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Abstract: This paper presents a data-driven predictive control (DPC) algorithm for linear
time-invariant (LTI) systems in the behavioral framework. The system is described by the
parametrization of the Hankel matrix constructed from its measured trajectories. The proposed
structure follows a two-step procedure. The existence of a controlled behavior is firstly verified
from the perspective of dissipativity with the aid of quadratic difference forms (QdFs), then the
controlled trajectory is selected from the original uncontrolled behavior through optimization.
An illustrative example is presented to demonstrate the effectiveness of the proposed approach.
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1. INTRODUCTION

Due to the rapid processing ability and huge storage ca-
pacity of the state-of-the-art technology, the monitoring
and control tend to be increasingly relying on the collected
data. Not only do data sets describe the dynamical features
of a system more accurately than models, but the rich
information contained within the data sets can provide
valuable insights to the dynamics of the systems. One of
the classical way is to find a regression model that best
describes the data set, but such a strategy defeats the pur-
pose because numerous assumptions, hence inaccuracies,
are introduced in the process of modelling. If data-driven
strategies were to be developed, then the function of the
data set is to describe the system instead of being merely
an aid for the search of a model. Huang and Kadali (2008)
developed a subspace approach to data-driven control for
LTI systems.

Proposed by Willems (1991), the behavioral systems the-
ory views a dynamical system as a collection of functions,
or trajectories, called the behavior, that map a time axis
to a signal space. The theory claims that what defines a
dynamical system is its trajectories rather than its rep-
resentations (Polderman and Willems, 1998). This theory
unites another theory developed by Willems as well, the
dissipativity theory (Willems, 1972a), into this framework
as well: dissipativity is simply a viewpoint to represent the
dynamical features of a system. It is a stand-alone rep-
resentation rather than a property (Willems and Takaba,
2007). This view is the exact same rationale as data-driven
approaches and has hence drawn attentions in the past few
years. Willems et al. (2005) showed that a Hankel matrix
constructed by a measured trajectory from an LTI system
can parametrize all of the trajectories in the behavioral
set, provided that the input is sufficiently excited. This
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is similar to the subspace identification approach (Huang
and Kadali, 2008) but from a different perspective.

With the shift from model-based to data-driven control,
the basic viewpoint for control should also change. The
desired trajectory is not created, it is selected from the
original system. In other words, control is possible if and
only if the desired controlled trajectory is already within
the system, and the purpose of the controller is to pose
restriction on the system so that only the desired trajec-
tories can happen (Polderman and Willems, 1998). This
in theory means that control can be carried out in a very
simple way if the controlled behavior can be verified to be
contained in the original system. Markovsky and Rapis-
arda (2008) proposed several algorithms for data-driven
control with this rationale and they were perfected in
Maupong and Rapisarda (2017). A data-driven predictive
control (DPC) algorithm was also formulated in Coulson
et al. (2019) and Berberich et al. (2019). However, the
algorithms all consider the case where the system is noise-
free, which in reality never happens. With the presence
of noise, the actual trajectory no longer belongs to the
behavioral set described by the aforementioned method.
To the best of the authors knowledge, little has been done
in DPC formulation using the behavioral framework with
the consideration of noise. The existence of a controlled be-
haivor was discussed in details in Willems and Trentelman
(2002) in a model-based setting but is otherwise scarcely
discussed about.

The goal of this paper is to develop a DPC structure using
the behavioral approach. As illustrated above, control in
the behavioral framework involves the verification of the
existence of the controlled behavior and the actual con-
trol implementation. We use the viewpoint of dissipative
dynamical system to provide a set of sufficient conditions
for the existence of the controlled behavior, then we use
Hankel matrix, together with dissipativity description of
the desired behavior, to formulate the DPC optimization
problem. Note that the concept of data-driven dissipativ-
ity has already been discussed in Maupong et al. (2017)
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and Romer et al. (2019). But the recursive verification of
dissipativity was not discussed.

The structure of the rest of the paper is as follows. In
Section 2, background information of behavior theory and
dissipative system theory is presented. Section 3 provides
sufficient conditions for the existence of the controlled
behavior as well as the DPC structure. An illustrative
example is presented in Section 4. Section 5 concludes the
paper.

Notation. We use the conventional notations R, Z, Rn,
Rm×n and Rm×n[·] to denote, respectively, the set of all
real numbers, integers, n-dimensional real vectors m × n
real matrices and m × n polynomial matrices with real
coefficients. We use R•, R•×n, etc., to denote the space of
vectors and matrices with unknown but finite dimensions.
We use S•[·] to denote the set of symmetric polynomial
matrices. We denote the set of all integers no greater than
L as Z+

L . The generic variable of a space W is denoted as
w with dimension denoted as w. We denote the set of all
mappings from a space T to another space W as WT. An
identity matrix with dimension n× n is denoted by In.

2. PRELIMINARIES

2.1 Behavioral Systems Theory

In the behavioral framework, a dynamical system Σ is
defined as a triple Σ = (T,W,B), where T represents the
time axis, W is the signal space of the system and B ⊂WT

is the behavior of the system (Willems, 1991). The generic
variable w of the space W is called the manifest variable.
If W is a vector space, B is a linear subspace of WT and
σB ⊂ B, where σ is a discrete-time shift operator, then
Σ is linear and time-invariant (Polderman and Willems,
1998). In many cases, the description of a behavior relies
on the aid of auxiliary variables called the latent variable
denoted by `. A dynamical system with latent variable can
then be defined as a quadruple Σfull = (T,W,L,Bfull)
where Bfull ⊂ (W×L)T is the full behavior. The manifest
behavior is then B =

{
w | ∃`, (w, `) ∈ Bfull

}
. Since the

main focus of this paper is date-driven control, we assume
throughout this paper that the time axis is the set of all
positive integers, i.e., T = Z+. A truncated trajectory from
w on the interval [1, L] is denoted at w|[1,L]. The behavior
restricted to the interval [1, L] can then be defined as

B|[1,L] =

{
w ∈ (Rw)

Z+
L | ∃w′ ∈ B, w = w′|[1,L]

}
.

While B admits multiple representations, the most general
representation is the latent variable representation

R(σ)w = M(σ)` (1)

where

R(σ) =

NR∑
i=0

Riσ
i ∈ R•×w[σ], M(σ) =

NM∑
i=0

Miσ
i ∈ R•×l[σ]

are the coefficient matrices. If the system is controllable,
i.e., it is always possible to move from one trajectory to
any other trajectories in the behavior within finite time,
then it is possible to have R(σ) = Iw, reducing (1) to the
image representation

w = M(σ)`. (2)

If a part of the variables in w, call it u, is such that for any
trajectory of u, there exists a trajectory of the remaining
part of w, call it y, such that (y, u) ∈ B, then u is said to
be free. If all variables in u are free while none of that in
y is, then w = (y, u) is called an input/output partition of
w.

In data-driven control, obviously the model of the system
is not available. However, for LTI systems, one appro-
priately chosen trajectory is enough to parametrize the
entire behavior restricted to a certain interval. For a given
measured trajectory w̃ ∈ B|[1,T ], it is possible to construct
a Hankel matrix of order L as

HL(w̃) =


w̃(1) w̃(2) · · · w̃(T − L+ 1)
w̃(2) w̃(3) · · · w̃(T − L+ 2)

...
...

. . .
...

w̃(L) w̃(L+ 1) · · · w̃(T )

 . (3)

We also define a portion of the Hankel matrix constructed
from a trajectory w̃ with depth l starting from the kth
block row (k 6= 1) as Hl,k(w̃). A signal w is called
persistently exciting of order L if rank(HL(w̃)) = Lw
(Willems et al., 2005; Huang and Kadali, 2008). The
behavior B|[1,L] can be parametrized by the Hankel matrix
according to the following lemma.

Lemma 1. (Willems et al. (2005)). Assume B is control-
lable and (y, u), where u is free, is an input/output par-
tition of w. Let w̃ ∈ B|[1,T ]. If ũ is persistently exciting
of order L + n(B), where n(B) is the McMillan degree of
B, then colspan(HL(w̃)) = B|[1,L]. In other words, there

exists g ∈ RT−L+1 such that

ṽ = HL(w̃)g (4)

for all ṽ ∈ B|[1,L].

Notice that the structure of (4) is similar to that of an
image representation.

2.2 Dissipative Systems Theory

Dissipativity is introduced by Willems (1972a,b) to anal-
yse the dynamics of a system as well as interconnections.
While initially defined in state space, we introduce the
notion of dissipativity using the manifest variables be-
cause the focus in on the input/output relationships. A
dynamical system Σ is dissipative if there exists a positive
semi definite storage V (w(k)) and supply rate S(w(k))
satisfying (Yan et al., 2019a)

V (w(T ))− V (w(0)) ≤
T∑

k=0

S(w(k)) (5)

for all integers T ≥ 0. If (5) holds for all T ∈ [1, L] ∩ Z,
then Σ is said to be L-dissipative (Romer et al., 2019).

While quadratic supply rates are sufficient to capture the
dynamical features of an LTI system in state space, more
elaborate description is needed for a system defined on the
external signal space. Therefore, quadratic difference forms
(QdF), which is defined on the extended signal space, has
been proposed (Kojima and Takaba, 2005) and is defined
as

QΦ(w(k)) =

K∑
p=0

K∑
q=0

w(k + p)T Φpqw(k + q). (6)
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where K is called the order of QdF. It is said to be induced
by a two-variable polynomial matrix Φ ∈ Rw×w[ζ, η],
where ζ and η are the shift operators for wT and w,
respectively, and

Φ(ζ, η) =

K∑
p=0

K∑
q=0

ζpΦpqη
q. (7)

The coefficient matrix of Φ(ζ, η) is defined as

Φ̃ =


Φ00 Φ01 · · · Φ0K

Φ10 Φ11 · · · Φ1K

...
...

. . .
...

ΦK0 ΦK1 · · · ΦKK

 .
Φ(ζ, η) is positive (respectively, non-negative), denoted by
Φ � 0 (respectively, Φ � 0) if and only if its coefficient

matrix Φ̃ is positive definite (respectively, semi-definite).
The dual operator ? is defined as Φ?(ζ, η) = ΦT (η, ζ).

Φ ∈ Sw[ζ, η] if and only if Φ = Φ? if and only if Φ̃ = Φ̃T .
The rate of change of QdF is denoted as

Q∇Φ(w(k)) = QΦ(w(k + 1))−QΦ(w(k)), (8)

and is induced by

∇Φ(ζ, η) = (ζη − 1)Φ(ζ, η). (9)

Definition 1. (Φ−dissipativity (Kaneko and Fujii, 2000)).
A dynamical system Σ = (T,W,B) is dissipative with re-
spect to a QdF QΦ(w(k)) if there exists a storage function
QΨ(w(k)) such that

QΨ(w(k)) ≥ 0 (10a)

QΨ(w(k + 1))−QΨ(w(k)) ≤ QΦ(w(k)) (10b)

hold for all w ∈ B.

The notion of Φ−L-dissipativity can then be defined
analogously (Maupong et al., 2017).

3. DATA-DRIVEN PREDICTIVE CONTROL

Many control objectives such as trajectory tracking and
disturbance attenuation can be represented as a dissi-
pativity property of controlled behavior with respect to
a certain supply rate. In this section we introduce the
structure of data-driven predictive control (DPC) that
renders an LTI system represented by a Hankel matrix con-
structed from one of its measured trajectories dissipative
with respect to a QdF induced by Φd(ζ, η). The rationale
for control design in the behavioral framework is slightly
different than that in the conventional sense: rather than
creating a stable closed-loop system, the controller is sim-
ply selecting the desirable trajectories from the system
and restrict the outcome to only these trajectories through
interconnection. Therefore, the difficulty of control design
lies in the verification of the existence of a controlled
behavior rather than designing the controller itself. We
begin by giving a sufficient condition for the existence of
the controlled behavior. The trajectory from the desired
behavior is then directly selected from the system using
the desired dissipativity condition.

3.1 Existence of Desired Controlled Behavior

While the process of interconnecting difference systems is
rather cumbersome, interconnecting dissipative dynamical

systems is much less demanding, in that the supply rate of
the interconnected system is simply the linear combination
of that of the subsystems (Willems, 1972a). We therefore
provide conditions for the existence of controlled behavior
from the perspective of dissipativity. Without loss of
generality, we assume in this paper that the order of the
storage function is one less than that of the supply rate,
i.e., KΦ = KΨ + 1 = K∇Ψ = K. Note that it is always
possible to augment either Φ or Ψ to meet this requirement
by adding zeros to the polynomial matrix.

Theorem 1. Given a controllable dynamical system

Σ =
(
Z+
L ,R

w, colspan(HL(w̃))
)

(11)

whose behavior is constructed according to Lemma 1 and
a QdF induced by Φ ∈ Sw[ζ, η], the following statements
are equivalent:

(1) Σ is Φ−(L−K)-dissipative;

(2)

L−K∑
k=1

HT
K+1,k(w̃)Φ̃HK+1,k(w̃) ≥ 0;

(3) There exists a QdF induced by Ψ ∈ Sw[ζ, η] such that

HT
K,k1

(w̃)Ψ̃HK,k1(w̃) ≥ 0 (12a)

HT
K+1,k2

(w̃)(Φ̃−∇Ψ̃)HT
K+1,k2

(w̃) ≥ 0 (12b)

for all k1 ∈ [1, L−K + 1]∩Z and k2 ∈ [1, L−K]∩Z.

Proof. The equivalence of (1) and (2) have been proven
in Romer et al. (2019). Here we only prove the equivalence
of (3) and (1). Multiplying both sides of both inequalities
in (12) gives (10) for all k ∈ [1, L−K]∩Z, which leads to
the dissipativity condition in (1). �
Remark 1. It is interesting to note that while the Hankel
matrix parametrizes the behavior up to L steps, dissipa-
tivity can only be verified up to L−K steps. This is due
to the fact that QdFs include future steps to obtain more
detailed information about the dynamics of the system.
Each K+1 steps can only verify dissipativity for one step,
meaning that dissipativity verification for the (L − K)th
step has already used up all steps in the Hankel matrix.

Remark 2. Notice that (12a) actually leads to the non-
negativity of QΨ(w(k)) up to L−K + 1 steps. The reason
for this is that although the (L − K + 1)th step is not
required for the storage function, it is used in (12b) and
therefore must still be a valid storage function for this step.

Assuming that the controller Σc =
(
Z+
L ,Rc,Bc

)
has

manifest variable that admits an input/output partition
c = (yc, uc), then it is possible to associate it with a supply
rate

QΦc
(c(k)) = cT Φcc =

[
yc
uc

]T [Qc(ζ, η) Sc(ζ, η)
S?c (ζ, η) Rc(ζ, η)

] [
yc
uc

]
(13)

where Qc ∈ Syc [ζ, η], Sc ∈ Ryc×uc [ζ, η] and Rc ∈ Suc [ζ, η].
The supply rate for the controlled system, QΦcd

(wd(k)),
can then be represented by

QΦcd
(wd(k)) = QΦ(w(k)) +QΦc

(c(k)) = wT
d Φcd(ζ, η)wd

(14)
where wd column vector containing all system and con-
troller manifest varibles, w = Πpwd, c = Πcwd, and

Φcd = ΠT
p ΦΠp + ΠT

c ΦcΠc. (15)
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For a chosen controlled behavior, the existence of a con-
trolled behavior for a dynamical system can then be veri-
fied according to the following proposition.

Proposition 2. For a dynamical system (11) and a QdF
induced by Φd ∈ Swd [ζ, η], there exists a controlled
behavior that is Φd−(L − K)-dissipative if there exist
Φ ∈ Sw[ζ, η], Ψ ∈ Sw[ζ, η] and Φc ∈ Sc[ζ, η] such that (12)
is satisfied for all k1 ∈ [1, L−K + 1] ∩ Z and k2 ∈ [1, L−
K] ∩ Z, and

Φcd − Φd � 0, (16a)

Qc ≺ 0, Rc � 0 or Qc � 0, Rc ≺ 0. (16b)

Proof. The combination of (12) and (16a) ensure the
existence of a controlled behavior. However, since there is
no lower bound for Φc, (16a) can always be satisfied if Φc is
negative with arbitrarily large magnitude. Since there is no
non-trivial trajectory that is dissipative with respect this
supply rate, it must be excluded, and (16b) is one way to
guarantee the avoidance of such supply rates. Therefore, if
all conditions are satisfied, there exists a desired controlled
behavior that can be implemented by the controller. �
Remark 3. A part of conditions in Proposition 2 have been
presented in Wang et al. (2019), Tippett and Bao (2013)
and Yan et al. (2019b). In this paper we formulate the
conditions entirely based on data as opposed to using
given models or identifying a set of models in state space.
Furthermore, rather than assuming the controller variable
as a subset of the system variable, we consider the case
where neither w nor c is a subset of the other, thereby
encompassing a wider range of problems.

3.2 The DPC Control Structure

Suppose that a dynamical system Σ is described by (4).
With suitable permutations and partitions, (4) can be
rewritten as [

w̃p

w̃f

]
=

[
HM (w̃)

HL−M,M+1(w̃)

]
g (17)

where wp and wf are, respectively, the past and future
trajectory, and M is an integer. Note that M needs
to be larger than the lag of the system L(B) (i.e., the
smallest number of steps for the past and the future to be
independent) because only with at least L(B) step overlap
for each iteration can we form a trajectory that is from
B|[1,L] (Markovsky et al., 2005). Furthermore, denoting

the component in c that is not shared with w as wf

(because they are essentially “free”), the future trajectory
for the manifest variable of the controlled system can be
represented as

w̃d|[M+1,L] = Π

[
w̃f

w̃f
f

]

= Π

[
HL−M,M+1(w̃) 0

0 I(M+1)wf

][
g

w̃f
f

]

:= Hdf

[
g

w̃f
f

]
. (18)

where w̃f
f is the future trajectory of the free variable and

Π is a permutation matrix.

Let the order of Φd be Kd. Since for each iteration, M
steps are used as the past trajectory, then according to

Theorem 1, the number of future steps that can be verified
to be dissipative is at most Lf = L−Kd−M . We therefore
have

Lf∑
k=1

w̃T
d|[M+k,M+Kd+k]Φ̃dw̃d|[M+k,M+Kd+k] (19)

=

w̃d|[M+1,M+Kd+1]

...
w̃d|[L−Kd,L]


T (

ILf
⊗ Φ̃d

)w̃d|[M+1,M+Kd+1]

...
w̃d|[L−Kd,L]


(20)

=w̃T
d|[M+1,L]P

T
(
ILf
⊗ Φ̃d

)
Pw̃d|[M+1,L] (21)

=

[
g

w̃f
f

]T
HT

dfP
T
(
ILf
⊗ Φ̃d

)
PHdf

[
g

w̃f
f

]
(22)

where ⊗ is the Kronecker product and P is a permutation
matrix, i.e.,w̃d|[M+1,M+Kd+1]

...
w̃d|[L−Kd,L]

 = Pw̃d|[M+1,L]. (23)

Assuming that the Hankel matrix is constructed from a
noise-free trajectory but input and measurement noises
are present during implementation, the DPC problem can
be stated as

min
g

Lf∑
k=1

C(wdf (k)) +$ε2

s.t.

[
g

w̃f
f

]T
HT

dfP
T
(
ILf
⊗ Φ̃d

)
PHdf

[
g

w̃f
f

]
≥ 0

(24)

where wdf is the future trajectory of the manifest variable
of the controlled system, C(·) is a to-be-specified cost
(e.g., reference tracking, economic cost, etc.) and $ is a
weighting. The estimation error ε between past estimation
using Hankel matrix the actual past history trajectory can
be calculated as

ε =
∥∥HM (w̃)g − w̃p

∥∥ . (25)

The future trajectory can then be computed as

w̃f = HL−M,M+1(w̃)ĝ. (26)

Note that ε = 0 has been used as a constraint to compute
g in Markovsky and Rapisarda (2008) and Berberich et al.
(2019). Such a strategy cannot be applied to the current
situation because it considers the actual trajectories dur-
ing implementation to be noise-free. A noisy trajectory
is very close but not within the behavior B and hence
can only be approximately parametrized by the Hankel
matrix. By introducing ε and the weighting into the ob-
jective, a trade-off can be carried out between the desired
performance and the accuracy of fitting into the historical
data to search for the best possible outcome with the
presence of noise. In each iteration, a vector g is computed
through optimization and the predicted future trajectory
can subsequently be deduced. The introduction of dissipa-
tivity condition guarantees that the predicted trajectory
is both from the system behavior (as it is parametrized by
the Hankel matrix) and is dissipative with respect to the
desired supply rate Φd according to Theorem 1(2). The
structure proposed in this section is very general and the
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cost C(·) can be chosen according to the control goal and
the situation at hand.

4. ILLUSTRATIVE EXAMPLE

In this section we consider the tracking control of a distil-
lation column. The goal is to regulate the temperature of
a tray near the top (y1) and another near the bottom (y2)
by manipulating liquid reflux (u1) and vapor boilup (u2).
A transfer function at an operating point is as follows:

G(s) =

 −33.89

(98.02s + 1)(0.42s + 1)

32.63

(99.6s + 1)(0.35s + 1)
−18.85

(75.43s + 1)(0.30s + 1)

34.84

(110.5s + 1)(0.03s + 1)

 (27)

The system is discretized with a sampling rate of 1 minute.
A trajectory of 100 steps is generated using random
bang-bang control to ensure persistent excitation. The
trajectory of the first input is shown in Figure 1. A
Hankel matrix with depth L = 12 is then formulated and
partitioned with M = 9, which is much higher than L(B).

0 50 100 150 200 250 300

Time(min)

-1

-0.5

0

0.5

1

L
iq

u
id

 R
e
fl
u
x

Input 1(Liquid Reflux)

Fig. 1. Random Bang-bang Control Input 1

In this case w = col(y, u), c = (y, u, r) where r is the
reference trajectory. The desired controlled behavior is
chosen as the set of trajectories satisfying the weighted

H∞ condition ‖WTer‖∞ ≤ 1 where W (z) = N(z)
d(z) is

a weighting function and Ter(z) is the transfer function
from reference to tracking error. After interconnection, the
manifest variable is then wd = col(e, u, r) where e = r − y
is the tracking error. The weighting function is then chosen
to be

W (z) =
z − 0.5

z − 0.95
I2 (28)

and therefore

QΦd
(wd) =

eu
r

T −n(ζ)n(η)I2 0 0
0 0 0
0 0 d(ζ)d(η)I2

eu
r


(29)

where n(σ) = σ − 0.5 and d(σ) = σ − 0.95. Obviously
wf = r, Kd = 1 and Lf = 2. The cost for this case is
chosen as

C(wdf (k)) = 104
∥∥ef (k)

∥∥2
+
∥∥uf (k)

∥∥2
, (30)

which means that the main focus is on the performance
of the predicted trajectory. The existence of controlled

behavior is then checked according to Proposition 2. For
this case we choose to use Qc � 0, Rc ≺ 0 in (16b) and
Φd is verified to be achievable through control.

With the references being r1 = 10 and r2 = 1, simulations
are carried out for both noise-free case and the noisy case
with noises of power -20dB added to both control in-
puts and output measurements. The control outcomes are
shown in Figure 2. As is shown in the output trajectories
in Figure 2a and Figure 2b, tracking can be effectively
achieved with or without the presence of noise.
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(a) Reference tracking using noiseless data
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(b) Reference tracking using on noisy data

Fig. 2. Simulation Results

5. CONCLUSION

In this paper, a DPC structure has been formulated to
control an LTI system parametrized by a Hankel matrix
constructed by its measured trajectories using the behav-
ioral framework. Sufficient conditions for the existence of
controlled have been developed in terms of dissipativity.
The optimization structure includes a cost function that
enables the trade-off between performance and accuracy
of data fitting and the controlled trajectory is selected
directly from the original behavioral set. A simulation
study has been carried out to illustrate the proposed
approach under input and measurement noise. Possible
future directions include the extension to the control of
nonlinear systems and distributed control of large-scale
interconnected systems.
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