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Abstract: This paper proposes three different formulations of a centralized Model Predictive
Control framework to manage the logistics of continuous-flow Supply Chains subject to
fluctuating demand. The Supply Chain is modeled as a dynamical system composed of several
players handling commodities from the production phase to the retail phase. Additionally,
commodities are categorized according to their characteristics. An external control agent
continuously gathers information regarding Supply Chain operation. Using that information,
the control agent monitors the inventory of the retailer and assigns the commodity quantity
to replenish it, adopting a Model Predictive Control algorithm. Three different formulations
of the Model Predictive Control algorithm are designed based on the inventory of the
retailer: i) constant inventory, ii) dynamical heuristic inventory, and iii) dynamical control
inventory. These formulations are simulated for a Supply Chain operating under a “just-in-
time” management policy.
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1. INTRODUCTION

Continuous-flow Supply Chains refer to Supply Chains
satisfying a regular customer demand with some fluctua-
tions. Their top priority consists of operating on the lowest
possible costs by maximizing the utilization rate of their
storage and handling resources. For that reason, retail
facilities intend to store the exact amount of inventory
required to meet the expected customer demand.

Continuous-flow Supply Chains require strong cooperation
between the multiple players involved in the operation
to perform effectively. These Supply Chains guarantee
high customer service levels, however they behave poorly
when dealing with irregular demand patterns. They usu-
ally operate under a “just-in-time” management policy,
where commodities are delivered on-demand at the retail
facilities to satisfy immediate customer demand, without
intermediate inventory. This policy is commonly adopted
by necessity goods industries such as paper and low-cost
fashion industries. It can also be applied to perishable
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goods industries with short shelf-lives, such as vegetables
and dairy products.

The dimensionality and complexity of Supply Chains make
it difficult to design universal and concrete solutions to
manage them. For that reason, splitting the Supply Chain
in stages based on operational processes, and focusing
on specific network configurations has allowed researchers
to formulate and solve these problems using mainly ad-
hoc techniques (Amorim et al. 2013). Operations Re-
search (OR) field has been developing simple and efficient
heuristics, and mathematical programming formulations
to deal with these problems (Li and Marlin 2009). How-
ever, by not considering the effect of interdependent op-
erational processes and the distinct goals of the players
involved, these approaches lack a broad view of the entire
operation of Supply Chains (Min and Zhou 2002). On
the other hand, Control Theory (CT) field has also been
addressing Supply Chain Management problems. Despite
facing difficulties dealing with modeling and dimensional-
ity, optimal control techniques are able to describe clearly
the main dynamics and drivers of Supply Chains, while
controlling their operation through feedback and predic-
tive techniques (Mestan et al. 2006). Combining both OR
and CT concepts, to overcome the difficulties faced when
using both theories separately, seems to be an interesting
path to explore (Ivanov et al. 2011).
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The present paper focuses on increasing the performance
of a continuous-flow Supply Chain handling multiple com-
modities simultaneously, by modifying the formulation of
a centralized Model Predictive Control framework, respon-
sible for the flow assignment of the Supply Chain. It builds
on the previous work presented in Hipólito et al. (2017).
Hence, the Supply Chain model tracks the commodity flow
and storage along the entire chain, integrating the roles
of the distinct players. The customer demand is modeled
as a disturbance acting on the inventory of the retailer.
On top of that, a centralized Model Predictive Control
algorithm manages the commodity flow assignment of the
entire Supply Chain, aiming to control effectively the level
of the inventory of the retailer. The cost function of the
optimization problem is a linear function consisting in the
weighted sum of the commodity quantity stored at the
nodes of the Supply Chain model. In order to maintain the
linearity, the optimization of the performance is achieved
through the manipulation of the Model Predictive Control
algorithm formulation. Three formulations were designed
based on the inventory of the retailer: i) constant inven-
tory, consisting in maintaining a fixed stock level at the
retailer; ii) dynamical heuristic inventory, consisting in
adjusting the weights of the cost function at each iteration
according to the current level of the inventory of the
retailer; and iii) dynamical control inventory, consisting in
splitting the inventory of the retailer into smaller invento-
ries and assigning them different weights. The performance
of these three formulations is then simulated assuming a
Supply Chain operating under a “just-in-time” manage-
ment policy.

To sum up, the main contributions of this paper are:
i) combining CT and OR concepts to improve the per-
formance of a centralized Model Predictive framework;
and ii) designing a demand-driven approach, where sat-
isfying customer demand is the main driver of the Supply
Chain Management. This paper is organized as follows.
In Section 2, the conceptual approach and the Supply
Chain model are described. Subsequently, the centralized
Model Predictive Control framework and its three distinct
formulations are presented in Section 3. Thereafter, the
performance of the three formulations is evaluated for
a Supply Chain operating under a “just-in-time” man-
agement policy, through numerical simulation, in Section
4. Lastly, in Section 5, conclusions and future research
extensions are highlighted.

2. MODELLING

2.1 Conceptual approach

In this paper, the Supply Chain is modeled as a network
of players interacting between themselves to produce and
move commodities from the production stage to the re-
tail stage, described in detail in Hipólito et al. (2017).
Therefore, the model of the Supply Chain is based on the
following concepts:

• end-to-end flow approach - it tracks the commodity
flow from the production stage to the retail stage.
Commodities are produced at the manufacturer and
then moved to the retailer, passing through interme-
diary stages. At the retailer, commodities are con-
sumed.

• flow categorization - it categorizes commodities into
different classes according their nature - raw materials
or perishable goods -, their type - type 1 or 2 - and,
in case of perishable goods, according their time until
expiration. Raw materials are commodities that can
be used to produce perishable goods or consumed
directly at the retailer. On the other hand, perishable
goods need to be produced from raw materials and
have a limited lifetime. Besides, raw materials and
perishable goods are categorized according their type,
e.g., raw material 1 and raw material 2. Lastly, the
Supply Chain model also categorizes perishable goods
according to their time until expiration, creating flow
classes for every possible age class of a perishable
good with a specific lifetime.

2.2 Model of the supply chain

From a flow perspective, Supply Chain exhibits two main
events:

• storage - related to the ability of Supply Chain play-
ers to handle commodities at well-defined facilities.
These facilities are modeled as center nodes (see Fig-
ure 1(a));

• flow - related to the production and transport of com-
modities. Flow events are modeled using connections,
which are composed of a succession of flow nodes,
representing the steps of the flow event connecting
two center nodes (see Figure 1(b)). Connections fol-
low a pull-push flow principle, pulling commodities
from the upstream center node and pushing these
to the downstream center node. The proposed model
features two distinct types of connections:
· production connections - this type of connections

are composed of two links and one flow node.
They model the process of transforming raw
materials into perishable goods;
· transportation connections - this type of connec-

tions are composed of three links and two flow
nodes, that might represent cross-docking loca-
tions. They model the movement of commodities
between center nodes. The commodity quantity
remains constant along the transportation con-
nection, noting that, in case of perishable goods,
their time until expiration reduces.

Using the basic components presented in Figure 1, it is
possible to build the entire model of a continuous-flow
Supply Chain. Figure 2 schematically represents the model
of a Supply Chain, composed of a manufacturer, a dis-
tributor and a retailer, two production connections and
two transportation connections. Furthermore, the Supply
Chain design addresses separately the connections and
center nodes, using the following heuristic: i) connections
related to production lines are addressed first; ii) connec-
tions related to transport are addressed second; and, lastly,
iii) center nodes are addressed. All nodes and flows are
numbered sequentially from upstream to downstream.

2.3 Mathematical Representation

The model of the continuous-flow Supply Chain can be
represented using a state-space representation as:
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x(k + 1) = Ax(k) + Buu(k) + Bdd(k) (1)

y(k) = x(k), (2)

where A, Bu and Bd, are the time-invariant state-space
matrices. The state of the system x(k) represents the
commodity quantity of each flow class stored at each node.

(a) Center node;

...

Upstream Downstream

Flow node 1 Flow node 2 Last Flow node

Link 1 Link 2 Link 3 Last Link

(b) Generic connection between two center nodes.

Fig. 1. Basic components of the proposed Supply Chain
model.

1 2 3 4 5 67 8 9

Manufacturer Distributor Retailer

Production Distribution

flow of commodities

Customer
Demand

Fig. 2. Schematic representation of the model of the
continuous-flow Supply Chain.

The control action u(k) corresponds to the commodity
quantity of each flow class assigned to be moved between
nodes. The disturbance d(k) acts on the downstream
node of the Supply Chain and represents the commodity
quantity demanded by the market. The Supply Chain state
at the next time instant, x(k + 1), is calculated using (1)
and it is a function of the current Supply Chain state,
x(k), the control action, u(k), and the disturbance, d(k).
Besides, the Supply Chain is considered fully observable,
so the output of the model is the state of the system,
y(k) = x(k).

3. CENTRALIZED MODEL PREDICTIVE CONTROL

3.1 Theoretical principle

The present paper assumes the existence of a control agent,
external to the Supply Chain, communicating directly with
all players involved and gathering real-time information
regarding the operation of all nodes. This information
consists of the commodity quantity of each flow class,
the expected maximum storage capacity, the expected
transportation capacity available and the predictions on
the customer demand intensity. The control agent compiles
this data and runs a centralized Model Predictive Control
algorithm to optimize the flow assignment to implement
in the system, in order to maximize the performance of

the Supply Chain. Then, the flow assignment decisions are
communicated to the players responsible for the operation
of the nodes. Figure 3 illustrates the block diagram of
the Model Predictive Control framework, where d̃k is the
sequence vector composed of the demand vectors, for each
time sample, over the prediction horizon Np,

d̃k =
[
dT(k) , . . . , dT(k +Np − 1)

]T
(3)

x̃max,k and ũmax,k are the sequence vectors composed of
maximum storage capacity and maximum transportation
capacity vectors, respectively, for each time instant, over
the prediction horizon Np.

Supply Chain
Model

Model Predictive
Controller u(k)

d(k)

x(k)

Demand
Forecast

d̃k

x̃max,k

ũmax,k

Fig. 3. Block diagram of the model predictive control
framework.

The demand forecast module generates the sequence of
predicted customer demand. Hence, demand predictions
are assumed to be known a priori.

From a control perspective, at each time sample, the
control agent gathers information concerning the updated
state of the system and predictions on the storage ca-
pacity, transportation capacity and demand profile over
a defined prediction horizon, Np. Then, it formulates an
optimization problem considering a cost function based
on a desired performance measure and the constraints
inherent to the operation of the Supply Chain. The output
of the optimization problem is the sequence of future
control actions that optimizes the Supply Chain over the
prediction horizon Np. The first predicted control action
is implemented in the Supply Chain model and the state
of the system is updated. At the next time sample, the
process is repeated considering the updated state of the
system and new predictions (Maciejowski 2002).

3.2 Cost Function

The cost function depends on the current state of the
system, and the control actions and predicted demand,
over the prediction horizon Np. The cost function adopted
is a linear function which associates weights qi(k), i =
1, . . . , 9, to the system nodes, over the Np, intending to
minimize the cost of holding inventory. The cost function
of the model predictive control algorithm is described by:

J (x̃k) =

Np−1∑
l=0

q (k + l) x (k + 1 + l) , (4)

where x̃k is the vector composed of the state-space vectors,
for each time sample, over the Np,

x̃k =
[
xT(k + 1) , . . . , xT(k +Np)

]T
. (5)
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It is possible to increase the performance of the Supply
Chain by manipulating the formulation of the optimiza-
tion problem. The present paper presents three distinct
formulations of the centralized Model Predictive Control
algorithm based on the inventory of the retailer.

3.3 Formulation 1 - constant inventory

This formulation consists of maintaining a fixed level of
the inventory of the retailer. Hence, the weights associated
to the retailer are independent of its inventory level (see
Figure 4). The control agent continuously monitors the
inventory of the retailer and replenishes it whenever the
demand consumes it.

0

Fixed inventory level

q(x9)

x9

Fig. 4. Weights of the cost function are independent of the
level of inventory of the retailer - formulation 1.

Thus, the optimization problem to perform the Logistics
Management of the Supply Chain is formulated as follows:

min
ũk

J (x̃k) (6)

s.t. x(k + 1 + l) = Ax(k + l) + Buu(k + l) +

Bdd(k + l), l = 0, . . . , Np − 1, (7)

x(k + 1 + l) ≥ 0, (8)

u(k + l) ≥ 0, (9)

Pxxx(k + 1 + l) ≤ xmax, (10)

Puuu(k + l) ≤ umax, (11)

x(k + l) ≥ Pxuu(k + l), (12)

where ũk is the vector composed of the control actions
vectors, for each time sample, over the prediction horizon
Np,

ũk =
[
uT(k) , . . . , uT(k +Np − 1)

]T
(13)

xmax is the maximum storage capacity per node, umax

corresponds to the available transportation capacity, Pxu

is the projection from the control action set U into the
state-space set X , Pxx is the projection matrix from the
state-space set X into the maximum storage capacity set
Xmax and Puu is the projection matrix from the control
action set U into the available transportation capacity set
Umax. Constraints (8)–(12) are necessary to obtain feasible
and meaningful control actions:

• non-negativity of states and control actions: negative
storage at the nodes and negative flows of commodi-
ties are not physically possible. The non-negativity
of states and control actions is imposed by con-
straints (8)–(9);

• maximum storage capacity: each Supply Chain node
has to respect its storage capacity limits. This feature
is captured in constraint (10);

• maximum control actions: the maximum transporta-
tion capacity to move commodities between nodes is
represented by constraint (11);

• flow conservation: not all control actions that satisfy
constraints (9) and (11) are feasible. The flow of
commodities to be moved from a node must never
exceed the amount of commodities stored in that
node. Constraint (12) imposes this restriction.

3.4 Formulation 2 - dynamical heuristic inventory

Formulation 2 introduces a dynamical inventory of the
retailer, J (x9), described in Figure 5, where the weights
associated to the node of the retailer vary according to its
inventory level (see Figure 6). Although, J (x9) is a non-
linear function, it can be divided into three linear sub-
functions represented in Figure 7, where LL and HL stand
for low and high inventory limits, respectively. At each
time sample, based on the current inventory of the retailer,
one of the sub-functions is selected to be the cost function
J (x̃k) of the optimization problem. Thus, mathematically,
the formulation 2 is identical to formulation 1.

LL HL0 Max
storage

Desired
Inventory

Region

J(x9)

x9

Fig. 5. Dynamical inventory of the retailer - formula-
tions 2 and 3.

LL HL

0

Max
storage

q(x9)

x9

Fig. 6. Weights of the cost function vary according to the
level of inventory of the retailer - formulation 2.

3.5 Formulation 3 - dynamical control inventory

Formulation 3 also implements a dynamical inventory of
the retailer, J (x9), described in Figure 5. However, this
formulation splits the inventory of the retailer, x9, into
three new states, x9L, x9M and x9H (see Figure 8). The
three inventories will be sequentially filled, starting by x9L,
followed by x9M and x9H.
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LL HL0 0 0

0 ≤ x9 ≤ LL LL < x9 ≤ HL HL < x9 ≤ HL

JA (x9) JB (x9) JC (x9)

Fig. 7. Linear sub-functions of the decomposed objective
function - formulation 2.

New constraints need to be added to the optimization
problem to describe the new dynamics of the retailer:

x9L(k + 1 + l) ≤ LL, l = 0, . . . , Np − 1, (14)

x9M(k + 1 + l) ≤ HL− LL, (15)

x9H(k + 1 + l) ≤ x9max −HL, (16)

x9 = x9L + x9M + x9H (17)

Thus, the new optimization problem assumes the following
formulation:

min
ũk

J (x̃k) (18)

s.t. x(k + 1 + l) = Ax(k + l) + Buu(k + l) +

Bdd(k + l), l = 0, . . . , Np − 1, (19)

x(k + 1 + l) ≥ 0, (20)

u(k + l) ≥ 0, (21)

Pxxx(k + 1 + l) ≤ xmax, (22)

Puuu(k + l) ≤ umax, (23)

x(k + l) ≥ Pxuu(k + l), (24)

x9L(k + 1 + l) ≤ LL, (25)

x9M(k + 1 + l) ≤ HL− LL, (26)

x9H(k + 1 + l) ≤ xmax −HL, (27)

x9 = x9L + x9M + x9H (28)

6

x9

x9L

x9M

x9H

LL

LL

LL

HL

HL

HL

Fig. 8. Splitting the inventory of the retailer into three
states, each one accounting for a specific inventory
region with specific weights - formulation 3.

4. NUMERICAL EXPERIMENTS

In this section, the centralized Model Predictive Control
formulations are used to perform the Logistics Manage-
ment of a Supply Chain handling two raw materials and
two perishable goods. A “just-in-time” management pol-
icy is applied, meaning that after production, goods are
delivered as soon as possible at the retailer, minimizing
inventory at the distributor.

4.1 Scenario Description

The sampling time considered in the simulation is one day.
Four different commodities are supplied to the market:
two raw materials, M1 and M2, and two perishable goods,
G1 and G2, manufactured from the raw materials, with a
lifetime of 12 and 14 days, respectively. The commodity
quantity is measured in units. The raw materials are,
initially, available at the manufacturer. They are consumed
to produce the perishable goods in separate production
lines at the manufacturer, according to a specific ratio (see
Table 1).

Table 1. Ratio of production.

raw materials
Max due time

M1 M2

perishable goods
G1 1 1 12
G2 2 1 14

Once produced and made available at the manufacturer,
the perishable goods need to be delivered at the retailer
before expiring. Raw materials are also delivered at the
retailer and sold directly to the customers. The supply
chain storage capacity limits and handling resource avail-
ability are discriminated per commodity at each node and
connection (Table 2 and Table 3).

Table 2. Maximum storage capacity.

total
commodities

M1 M2 G1 G2

Capacity
Manufacturer 3000 1500 1400 50 50
Distributor 100 25 25 25 25
Retailer 40 10 10 10 10

4.2 Scenario Configuration

Customer selling starts 20 days after the beginning of the
simulation. Initially, there is only inventory of raw mate-
rials at the manufacturer, in a sufficiently large amount to
fulfil the demand at the retailer over the entire simulation
period. This means that all perishable goods must be pro-
duced. The market demand scenario was designed using
gamma distributions (considering the describing parame-
ters values: k = 2 and θ = 1) (Burgin 1975) to generate
the demand profiles of the four different commodities. The
customer demand profiles are assumed to be deterministic.
Furthermore, it is assumed that the predictions of the de-
mand match the demand. The inventory lower limit (LL)
at the retailer is 3 units for all commodities and the upper
limit (UL) is 6 units for all commodities.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11006



Table 3. Maximum flow capacity of connec-
tions.

total
commodities

M1 M2 G1 G2

flow nodes

node 1 3 0 0 3 0
node 2 4 0 0 0 4
node 3 20 5 6 4 5
node 4 20 5 6 4 5
node 5 20 5 6 4 5
node 6 20 5 6 4 5

connections

connection 1
1st flow 3 0 0 3 0

2nd flow 3 0 0 3 0

connection 2
1st flow 4 0 0 0 4

2nd flow 4 0 0 0 4

connection 3
1st flow 20 5 6 4 5

2nd flow 20 5 6 4 5

3rd flow 20 5 6 4 5

connection 4
1st flow 20 5 6 4 5

2nd flow 20 5 6 4 5

3rd flow 20 5 6 4 5

4.3 Numerical Results

The Supply Chain operation is evaluated using the total
amount of commodity movements performed as the per-
formance measure. Considering Np = 12, the performance
of the three distinct formulations is analyzed. All three
formulations satisfied the customer demand. However, the
operational behavior and performance of the Supply Chain
were distinct. Figure 9 shows that, although the formu-
lations present different usage of the inventory of the
distributor, the average inventory level at the distributor
is similar for all.
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Fig. 9. Storage evolution at the distributor, x8, and the
retailer, x9, for the three distinct formulations, con-
sidering Np = 12 : formulation 1 (upper left), formu-
lation 2 (upper right), formulation 3 (lower center).

Concerning the inventory of the retailer, formulation 1
behaves poorly, holding excessive inventory, while formula-
tion 2 presents an oscillating and intense inventory usage
compared to the inventory usage of formulation 3. Fur-
thermore, Table 4 presents the values of the total amount

of commodity movements for the three formulations and
confirms formulation 3 as the most effective.

Table 4. Performance analysis for the three
distinct formulations considering Np = 12.

Prediction
Horizon

Total amount of commodity movements

Formulation 1 Formulation 2 Formulation 3

Np = 12 3918 3841 3831

5. CONCLUSIONS AND FUTURE WORK

In this paper, a centralized Model Predictive Control
framework is proposed to address the Logistics Manage-
ment of continuous-flow Supply Chains. Three different
Model Predictive Control algorithm formulations are de-
signed to improve the effectiveness of the Supply Chain,
operating under a “just-in-time” management policy. The
proposed framework is modular and scalable. Therefore,
future work consists of upgrading this framework by:
i) modeling Supply Chain processes in more detail; ii) con-
sidering uncertainty in demand predictions and Supply
Chain processes; and iii) applying distributed Model Pre-
dictive Control.
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