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Abstract: In this work, we consider a novel adaptive hybrid pose/force control strategy for
uncertain robot manipulators capable of performing interaction tasks on poorly structured
environments. A unique hybrid control law, based on an orientation-dependent term, is proposed
to overcome the performance degradation of the feedback system due to the presence of
uncertainties in the geometric parameters of the contact surfaces. A gradient-based adaptive
law, which depends on the tracking error, is designed to deal with parametric uncertainties
in the robot kinematics and the stiffness of the environment. In our solution, the effect of the
uncertain robot dynamics is addressed by using an adaptive dynamic control based on a cascade
control strategy. The Lyapunov stability theory and the passivity paradigm are employed to
carry out the stability analysis of the overall closed-loop control system. Numerical simulations
are included to illustrate the performance and feasibility of the proposed methodology.
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1. INTRODUCTION

In the last four decades, researchers from robotics commu-
nity have developed advanced control strategies to com-
bine force/torque and position/velocity measurements in
order to allow robots to successfully perform a variety
of interaction and manipulation (I&M) tasks. Typical
examples include industrial applications (e.g., polishing,
contour following), or simple case studies (e.g., sliding on
a planar surface, turning a crank), which are described
by artificial and natural constraints of force and motion
(Villani and De Schutter, 2016). In this context, the well-
known hybrid control strategy combines force/moment
data with position/orientation information, according to
the concept of complementary orthogonal subspaces in
force and motion introduced by Mason (Mason, 1981) and
experimentally verified on a Scheinman-Stanford arm.

Robotic systems such as dual-arm robots, parallel robots,
and multi-fingered robot hands have to face different chal-
lenges such as parametric uncertainties in their kinematic
and dynamic models, compliant and rigid environments
and external disturbances (Madani and Moallem, 2011;
Ren et al., 2017). Indeed, commercial grippers and end-
effectors, commonly used to carry out interaction tasks
with poorly structured environments, have to manipulate
specialized tools with different sizes and shapes in the pres-
ence of friction forces and uncertain stiffness (Heck et al.,
2016; Kanakis et al., 2018). Following this trend, a num-
ber of force/motion control algorithms, based on adaptive
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and robust techniques or even on a combination of both,
have been developed enabling uncertainty and disturbance
compensation (Pliego-Jiménez and Arteaga-Pérez, 2015;
Solanes et al., 2018). Recently, artificial intelligence-based
algorithms have also been designed to cope with the afore-
mentioned issues but, in most of them, the lack of a
rigorous stability analysis of the overall closed-loop system
is still an open and challenging problem (Peng et al., 2019;
Rani and Kumar, 2019). Robot control architectures that
unify the interaction and motion controllers have been
developed by using a suitable combination of vision and
force sensing (Leite et al., 2009; Cheah et al., 2010), and
the presence of uncertainties in the system parameters
have also been of concern. However, in the majority of
these publications the orientation control problem were
not rigorously taken into account in the control design,
particularly when the robot motion is constrained on rigid
surfaces with nonplanar geometry and uncertain stiffness.

This manuscript is a follow-up of our previous works
(Leite et al., 2009, 2010), where the robot kinematics
and the environment stiffness were assumed to be fully
known. In this work, we address the adaptive hybrid
pose/force control problem for robot manipulators with
uncertain kinematics capable of performing interaction
tasks on contact surfaces with regular curvature. A novel
hybrid control law, based on an orientation-dependent
term, is proposed to solve the interaction problem on rigid
surfaces with uncertain geometric parameters. To deal
with the existence of parametric uncertainties in the robot
kinematics and environment stiffness, we use an indirect
adaptive kinematic control. The uncertain robot dynamics
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is also considered in the proposed solution by using a direct
adaptive dynamic control and a cascade control strategy.
The stability analysis of the overall closed-loop system
is developed based on the Lyapunov stability theory and
the passivity paradigm. Numerical simulations, with a 6-
DoF robot manipulator interacting on a cylindrical contact
surface, illustrate the performance and feasibility of the
proposed methodology.

2. ROBOT KINEMATICS

In this section, we consider the kinematic model of an n-
DoF robot manipulator in contact with the environment.
Let p∈R3 be the end-effector position with respect to the
robot base, expressed in the base frame Fb and Rbe∈SO(3)
be the rotation matrix of the tool frame Fe with respect
to the base frame Fb. Now, let q = [ qs q

T
v ]T be the

unit quaternion representation for Rbe, where qs ∈R and
qv ∈R3 are the scalar and vector parts of the quaternion
respectively, subject to the unit norm constraint qTq= 1.
In this context, the end-effector pose x∈Rm can be given
by the forward kinematics map and denoted by a vector
function as:

x =

[
p
q

]
=

[
h(θ)
g(θ)

]
, (1)

where θ ∈ Rn is the vector of manipulator joint angles.
In general, h(·) : Rn 7→ R3 and is a nonlinear mapping
between the joint space Q and the operational space O
and g(·) :Rn 7→R4 is a nonlinear function which depends
on the elements of rotation matrix (Siciliano et al., 2010).
The end-effector velocity v = [ ṗ ω ]T, composed of the
linear velocity ṗ ∈ R3 and the angular velocity ω ∈ R3,
both expressed in the tool frame Fe, is related to the joint
velocity θ̇∈Rn by the differential kinematics equation as:

v = J(θ) θ̇ =

[
Jp(θ)
Jo(θ)

]
θ̇ , (2)

where J(θ)∈R6×n is the manipulator geometric Jacobian
matrix, Jp(θ)∈R3×n and Jo(θ)∈R3×n are the position and
orientation Jacobian matrices respectively. Notice that,
the position Jacobian matrix Jp(θ) can be computed an-
alytically as Jp(θ) = (∂h(θ)/∂θ), whereas the orientation
Jacobian matrix Jo(θ) can be computed analytically as
Jo(θ)=Jr(q) (∂g(θ)/∂θ), where Jr(q) is the representation
Jacobian matrix, such as ω = Jr(q) q̇ . It is worth men-
tioning that the kinematics models (1) and (2) have the
following properties very useful for the subsequent control
design and stability analysis of any robot manipulator with
revolute joints (Siciliano et al., 2010):

Property 1. The Jacobian matrix J(θ) is bounded for all
possible values of θ, that is, ||J(θ)||∞≤ c0 for ∀θ ∈ [0, 2π]
where c0∈R+ is a positive constant.

Property 2. The forward kinematics mapping (1) can be
linearly parameterized by:

h(θ, ak) = Yh(θ) ak , (3)

and the product between the Jacobian matrix J(·) and any
measurable vector ν∈Rn can be linearly parameterized by:

J(θ, ak) ν = Yj(θ, ν) ak , (4)

where Yh(θ) ∈ R3×nk is the forward kinematics regressor
matrix, Yj(θ, ν) ∈ R6×nk is the differential kinematics
regressor matrix, ak ∈ Rnk is the vector of constant
kinematic parameters, assumed to be bounded, and nk∈N
is the number of kinematic parameters.

2.1 Kinematic Control

Now, considering the kinematic control approach, the
robot motion can be simply described by:

θ̇i = ui , i = 1, · · · , n , (5)

where θ̇i are the angular velocity of the i-th joint and
ui is the velocity control signal applied to the i-th joint
motor drive. This assumption can be applied to most
commercial robots with high gear reduction ratios and/or
when the robot motions are performed with low veloci-
ties and slow accelerations. In such cases, the effects of
nonlinear coupling terms of the robot dynamics can be
neglected and the kinematic control approach ensures a
satisfactory performance for the feedback system (Siciliano
et al., 2010). Thus, replacing (5) into (2), we obtain the
following control system:

v = J(θ)u . (6)

A Cartesian control signal vk(t) can be transformed into
joint control signals u ∈ Rn by using a simple inverse
kinematics algorithm:

u = J†(θ) vk , vk =
[
vTp vTo

]T
, (7)

where J†=JT(JJT)−1 is the right pseudo-inverse matrix
of J(θ), which is assumed to be full row rank. Therefore,
substituting (7) into (6), we have:

v = vk ⇒
[
ṗ
ω

]
=

[
vp
vo

]
, (8)

and naturally vp∈R3 and vo∈R3 are designed to control
the position and orientation of the robot end-effector
respectively. Notice that, the relationship (8) is valid if,
and only if, the following two assumptions hold: (A1) the
robot kinematics is known exactly; (A2) the control law
vk(t) does not drive the robot manipulator to singular
configurations. The failure of any of these assumptions is
a key issue in robotics, and has been widely investigated
in recent years (Leite and Lizarralde, 2016).

2.2 Pose Control

First, consider the position control problem for an n-DoF
robot manipulator. We assume that the objective of the
control design is to find a suitable control law vp(t) which
ensures that the current end-effector position p tracks a
desired position trajectory pd(t). The control goal is simply
described by: (i) p→ pd(t); (ii) ep = pd(t) − p→ 0 , where
ep ∈ R3 is the position tracking error. Thus, by using a
feedforward plus proportional control law

vp = ṗd +Kp ep , Kp=KT
p >0 , (9)

where ṗd∈R3 is the desired linear velocity and Kp∈R3×3

is the position gain matrix, the position error dynam-
ics is governed by ėp +Kp ep = 0 which implies that
limt→∞ ep(t)=0. �

Now, consider the orientation control problem for an n-
DoF robot manipulator. We assume that the objective of
the control design is to find a suitable control law vo(t)
which ensures that the current end-effector orientation R
tracks a desired orientation trajectory Rd(t). The control
goal is simply described by: (i) R → Rd(t); (ii) Rq =
RTRd(t)→ I , where Rq ∈ SO(3) is the orientation error
matrix expressed in the tool frame Fe. Notice that, taking
Rd(t)=(Rbe)d and R=Rbe yields Rq=RT

be (Rbe)d.
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Let eq = [ eqs e
T
qv ]T be the unit quaternion representation

for Rq such that eq = q−1⊗qd(t), where q and qd(t) are
the unit quaternion representation for R and Rd(t) respec-
tively, and ⊗ denotes the quaternion product operator.
Notice that, eq = [ 1 0T ]T if and only if R and Rd are
aligned. Thus, by using a feedforward plus proportional
control law

vo = ωd +Ko eqv , Ko=KT
o >0 , (10)

where ωd ∈ R3 is the desired angular velocity and Ko ∈
R3×3 is the orientation gain matrix, the equilibrium point
(eqs, eqv) = (±1, 0) is almost globally asymptotically sta-
ble. For a proof, please see (Leite et al., 2009). �

3. ADAPTIVE KINEMATIC CONTROL

From the robotics literature, it is well-known that the
kinematic and dynamic parameters of the robot arm are
modified when its end-effector is manipulating different
objects with uncertain dimensions. Other sources of un-
certainties also arise, for example, when the robot arm
is using an automatic tool changer (ATC) system, which
provides more versatility to carry out a number of service
tasks and flexibility to handle higher payloads. Thus, it
is clear that the existence of uncertainties in the robot
kinematics and dynamics is a relevant issue, which may
be addressed separately as two independent problems. In
this context, to deal with the performance degradation
and other undesirable effects caused by uncertain robot
kinematic and dynamic models, it is imperative to employ
adaptive or robust control strategies (Slotine and Li, 1991).

Remark 1. In this work, we assume that: (A3) the inac-
curacy in the robot modeling is only due to the existence
of uncertainties in its physical and geometric parameters.
Therefore, uncertainties related to measurement errors due
to offsets of the joint transducers will not be taken into
account. This means that kinematic uncertainties only
affect position and linear velocity coordinates.

Firstly, let us consider that the forward kinematics map is
uncertain. In such a case, from Property 2, the position of
the robot end-effector can be estimated by:

p̂ = ĥ(θ, âk) = Yh(θ) âk , (11)

where âk ∈ Rnk is the estimated kinematic parameter
vector. Let ε ∈ R3 be the prediction error obtained from
the difference between the estimated and the measured
positions of the robot end-effector, that is

ε = p− p̂ = p− Yh(θ) âk = Yh(θ) ãk , (12)

where ãk := ak− âk is the parametric error. Notice that,
both p and Yh(θ) are required to be measured from the
system signals. Then, the only uncertain variable in (12)
is the kinematic parameter vector âk. Thus, a gradient-
based adaptive law for updating âk is given by:

˙̂ak = Γh Y
T
h (θ) ε , Γh = ΓT

h > 0 , (13)

where Γh∈R3×nk is the adaptation gain matrix, which im-
plies that all system signals are bounded and limt→∞ ε(t)=
0. For a proof, please see (Leite and Lizarralde, 2016). �

Now, let us consider that the position Jacobian matrix
Jp(θ), computed analytically, is also uncertain. In such a
case, from Property 2, the linear velocity of the robot end-
effector can be estimated as:

˙̂p = Ĵp(θ, âk) θ̇ = Yp(θ, θ̇) âk , (14)

where Yp(θ) ∈ R3×nk is the position part of the forward
kinematics regressor matrix, and, considering only the
position control problem, the inverse kinematics algorithm
(7) takes the form:

u = Ĵ†p(θ) vp . (15)

Notice that, the direct adaptive control method can not
be applied to solve the adaptive control problem since
we can not ensure that (15) is linearly parameterized. In
this case, it is necessary to resort to the indirect adaptive
control method, which consists of estimating the uncertain
kinematic parameter and then using such an estimate to
update the Jacobian matrix and compute the control law.

From Property 2, the differential kinematics equation can
be written as:

ṗ = Ĵp(θ)u+ Yp(θ, θ̇) ãk . (16)

Then, substituting (15) into (16) and using (9), we can
show that the position error dynamics is governed by

ėp+Kp ep=−Yp(θ, θ̇) ãk . (17)

The uncertain kinematic parameter âk can also be ad-
justed by using a gradient-based adaptive law as:

˙̂ak = −Γp Y
T
p (θ, θ̇) ep , Γp=ΓT

p >0 , (18)

where Γp∈R3×nk is the adaptation gain matrix, which im-
plies that all system signals are bounded and limt→∞ep(t)=
0. For a proof, please see (Leite and Lizarralde, 2016). �

4. HYBRID POSITION/FORCE CONTROL

In this section, we consider the motion and interaction con-
trol problem for an n-DoF robot manipulator in contact
with poorly structured environments by using the hybrid
control approach (Villani and De Schutter, 2016). The
key idea behind this approach is that different directions
of the operational space O are simultaneously controlled
by using position and force measurements, according to
the concept of complementary orthogonal subspaces (Ma-
son, 1981). Thus, the position and force constraints can
be specified independently and the designed controllers
are not affected by mutual interference. In general, such
constraints are defined in a coordinate system which is
suitable for task execution, the so-called constraint frame
Fs (Siciliano et al., 2010). From appropriate selection
matrices Sp ∈ R3×3 and Sf ∈ R3×3, which define what
degrees of freedom must be controlled by position and
force, the control signals can be decoupled. Hence, the
control laws for each subspace can be separately designed
in order to achieve simultaneously different position and
force requirements for a given motion and interaction task.
Thus, the classical hybrid control law can be given by:

vh = vhp + vhf
, (19)

where vhp
∈ R3 and vhf

∈ R3 are the decoupled control
signals acting respectively in the position and force sub-
spaces, such that:

vhp
= Res SpR

T
es vp , vhf

= Res Sf R
T
es vf , (20)

where vp is the position control signal, vf is the force
control signal and Res is the rotation matrix of the
constraint frame Fs with respect to the tool frame Fe.
Notice that, from (20) the decoupling of control variables
can be carried out in the constraint space C, where the task
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is naturally prescribed and the selection matrices, Sp and
Sf , have a diagonal form with null and unitary elements.

A methodology to estimate the geometric parameters of
the contact surface in the presence of the friction force
and to reorientate the robot end-effector on the contact
surface can be found in (Leite et al., 2009, 2010).

4.1 Force Control

Consider the force control problem for an n-DoF robot ma-
nipulator equipped with a force/torque sensor. We assume
that the objective of the control design is to find a suitable
control law vf (t) which ensures that the current end-
effector force f tracks a desired force trajectory fd(t) on
a constraint surface. The control goal is simply described
by: (i) f → fd(t); (ii) ef = f−fd(t)→ 0 , where ef ∈ R3

is the force tracking error. Similarly to Hooke’s law, the
interaction force between the robot end-effector and the
environment can be given by the elastic model:

fe = Ks (p− ps) , (21)

where p is the end-effector position at the contact point,
Ks = ks I is the stiffness matrix, ks > 0 is the stiffness
coefficient, assumed to be fully known, and ps is the rest
position of the environment. Notice that, the vector of
contact force fe has the opposite direction to the vector
of end-effector force f , that is, fe = −f . From (8) and
considering vp = vf , implies that ṗ= vf . Thus, by using a
feedforward plus proportional control law

vf =K−1s (Kf ef − ḟd ) , Kf =KT
f >0 , (22)

where ḟd ∈ R3 is the time-derivative of the desired force
trajectory and Kf ∈ R3×3 is the force gain matrix, the
force error dynamics is governed by ėf +Kf ef = 0 which
implies that limt→∞ ef (t)=0. �

Remark 2. Here, without loss of generality, we assume
that the interaction force between the robot end-effector
and the environment occurs by means of a linear spring
mounted to the force sensor plate, aligned with the end-
effector approach axis. In such a case, the stiffness coef-
ficient ks of the constraint surface can be represented by
the spring constant, which is the measure of the spring’s
stiffness (Leite et al., 2009; Siciliano et al., 2010).

Then, based on the well-known Model Reference Adaptive
Control (MRAC) approach (Slotine and Li, 1991), a ref-
erence model for the desired force trajectory fd(t) can be
obtained by:

ḟm = −Λ fm + Λ fd(t) , Λ = ΛT > 0 , (23)

where fm∈R3 is the reference model output and Λ∈R3×3

is a gain matrix. From the force model (21) and the
reference model (23), an ideal force control law v∗f can be
given by:

v∗f = k−1s Λ ( f − fd ) . (24)
Defining the force tracking error as εf := f−fm , we obtain
the following force error dynamics:

ε̇f = −Λ εf + ks vf − Λ (f − fd) . (25)

Then, the usual parameterization for the direct adaptive
control is given by:

vf =Ω(f) φ̂ , Ω(f)=Λ (f − fd) , φ̂= k̂−1s , (26)

which results in

ε̇f =−Λ εf+ksṽf , ṽf =v∗f − vf =Ω(f) φ̃ , (27)

where Ω(f) ∈ R3 is the force regressor vector, φ̂ is the

estimated compliance parameter, and φ̃ := φ − φ̂ is the
parametric error. Thus, a gradient-based adaptive law for

updating φ̂ is given by:
˙̂
φ = −γf ΩT(f) εf , (28)

where γf >0 is the adaptation gain, which implies that all
system signals are bounded and limt→∞ εf (t) = 0. For a
proof, please see (Leite and Lizarralde, 2016). �

4.2 Adaptive Hybrid Kinematic Control

Consider the hybrid position-force control problem for an
n-DoF robot manipulator in contact with a constraint
surface with uncertain geometry. In such a case, the orien-
tation of the robot end-effector must be continuously up-
dated during the interaction task. Here, in contrast to our
previous work (Leite et al., 2010), we assume that the robot
kinematics and the stiffness coefficient of the constraint
surface are also uncertain. Then, the adaptive kinematic
control, developed in Section II, could be used to deal with
the system performance degradation due to the presence
of kinematic and stiffness uncertainties. Hence, considering
the hybrid position-force and orientation control problem,
the inverse kinematics algorithm (7) takes the form:

u= Ĵ†(θ) vk , vk=

[
ṽh
vo

]
, Ĵ†(θ)=

[
Ĵ†p(θ)

J†o (θ)

]
, (29)

where the novel hybrid control law

ṽh = ṽhp
+ ṽhf

, (30)

includes a new term, that depends on the end-effector
orientation, in the decoupled position and force control
signals, that is:

ṽhp
= R̂es Sp R̂

T
es vp + R̂es SpQ(ωes) R̂

T
es ep , (31)

ṽhf
= R̂es Sf R̂

T
es vf + R̂es Sf Q(ωes) R̂

T
es K̂

−1
s ef , (32)

where ωes ∈ R3 is the angular velocity of the constraint
frame Fs with respect to the tool frame Fe, assumed to
be measurable from the system signals, Q(·) is the skew-

symmetric operator and K̂s= k̂s I is the uncertain stiffness
matrix. Now, let ξp ∈ R2 be decoupled position error
and ξf ∈ R be the decoupled force error, both expressed
in the constraint frame Fs, after selecting the position
and force control directions, such that, ξTp ξp = ēTp ēp with

ēp=SpR
T
es ep and ξTf ξf = ēTf ēf with ēf =Sf R

T
es εf , where

ēp∈R3 and ēf ∈R3. Then, the following notable theorem
can be stated:

Theorem 1. Consider the closed-loop system described by
(6) and (29) with the kinematic adaptation law (18), the
hybrid control law given by (30) and (31)-(32), the position
controller (9), the force controller (26) with the adaptation
law (28), and the orientation controller (10). Assume that
the reference signal pd(t), fd(t) are piecewise continuous
and uniformly bounded in norm, and qd(t) is the unit
quaternion representation for Rd(t)∈SO(3). Then, under
the assumption (A2), the following properties hold: (i) all
signals of the closed-loop system are uniformly bounded;
(ii) limt→∞ ξp(t)=0, limt→∞ ξf (t)=0 and limt→∞ eqv(t)=
0, limt→∞ eqs(t)=±1. Thus, the overall closed-loop system
is almost globally asymptotically stable.

The proof follows from (Leite et al., 2010, Theorem 1). �
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Notice that, the aforementioned theorem allow us to es-
tablish passivity properties for the adaptive hybrid kine-
matic control scheme. Suppose the hybrid control system
is driven by a fictitious external input signal ν=[ νTp νTo ]T ,
the error system can be rewritten as:

ėp = ṗd − (vh + νp) , (33)

ėf = −ḟd − K̂s (vh + νp) , (34)

ėq = JT
r (eq) (ωd − vo − νo) , (35)

where νp = Ĵp(θ)σ and νo = Jo(θ)σ. Then, after defining
the matrices Σp =Rbs SpR

T
bs and Σf =Rbs Sf R

T
bsKs, we

can state the following corollary:

Corollary 1. Consider the error system (33)-(35), the hy-
brid control law (19) with (31) and (32), and the ori-
entation control law (10). Then, the maps Mp : νp 7→
R̂es(SpK

−1
p ēp + SfK

−1
f ēf ) and Mo : νo 7→ eqv are out-

put strictly passive with positive definite storage function
Vh = Vp + Vo given by Vh(ēp, ēf , ãk, φ̃, eqs, eqv) = ēTp ēp +

ēTf ēf + Γ−1p ãTk ãk + γ−1f |ks|φ̃2+2 ( eqs−1 )2+2 eTqv eqv .

The proof follows from (Leite et al., 2010, Corollary 1). �

5. ROBOT DYNAMICS

Now, we recall that the nonlinear robot dynamics in the
absence of friction and other disturbances can be expressed
in the joint space Q in terms of generalized coordinates as
(Siciliano et al., 2010):

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = τ − JT(θ)F , (36)

where τ ∈ Rn is the vector of actuation torques, F ∈ R6

the vector of generalized forces, that is, F = [ fT µT ]T is
the vector of forces f ∈R3 and moments µ∈R3 exerted by
the robot end-effector on the environment, M(θ) ∈Rn×n
is the manipulator inertia matrix, C(θ, θ̇) θ̇ is the torque
vector due to the action of Coriolis and centrifugal forces,
and G(θ)∈Rn is the torque vector of gravitational forces
acting at the joints. Considering the dynamic model of an
n-DoF robot manipulator (36), some notable properties
very useful for deriving control algorithms can be found in
(Siciliano et al., 2010) and some of them are presented in
the following:

Property 3. The left-hand side of (36) can be linearly

parameterized by the term Y (θ, θ̇, θ̈) ad, that is

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = Yd(θ, θ̇, θ̈) ad , (37)

where Yd(θ, θ̇, θ̈)∈Rn×nd is the dynamic regressor matrix,
ad ∈ Rnd is the vector of constant dynamic parameters,
assumed to be bounded, and nd ∈ N is the number of
dynamic parameters.

Property 4. From Property 2, the external torques acting
at the joints, due to the generalized forces, can be linearly
parameterized as

JT(θ, ak)F = Ys(θ, F ) ak , (38)

where Ys(θ, F ) ∈ Rn×nk is the static regressor matrix.
In such a case, we can show that JT

p (θ) f = Ys(θ, f) ak,
provided that only the position coordinates are affected
by kinematic uncertainties.

5.1 Cascade Control Strategy

In this section, the key idea is to introduce a cascade
control strategy to solve the hybrid position-force control

problem for a robot manipulator with nonnegligible dy-
namics. Such a control strategy can be designed simply
by cascading two passivity-based adaptive controllers, one
kinematic and one dynamic, analogous to our earlier works
on vision-based robot control (Leite et al., 2009; Leite and
Lizarralde, 2016). Then, let us assume that there exist a

dynamic control law τ = k(θ, θ̇, θd, θ̇d, θ̈d) which ensures
the control goal defined by

θ → θd(t) , e = θd(t)− θ → 0 . (39)

where e∈Rn is the joint position error vector and θd∈Rn
is the desired position trajectory previously planned in the
joint space Q and assumed to be uniformly bounded. Now,
suppose we can define θd and its time-derivatives θ̇d, θ̈d as
a function of the Cartesian control signal vk(t) such that
we have (8), except for a vanishing perturbation term w(t)
in its right-hand side as:

v = vk + w , w = J(θ)L(s) e , (40)

where L(·) denotes a linear operator, possibly non-causal,
and s is the differential operator. Then, we can conclude
that the Cartesian controller vk(t) designed to the kine-
matic control case can be applied to (40) and the stability
properties of the closed-loop control system still holds.

In this context, we can show that the hybrid position-force
control scheme based on the kinematic control approach
has passivity properties, which allows for ensuring the
closed-loop stability when it is connected in cascade with a
dynamic control scheme with similar passivity properties.
Here, we will use the general result for passive intercon-
nected control systems subject to external disturbances, as
stated in the (Leite and Lizarralde, 2016, Theorem 1).

5.2 Adaptive Dynamic Control

Now, let us consider the existence of parametric uncer-
tainties in the robot kinematics and dynamics, given by
(2) and (36) respectively. In this context, we will show
that the control design for the robot manipulator can be
derived by simply cascading the proposed hybrid position-
force scheme with a modified Slotine-Li Adaptive Control
scheme (Slotine and Li, 1991). First, we consider the fol-
lowing signals defined in the joint space Q as:

θ̇r := θ̇d − Λe , σ := θ̇ − θ̇r = ė+ Λe , (41)

where θ̇r∈Rn is a velocity reference signal and σ∈Rn is a
virtual velocity error and Λ=ΛT>0 is a gain matrix.

From Property 3 and Property 4, we assume that the
robot dynamic model (36), in the presence of parametric
uncertainties can be expressed in terms of the regressor
matrices as M̂(θ) θ̈r+Ĉ(θ, θ̇)θ̇r+Ĝ(θ) = Yd(θ, θ, θ̇r, θ̈r) âd
and ĴT(θ)F = Ys(θ, F ) âk respectively. A novel dynamic
control law can be given by:

τ = Yd(θ, θ, θ̇r, θ̈r) âd −Kd σ + Ys(θ, F ) âk + u2 , (42)

where âd∈Rnd is the estimated dynamic parameter vector,
u2 ∈ Rn is a fictitious external input, which drives the
closed-loop system and Kd=KT

d >0 is a gain matrix. The
vectors of estimated kinematic and dynamic parameters,
âk and âd, can be adjusted by using the following gradient-
based adaptive laws:

˙̂ak = −Γk
(
Y T
p ep+Y T

s σ
)
, Γk=ΓT

k >0 , (43)
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and
˙̂ad = −Γd Y

T
d σ , Γd=ΓT

d >0 , (44)

where Γk and Γd are the adaptive gain matrices for
the kinematic and dynamic parameters respectively. The
stability analysis and passivity properties of the closed-
loop system can be stated by the following theorem:

Theorem 2. Consider the robot dynamic model (36), the
dynamic control law (42) and the adaptation laws (43)
and (44). Assume that the regressor matrices Yd, Yp and
Ys are measured from the system signals. Then, the map
Md : u2 7→ σ is output strictly passive with the definite
positive storage function Vd given by 2Vd(σ, ãk, ãd) =
σTM(θ)σ + ãTkΓ−1k ãk + ãTdΓ−1d ãd and for u2 = 0, the
following properties hold: (i) all signals of the closed-
loop systems are uniformly bounded; (ii) limt→∞ σ(t)=0,
which implies that limt→∞ ė(t), e(t)=0.

For a proof, please see (Leite and Lizarralde, 2016). �

5.3 Cascade Passivity-based Systems

Now, the key idea is to apply the cascade control strategy
previously presented in (Leite et al., 2009) to generate the
reference signals for the robot dynamic control. Following
the cascade framework, we can define:

θ̇r(t) := Ĵ†(θ) vk , (45)

and by using the forward kinematics mapping (1) and the
virtual velocity error (41), the motion of the robot end-
effector in the operational space O is governed by:

v = vk + Ĵ(θ)σ + d(θ, θ̇) , (46)

where σ∈Rn can be considered as a vanishing disturbance
term, provided that from Theorem 2 it converges to zero,
and d∈R6 is a kinematic disturbance term, which depends
on the uncertain robot kinematics. Then, the cascade
strategy can be implemented by simply setting

θ̇m(t) := Ĵ†(θ) vk − Λ e . (47)

Now, considering the passivity properties of the adaptive
hybrid position-force control (see Corollary 1) and the
adaptive dynamic control (see Theorem 2) we can apply
the main result of (Leite and Lizarralde, 2016, Theorem
1) to analyze the overall stability of the interconnected
systems. The cascaded subsystems S1 and S2 are identified
by their corresponding states respectively as

x1 =[ ēTp ēTf φ̃ eTqv ]T , x2 =[ eT ėT ãTk ãTd ]T ,

and by their corresponding outputs respectively as:

y1 = ĴT
p (θ) (Σpēp + Σf ēf ) + JT

o (θ) eqv , y2 =σ ,

where d(θ, θ̇)=Yp(θ, θ̇) ãk is a bounded disturbance term.
The storage functions V1(x1) and V2(x2) are defined as

V1(x1)=Vh(ēp, ēf , φ̃, eqs, eqv) , V2(x2)=Vd(σ, ãk, ãd) .

Therefore, by using the main result of (Leite and Lizarralde,
2016, Theorem 1), we can show that (i) all signals
of the closed-loop subsystems are uniformly bounded,
(ii) ãk, φ̃, ãd ∈ L∞, (iii) limt→∞ σ(t) = 0, and conse-
quently limt→∞ ė(t), e(t) = 0, (iv) limt→∞ ēp(t), ēf (t) = 0,
limt→∞ eqv(t) = 0, and consequently limt→∞ eqs(t) = ±1,
which demonstrate the almost global asymptotic stability
of the interconnected closed-loop systems. �

6. NUMERICAL SIMULATIONS

In this section, we present simulations results to illustrate
the performance of the proposed adaptive kinematic hy-
brid control scheme. In the simulations, a 6-DoF robot
manipulator has to perform the tracking of a reference
trajectory on a cylindrical surface with uncertain stiffness
and geometry. The robot links lengths are l1 =279.4 mm,
l2 =228.6 mm and l3 =92.3 mm for links 1, 2 and 3 respec-
tively. The reference trajectory is prescribed in yz plane
and given by pd(t) = [ 0 rn cos(2ωnt) rn sin(ωnt) ]T+p(0),
where rn = 100 mm and ωn = π

5 rad s
−1 are the radius

and the angular velocity of the trajectory respectively,
with p(0) being the initial position of the end-effector
given by the forward kinematics map as p(0) = h(θ(0))
with θ(0) = [ 0 π

3
−7π
6 π −π

3
π
2 ]T rad. The control pa-

rameters are: Kp = 20 I mms−1, Kf = 40 I mms−1N−1,
Ko=10 I rad s−1, Γp=20 I and γf =2. Other parameters
are: fd = 10 N , ks = 10 N mm−1 and Λ = 2. We also
consider that the link lengths and the stiffness coefficient
have uncertainty levels around 20% and 50%, respectively.
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Fig. 1. Position, force and orientation errors.

In the numerical simulations, the end-effector orientation
was kept constant until the approaching phase ends, when
the contact point on the surface has been reached at
t = 5 s. Figures 1(a) and 1(b) describe the behavior
over time of the position and force errors respectively.
The maximum peak of position and force errors in the
steady-state were around 2.5 mm and 1.0 N , respectively.
The time history of decoupled position and force control
signals are presented in Figures 2(a) and 2(b) respectively.
Figures 1(c) and 2(c) describe the behavior over time
for the orientation error and orientation control signal
respectively. The norm of the orientation error in the
steady-state was around 2× 10−2. The tracking of the
reference trajectory, a Lissajous curve, is depicted in
Fig. 3(a), where it can be noticed that a remarkable
performance was achieved during the motion/interaction
task. In Fig. 3(b), it is depicted the trajectory followed
by the robot end-effector on an uncertain cylindrical
surface located in the workspace. The time history of the
parameter estimation is shown in Figures 3(c) and 3(d),
where it is possible to observe that a fast parametric
convergence has been achieved, less than t=5 s.
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Fig. 3. Trajectory tracking and parameter estimation.

7. CONCLUDING REMARKS

In this work, we address the adaptive hybrid pose/force
control problem for robot manipulators capable of per-
forming motion and interaction tasks on uncertain contact
surfaces. A novel adaptive hybrid control strategy, based
on an orientation-dependent term, is derived to ensure a
satisfactory system performance in the presence of uncer-
tainties in the robot kinematics. A cascade control strategy
and an adaptive dynamic control are used to consider the
uncertain robot dynamics in our solution. The stability
analysis of the overall closed-loop system is developed
by using the Lyapunov stability theory and the passivity
paradigm. Numerical simulations are included to illustrate
the effectiveness and feasibility of the proposed methodol-
ogy. In future works we intend to carry out experimental
tests with robot manipulators performing interaction tasks
on uncertain environments, and to extend the adaptive
hybrid pose/force control scheme for cooperative robots
in object manipulation tasks.
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