trajectories of x1 and x2 under input and state
constraints

 

Fig. 5. Trajectories of x3 and x4 under input and state
constraints

 

Fig. 6. Time history of u1 and u2 under input and state
constraints

The state trajectories and the controls are shown in Fig. 4,
5 and 6. It can be observed form these figures that the
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Table 1. Iteration Processes for Different Methods

Linear Direct Transcription Method Quadratic Programming Based Method

Iteration Relative Error J Relative Error J

1 −− 1.085934570731961 −− 1.085934587527623

2 8.5990788740e− 2 1.188100248174365 8.5990897747e− 2 1.188100408246419

3 1.4955705723e− 2 1.170593200742959 1.4955837599e− 2 1.170593206357709

4 1.7156063056e− 3 1.172604929153418 1.7166921347e− 3 1.172606210215835

5 1.2045290021e− 4 1.172463702500057 1.2087377640e− 4 1.172464490005228

6 6.4011121257e− 6 1.172471207619721 6.4986547784e− 6 1.172472109496705

7 2.6205844764e− 7 1.172470900363817 2.7547991448e− 7 1.172471786504277

8 7.8267281106e− 9 1.172470909540428 9.0421256801e− 9 1.172471797105914

9 1.0597879069e− 10 1.172470909416171 1.8666891484e− 10 1.172471796887050

10 6.0191204931e− 12 1.172470909409114 2.0487303340e− 12 1.172471796884648

Table 2. Computation Time on Average

Method
Linear Direct

Transcription

Quadratic

Programming

Computational Time (s) 0.35934 0.75515

trajectories all satisfy the input and state constraints, and
the performances of these two methods are very close to
each other, which again verifies the effectiveness of the
proposed method. It can also be seen from Table 1 that
both methods have a fast convergence speed, and they
are able to generate an accurate solution in just several
iterations.

It should be noted that the proposed linear direct tran-
scription method only takes 0.35934 seconds on aver-
age to complete the iterations, whereas the quadratic
programming-based method needs 0.75515 seconds. It can
then be concluded that, compared with the quadratic
programming based method, the proposed method is able
to achieve a relatively accurate solution with much less
computational cost.

5. CONCLUSIONS

In this paper, a linear direct transcription method is
proposed for nonlinear optimal control problems. Taking
advantage of successive extended linearization and direct
transcription, the nonlinear optimal problem is trans-
formed into a sequence of efficiently solvable mixed linear
complementarity problems. Numerical comparisons with
the SDRE, pseudospectral and quadratic programming
based methods are conducted, and simulation results ver-
ify the accuracy and efficiency of the proposed method.
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