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Abstract: In the nuclear industry it is still common to rely on tele-operated robots. Tele-
operation however can be strenuous and demanding on operating personnel and productivity can
be low without advanced HRI interfaces. Today, the world is moving towards Industry 4.0. With
that vision, this paper introduces the concept of Remotely Instructed Robots (RIRs), which are
reliable yet rely on human intelligence. RIRs can accept high and low level instructions from
the operator and execute tasks based on operators’ descriptions and at a variety of complexity
levels. The paper outlines an agent model of RIRs and furthermore, presents how it could be
implemented inside nuclear gloveboxes to achieve novel human robot interaction.
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1. INTRODUCTION

The nuclear industry has some of the most extreme envi-
ronments in the world with radiation levels and extremely
harsh conditions restraining human access to many facili-
ties (Talha et al., 2016b). Intelligent use of remote handling
techniques (Aitken et al., 2018) can facilitate safe decom-
missioning at nuclear sites when the levels of radiation
are above acceptable limits. To date, robotic systems, AI,
virtual reality and other advanced technologies for remote
handling have had very little impact on the industry, even
though it is clear that they offer major opportunities for
improving productivity and significantly reduce risks to
human health. As the main objective is to increase produc-
tivity, reduce operator strain, improve safety by reducing
the chance of human exposure to radiation and other
hazards, the nuclear industry has been taking initiatives
to bring in innovation along the lines of Industry 4.0 1 .

As safety is paramount, semi-autonomous operations are
slow in uptake in the nuclear industry. It is still common
to rely on teleoperated robotic systems. Teleoperation,
can however be strenuous on operating personnel and it
requires high volumes of training.

Industry 4.0 encompasses a paradigm shift towards smart
operations (Thoben et al., 2017), where humans are not
to be replaced by artificial intelligence, robotics and au-
tomation, rather ”their capabilities are to be enhanced by
smartly designing customised solutions”. Therefore, within
the context of Industry 4.0, industrial applications in nu-
clear need to be smarter, as they do in smart manufac-
turing (Davis et al., 2015). This will enable the processes
to achieve higher levels of safety, improved productivity
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1 https://www.gov.uk/government/news/3-million-dragons-den-
style-competition-shortlists-ideas-to-clean-up-old-nuclear-plants
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Fig. 1. The direct benefits of smart interfaces.

and reduced cognitive load of human operators, which are
essential ingredients of smart technological interfaces in
Industry 4.0 (Fig 1).

Symbiotic human robot interaction (Wang et al., 2015)
is the key to a smart robotics environment in Industry
4.0. Smart robots and collaborative interaction integrate
to form Cyber Physical Systems(CPS) Thoben et al. (2017)
rightly mentions ”Robotic CPS can enable such human-
robot collaboration with the characteristics of dynamic
task planning, active collision avoidance, and adaptive
robot control. Humans are part of the CPS design, in
which human instructions to robots by speech, signs or
hand gestures are possible during collaborative handling,
assembly, packaging, food processing or other tasks.”.

Within the realm of robotic CPS for nuclear industry,
this paper introduces the concept and an architecture
for Remotely Instructed Robots (RIRs), which are dis-
tinguished from telerobots by higher abstraction levels
of human instructions. A RIR is a mobile or stationary
robot with material handling capabilities with arm(s) and
can accept instructions by speech, gestures, VR interac-
tion, etc. from its operators and execute tasks based on
operators’ descriptions at a variety of complexity levels.
The RIR family can include intelligent glove boxes for the
nuclear industry or warehouse robots that pick up and
bring requested items. In principle, the aim of this paper
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is to strike a balance between autonomy and intelligence
(Heyer, 2010) of the human operators. The paper also
presents novel human interaction techniques and effective
communications via VR solutions.

2. AN AGENT MODEL FOR RIR

The agent model to control the RIR will be symbolized
by the tuple R = (P,A,C,K,D) where P stands for its
perception, A stands for its actions skills, C stands for its
communications skills, K denotes its knowledge represen-
tation and D denotes its decision making algorithms that
use all of P,K to decide whether to perform some physical
action by relying on A or doing a communicative act
from C. The ”mental state” of the the robot is implicitly
defined by the data in its world model held in P and its
knowledge in K that determines how it reacts to requests
of its operator.

2.1 Perception data and processes P

In the proposed agent model R, the perception P is
described by an ontology OP for classes of data structures
for the robot to model its environment. The defined data
structures are used in signal processing from sensors in
the robot’s environment (such as cameras, lidar, etc.). A
further process is for the robot to present its model of the
environment to the human operator to facilitate receiving
instructions via a smart interface.

Perception data The perception system of RIRs splits
into three parts for HRI:

P = (OP ,MP , DP )

where OP is the ontology of perception data, MP is world
modelling data with short term memory and DP is a
representation of the world model in a digital twin (Tao
et al., 2018). Modelling and memory MP contains the
current scene model and its history in the past to reflect
changes that the robot is aware of in terms of 3D graphs
to reduce the amount of storage needed.

Perception processes Perception processes are computa-
tions that convert sensor data to perception data of the
formats described above to result in MP and DP .

Perception representations Perception representations
are an innovative feature used to inform the human op-
erator of the RI robot about the robot’s ability to ”un-
derstand” its environment. The robot’s model of its envi-
ronment can be shown to the human operator, which can
reveal possible misunderstandings as well it can confirm
and hence raise operator confidence in the robot’s work.

2.2 RI robot actions A

This paper calls steps of robot activities ’actions’, which
involve some physical movement of the robot, such as
the robot moving to a new position, moving its arm into
a required position, grasping an object, carrying/moving
and placing an object, etc. A RI robot can also make moves
to enhance the quality of its world model. Hence A =
(Ah, Ap) to indicate robot movements to interact with the
physical world (Ah) and movements with the sole purpose

of improving its perception model(Ap) of the environment.
A challenge in the operation of remotely operated robots
is to quickly and unambiguously communicate where to
move and which object to grasp. This is an HRI challenge
addressed in the rest of this paper via the human operators
interaction with the scene view presented by the robot that
reflects its current knowledge of the world it operates in.

2.3 RI robot knowledge K

A most basic ability of an RI robot is its ability to
recognize a set of environmental objects or features that
are relevant to its work. Another ability it needs is to have
records about the physical and geometrical properties of
the objects recognized. Finally, it also needs to be able to
recognize damaging interactions between the objects in its
scene model.

Examples of these are the ability to recognize that an
object is not stable in its position, that its movement would
damage other objects. For instance, it would recognize that
the liquid in a container will flow out if it is knocked over.

2.4 RI robot communications C

RIRs are distinct from tele-operated robots and also from
fully autonomous robots in a way that they can perform
complex tasks and actions from abstract instructions by
the remote operator, while they are not intended to
perform long term goal oriented behaviour. The set of
actions and tasks, which can consist of a sequence of
actions, are limited to a predefined set of operational steps.
This set of operations, each of which can be invoked by
a set of instructions, is to be well known to the RIR’s
operator and clearly leaves the decisions, on what is the
next action step to perform, with the operator.

Such an approach to robot control inevitably requires that
the robots must always sufficiently inform the operators
so that they can decide what to do next. As the robot
is not equipped with complex goal oriented planning and
execution, the best it can do is to provide the operator
with as much information about the working environment
as possible, and do that in an ergonomic way, which does
not load the mind of the operator unnecessarily.

2.5 RIR’s decisions D

Decisions by RIRs are limited to how to best perform
an instructed movement or handling task and also on
decisions about what information it is likely the operator
would request to make a decision. If the operator were
to be automatically provided information through most
suitable 3D views of its perceptual model in the form of a
digital twin, then the operator would not even have to issue
past keystrokes based comments to ask for more detailed
information and could instead proceed with fast keystrokes
and pointing for robot movement and handling actions.
The robot records all past activity in terms of changes
of scenes and in data economic 3D graphs and recording
of associated action requests in its memory. When a new
scene is to work in then the memory is searched for similar
situations and the average views requested are shown to
the operator for a decision.
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Fig. 2. Decision Manager Block Diagram

By a suitable analogy of AgentSpeak-like architectures
(Lincoln and Veres, 2013; Wooldridge, 2009; Rao, 1996),
in this paper we consider an agent decision manager as
tuple:

D = {F , B, L,Π} (1)

with

• F = {p1, p2, . . . , pnp} is the set of predicates, also
called beliefs.
• B ⊂ F is the total set of beliefs. The current belief

base at time t is defined as Bt ⊂ B. Beliefs can be
added, deleted or modified as internal or external
depending on whether they are resulting from an
internal action, or from an external input, including
human input

• L = {l1, l2, . . . lnl} is a set of rules using of predicates.
• Π = {π1, π2, . . . , πnπ} is a set of executable plans in

the agent’s plans library. Applicable plans are part of
the subset applicable plan Πt ⊂ Π or ”desire set” at
time t.

The following three operations are repeated during each
reasoning cycle of the HRI.

• Maintenance of Percepts: This means generation of
perception predicates for Bt and data objects such as
the world model.

• Logic rules: A set of logic based implication rules
L, which describe reasoning to improve the agent’s
current knowledge about the world.

• HRI Response plans: A set of executable plans or plan
library Π. Each plan πj is described in the form:

pj : cj ← a1, a2, . . . , anj (2)

where pj ∈ B is a triggering predicate, which prompts
the plan to be retrieved from the plan library when-
ever it appears in the current belief base, cj ∈ B is
a logic formula of a context, which helps the agent
to check the condition of the interaction space, de-
scribed by the current belief set Bt, before applying
a particular plan sequence a1, a2, . . . , anj ∈ A with a
list of actions. Each aj can be either a predicate of an
external action (Ah) with arguments of names of data
objects or internal action ((Ap)) with a preceding +
or - sign to indicate whether the predicate needs to

Fig. 3. Typical Nuclear Glovebox

be added or taken away from the belief set Bt (3)
conditional set of items from both.

The reasoning cycle of our agent used in this paper consists
of the following steps (Figure 2):

(1) Belief base update: The belief base is updated by
retrieving information about the human-robot inter-
action space through perception and communication.

(2) Application of logic rules: The rules in L are applied
in cycles (restarting at the beginning of the list) until
there are no new predicates generated for Bt.

(3) Plan Selection: All the logic-triggered plans in Tt are
checked for their context to form the Applicable Plans
set Πt, its elements denoted by πt.

(4) Plan Executions: All plans in πt are to be exe-
cuted concurrently by going through the plan items
a1, a2, . . . , anj , possibly under logical conditions
within the plan.

3. USE CASE: RIR IN SMART GLOVEBOXES FOR
NUCLEAR DECOMMISSIONING

In the previous section we defined an agen model of RIR.
This section presents a potential use-case for the RIRs
within the paradigm of Industry 4.0. The nuclear industry
has been contemplating the use of smart gloveboxes for
nuclear decommissioning in future. Gloveboxes are very
commonly used within the industry (as shown in Figure
3) for treating nuclear waste, with current operational cost
to be estimated over £10 million. Manual glovebox oper-
ations require personnel to put their hands in dangerous
environments and as a result, they regularly come into
close proximity to nuclear materials. This makes working
within a glovebox particularly hazardous in terms of the
potential risks to a human operator.

Due to the nature of the working environment within
a glovebox, the levels of personal protective equipment
required, such as gloves and possibly respirators, an oper-
ator’s dexterity and task visibility is impaired. The envi-
ronment within a glovebox can be restrictive and cramped,
and the views provided by glovebox windows can be lim-
ited (as depicted in Figure 3).

These factors all contribute to making glovebox operation
demanding. Due to the materials being handled within
a glovebox, incidents (Rollow, 2000) that occur involving
injury can have serious long term effects.

Within the glovebox environment, one of the biggest haz-
ards to an operator is the puncturing of a glove. This
can most commonly occur due to two possible causes;
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sharp items, or items that have moving parts that can
tear or shear the glove.For all these reasons, moving ahead
with industry 4.0 and increase operational effectiveness,
the nuclear industry has been looking to make smart en-
hancements 2 of future glove box operations in a way that
operators can perform all the necessary operations from
remote locations. With the advent of sensor technologies
which could be placed or posted inside (depending on
radiation levels), the way forward is to implement multi-
joint robotic manipulators inside gloveboxes which are
capable of being operated remotely through an intuitive
and safe interface.

3.1 Related Work on Human Robot Interaction

The main uptake of the nuclear industry is tele-operated
robots to carry out remote manipulations/glovebox oper-
ations and there are multiple existing solutions (Hokayem
and Spong, 2006; Allspaw et al., 2018). Mostly hand held
controllers are in use for various tele-operations (Rakita
et al., 2018; Whitney et al., 2017), however recently, Jang
et al. (2019) developed a hands-free leap motion based
tele-operation system (Cancedda et al., 2017) where the
operator’s hand gestures are translated into movements of
the robot. There also exist exoskeleton glove interfaces (Hu
et al., 2005; Lii et al., 2010) with haptic force feedback to
remotely tele-operate robotic systems.

It is important to note that when an operator uses the
tele-robotic manipulator as a tool from a remote loca-
tion, it functions as an extension of the physical body
(Rademaker et al., 2014) and action space involves various
psychological processes such as perception, attention and
cognition (Seed and Byrne, 2010). It induces a spatial
remapping and suggests a direct expansion of the so-called
peripersonal space to the whole space reachable by the tool
(Baccarini and Maravita, 2013). However, the glovebox
operators work in shifts of 6 to 8 hours usually, and under
such circumstances hand controlled tele-robotics can cause
muscle fatigue (Nur et al., 2015) that has a direct effect
(Kahol et al., 2008) on their cognitive load. Therefore, for
achieving high productivity in interactions, we envisage
implementing an RIR prototype in gloveboxes for effective
HRI, which has the potential to improve perception of the
operators and significantly reduce their muscle fatigue.

4. RIR IN NUCLEAR GLOVEBOXES

This paper introduced the concept of Remotely Instructed
robots, which creates a balance between autonomous
robots with a long term goal and tele-operated robots
and in section 2 an agent model of RIR has been out-
lined. When these robots are implemented inside smart
gloveboxes, they would rely on human intelligence and can
accept high and low level commands (such as ”pick up
object B and place it into container C”) from the operator
and execute tasks based on operators’ descriptions and at
a variety of complexity levels. Basically the robot does not
decide on its own that it has to pick up the object B and
place into the container C. The decision is taken by the
human operator and language based instructions are fed to
the robot in the form of instructions. However, the robot

2 https://www.gamechangers.technology/challenges/gloveboxes/

needs to interpret those instructions and act accordingly.
In our RIR system, a natural language based interaction,
augmented with the virtual model of the robot (rendering
the actual robot’s status to form a digital twin) and its
working environment are presented to its operator who can
point to locations and objects within the virtual model to
complement the verbal communication.

4.1 RIR Working Environment

A proof-of-concept RIR is designed for a glovebox proto-
type that enables a human operator to operate a remote
robotic manipulator through high level instructions. The
physical system for our proof-of-concept consists of a 6
DOF robotic manipulator (UR5) and a 3 finger gripper,
placed inside the glovebox along with the sample set of
objects, which are typically nuclear materials and complex
in shapes and sizes.

Fig. 4. RIR perception Process

4.2 Sensing and Perception inside gloveboxes

As mentioned in the agent model of a RIR, a key aspect
is the robot’s perception, on which the robot can plan its
actions. A stereo vision sensor is fitted to the end effector
of the robot to provide a continuous stream of images, as
it scans its working environment. The perception system
by default can detect and recognise known objects (objects
are referred as known when they are a part of the dataset
used to pre-train the object detection model), based on a
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real-time object detection pipeline along with their object
poses. If any object is unknown to the system, it will give
an indication to the operator to manually identify the new
object and feed it to the the world modelling data stream
so that it can be automatically recognised subsequently.
Once detected, the system is able to estimate the distances
between the gripper and the detected objects, generate
a dense point cloud, segment the point cloud (Figure
5), convert the segmented point cloud into triangulated
3D meshes and apply object textures on those meshes.
This environment reconstruction data is basically the
representation of the world model, as mentioned in section
2.1. The entire process is depicted in Figure 4

As described in the agent model, the perception data is
defined in the form of an ontology, which is a hierarchical
description of data structures(Ghosh et al., 2020) and
can easily be used to configure/reconfigure the perception
process in future.

Fig. 5. Foreground object segmentation with a euclidean
clustering algorithm.

4.3 HRI interface and Representation of the World Model

Another key aspect of any remote operation is that the
operator needs situational awareness and clarity. This ne-
cessitates an effective visualisation of the remote environ-
ment. Authors of Talha et al. (2016a) highlighted that the
workload of the operators increase, when they carry out
remote tasks looking at 2D images from multiple views
and they use these images to create a 3D mental model
of the remote environment. King and Hamilton (2009) list
some of the benefits of using 3D visualisation systems for
remote operation. Therefore, for a better understanding
of the work-space, a RIR system intends to present the
complete 3D representation of the environment and a
labelled list of objects present in the environment, together
with the status of the robot in an ergonomic way. All
this data is communicated to the VR module for remote
visualisations (Figure 6). The same VR environment can
be used by operators for task planning, training and real
operations. They can foresee difficulties before performing
real operation, which primarily reduces heavy cognitive
loads on the operators.

How can the operator remotely interact with the robot?
Once the virtual environment is created and presented
to the operator, they can interact with virtual objects
within the environment. The object, which is to be han-
dled/manipulated by the robot, can be indicated using
a 3D selection technique that can either be 3D pointer
based or 3D ray based. A 3D selection is broken down into
various subtasks (object indication, selection confirmation
and feedback) (Poupyrev and Ichikawa, 1999), allowing

Fig. 6. Real and Virtual model

Fig. 7. Interaction with the environment in digital twin

the operator to quickly and precisely point at any 3D
coordinates of the 3D virtual world (3D visualisation). In
our system, a mouse pointer is used as a selection tool
(Figure 7), and an onscreen visual feedback is provided to
let the operator know that the intended selection is done.

After selecting the object of interest, the operator can
send an instruction to the robot through a voice assistant
or issue a command through console based GUI. The
commands and operator’s selection gestures within the
virtual environment are interpreted to represent a goal and
that representation is fed into decision manager (refer to
section 2.5) of the robot to execute the necessary action.

5. CONCLUSIONS

Both a theory and a laboratory implementation has been
presented for remotely instructed robots. The theory relied
on formal description of an agent model and also included
modalities of interaction with the operator. The novelty of
RIRs is the balance they create in terms autonomy level in
interactions with the operator. The robot is autonomous
in task execution but it also aids the operator’s ultimate
decision making process on what to do next. Presentation
of the robot’s own model of the work scene enables
corrections to be made by the robot, as well as it can
enhance the operator’s confidence in the robots work. RIR
based glove boxes have been presented in technical details.
Future work will focus on assessing operator experience
with our system by industrial partners and use that
information to make interface improvements.
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