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Abstract: This paper considers the network synchronization problem of nonlinear systems with
sampled-data couplings. In particular, we focus on sufficient conditions for full synchronization
of systems interconnected via sampled-data couplings. We have already derived a sufficient
condition for synchronization of two mutual coupled systems whose outputs are simultaneously
measured with the same constant sampling interval. By extending the result, in this paper, we
show that the network synchronization condition can be estimated from that of two coupled
systems by scaling the stability region with a factor related to the eigenvalues of the graph
Laplacian. Furthermore, we discuss the effect of asynchronous sampling on synchronization.
The validity of the obtained results is illustrated by numerical simulations.
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1. INTRODUCTION

Synchronization of nonlinear systems, including chaotic
systems, is still now a hot topic in the interdisciplinary
fields such as applied physics, applied mathematics, math-
ematical biology, social sciences, and control engineer-
ing(Pikovsky et al. (2003), Strogatz (2012)). In particu-
lar, synchronization in networks of nonlinear systems is
closely connected to cooperative control of multi-agent
systems (Olfati-Saber et al. (2007)) such as the con-
sensus and formation control problems of mobile robots
and unmanned aerial vehicles. Therefore, synchronization
problems have been widely investigated, ranging from the
master-slave synchronization to network synchronization,
from static couplings to delayed couplings and dynami-
cal couplings in a field of control science. Most of these
studies treated couplings that are realized as continuous-
time couplings. In many real-world applications, however,
systems are not always connected via continuous-time cou-
plings. Artifacts such as networked systems with computer
network technology are constructed by interconnecting
systems via sampled-data communication. Therefore, syn-
chronization problems of sampled-data systems have also
been investigated in recent years, and several conditions
for the master-slave synchronization based on sampled-
data are proposed with different approaches. Nevertheless,
in networks of nonlinear systems, the relationship among
the sampling period, coupling strength and synchroniza-
tion is not well understood.

In our previous work (Sakai and Oguchi (2019)), we consid-
ered the synchronization problem of two mutual coupled
? This study is partially supported by JSPS KAKENHI Grant
number JP17K06503.

systems via synchronous sampled-data couplings. As a
result, we derived a sufficient condition for synchronization
as a relationship between the coupling strength and the
sampling interval. Furthermore, the obtained condition
is similar to the synchronization condition for systems
with delayed couplings (Steur and Nijmeijer (2011)). In
this paper, we consider the synchronization problem in
networks of systems interconnected via sampled-data cou-
plings. First, we briefly review our previous results, and
then we consider the network synchronization of systems
with an undirected graph topology. Finally, we also discuss
the effect of asynchronous sampling on synchronization. As
a result, the network systems connected via asynchronous
sampled-data couplings cannot accomplish perfect syn-
chronization, but it can accomplish synchronization in the
sense of practical synchronization.

2. PROBLEM SETTINGS

We consider N identical nonlinear systems defined as
follows. For i = 1, . . . , N ,

Σi :

{
ẋi(t) = A0xi(t) + f(xi(t)) +Bui(t)

yi(t) = Cxi(t),
(1)

where xi ∈ Rn, ui, yi ∈ Rm are the state, the input,
and the output, respectively. Moreover, f(·) : Rn →
Rn is a sufficiently smooth vector field, and A0, B and
C are constant matrices with appropriate dimensions.
In addition, we assume that CB =: b ∈ Rm×m is
positive definite. Under this assumption, systems (1) can
be transformed into

Σi :

{
żi(t) = q(zi(t), yi(t))

ẏi(t) = a(zi(t), yi(t)) + bui(t)
(2)
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Fig. 1. Bidirectional sampled-data coupling.

for i = 1, . . . , N , where zi ∈ Rn−m, ui, yi ∈ Rm, q(·, ·) :
Rn → Rn−m, and a(·, ·) : Rn → Rm. Throughout this
paper, ‖ · ‖ denotes the Euclidean norm.

Furthermore, we assume that the following two assump-
tions hold.

Assumption 1. Each system (1) is strictly C1-semi-passive,
i.e., for any initial state xi(t0), there exists a radi-
ally unbounded positive definite storage function V ∈
C1(Rn,R≥0) such that

V̇ (xi(t)) ≤ y>i (t)ui(t)−H(xi(t)) (3)

where H(·) : Rn → R is a scalar positive function outside
some ball B = {xi(t) : ‖xi(t)‖ < ρ} with the constant
ρ > 0:

∃ρ > 0,∀‖xi(t)‖ ≥ ρ⇒ H(xi(t)) ≥ %(‖xi(t)‖)
for some continuous positive function %(‖xi(t)‖) defined
for ‖xi(t)‖ ≥ ρ.

Assumption 2. For the sub-dynamics żi(t) = q(zi(t), yi(t))
in each system (2), there exist a positive definite function
V0 ∈ C2(Rn−m,R≥0) and a positive constant α such that

∇V >0 (zij(t))(q(zi(t), y
∗(t))− q(zj(t),y∗(t)))

≤ −α‖zij(t)‖2 (4)

for all zi, zj ∈ Rn−m and all y∗ ∈ Rm, where zij(t) :=
zi(t)− zj(t).

Assumption 2 implies that zi(t) = zj(t) is globally asymp-
totically stable fixing as yi(t) = yj(t) = y∗(t). Then zi and
zj converge to a unique solution determined by y∗.

Initially, we assume that the outputs of systems (1) are
simultaneously measured at tk = kh for k ∈ N by
simultaneous sampling, where h ∈ R≥0 denotes a constant
sampling period. Based on the measured output yi(tk)
for i ∈ I = {1, 2, . . . , N}, each system is coupled with
other systems via the following synchronous sampled-data
couplings.

ui(t) = −σ
N∑

j=1,j 6=i

aij(yi(tk)−yj(tk)), ∀t ∈ [tk, tk+1) (5)

where σ ∈ R>0 is a common constant coupling strength
and aij corresponds to the (i, j)-element of the adjacency
matrix A of the corresponding undirected graph G with
N nodes to the network structure, i.e., if there exists a
coupling between systems i and j, then aij = aji = 1,
and otherwise aij = aji = 0. Then the network topology
of the coupled system can be characterized by the graph
Laplacian L(G) = D(G)−A(G), where D(G) and A(G) are
the degree matrix and the adjacency matrix of the graph
G, respectively.

Using the graph Laplacian L(G), the input vector u(t) =
col(u1(t). . . . , uN (t)) can be described by the following
equation.

u(t) = −σ(L(G)⊗ Im)y(tk)
where y(tk) = col(y1(tk), . . . , yN (tk)), and the notation ⊗
denotes the Kronecker product.

This coupling means that ui(t) for each system is sample-
wise constant and each system is changed the input value
at t = tk only. Figure 1 shows a block diagram of
two systems coupled by sampled-data couplings. For the
coupled systems, we define synchronization as follows.
There are several definitions of synchronization (Blekhman
et al. (1997)), but throughout this paper, we adopt the
following definition (Pogromsky et al. (2002)).

Definition 1. Consider the systems given by Eq. (1) cou-
pled via (5). Systems i and j under coupling (5) are said
to be synchronized, if ‖eij(t)‖ := ‖xi(t) − xj(t)‖ → 0 as
t→∞ for any initial conditions xi(t0) and xj(t0).

Furthermore, we introduce a notion of practical synchro-
nization.

Definition 2. Consider the systems (1) with couplings.
Systems i and j under coupling (5) are said to be practi-
cally synchronized, if there exist a class KL function such
that

‖eij(t)‖ ≤ β(‖xi(t)− xj(t)‖, 0) + ε (6)
for any initial conditions xi(t0) and xj(t0), where ε is a
positive number.

3. SYNCHRONIZATION OF COUPLED SYSTEMS
VIA SYNCHRONOUS SAMPLED-DATA COUPLINGS

In this section, we consider synchronization conditions for
networks of nonlinear systems with synchronous sampled-
data couplings. We have already derived a sufficient condi-
tion (Sakai and Oguchi (2019)) for synchronization of two
coupled systems with sampled-data bidirectional coupling
by following a derivation procedure of synchronization
condition for the conventional continuous-time coupled
systems (Pogromsky et al. (2002)). In this section, we
firstly introduce our previous results on synchronization of
two coupled systems via sampled-data couplings, and then
we consider the synchronization problem for N coupled
systems.

3.1 Synchronization condition for two mutual coupled
systems via synchronous sampled-data couplings

First, we consider the behaviors of coupled systems with
sampled-data couplings. The following theorem guarantees
the ultimate boundedness of the solution of the coupled
systems. This property means that the solution enters
a compact set in finite time independent of the initial
conditions.

Theorem 3. (Sakai and Oguchi (2019)) Consider two iden-
tical systems (1) bidirectionally coupled by (5). Sup-
pose that each system satisfies Assumption 1 with ρ and
H(xi(t)) satisfying H(xi(t))−2σ‖yi(t)‖2 > 0 for ‖xi(t)‖ >
ρ. Then, the solution of the closed-loop system (1) with (5)
is ultimately bounded.

Next, we consider the existence of synchronization mani-
fold. In order for synchronization of two coupled systems
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Fig. 2. Synchronization region indicated by Theorem 5.

to occur, the following linear manifold must be positively
invariant for the coupled systems.

M = {col(z1(t), z2(t), y1(t), y2(t)) ∈ R2n :

z1(t) = z2(t) and y1(t) = y2(t)}
Theorem 4. (Sakai and Oguchi (2019)) The linear mani-
fold M is positively invariant under the coupled systems
(2) with (5). Then M is the synchronization manifold.

Next, we show a sufficient condition for full synchroniza-
tion of the two coupled systems.

Theorem 5. (Sakai and Oguchi (2019)) Consider two sys-
tems (2) coupled bidirectionally via (5). Suppose Assump-
tions 1 and 2 are satisfied. Then, there exist positive
constants σ and γ such that the systems (2) synchronize
for any σ and h satisfying σ > σ and σh < γ.

Remark 6. Theorem 5 shows that if each system satis-
fies Assumptions 1 and 2, there exists always a region
{(σ, h)|σ > σ̄ and σh < γ̄} such that if (σ, h) is in the
region, then the coupled systems synchronize. Figure 2
illustrates the synchronization region with respect to the
coupling strength σ and the sampling interval h as the
green region. It is worth noting that the obtained synchro-
nization region has a similar shape to the synchronization
region obtained in Steur and Nijmeijer (2011) for coupled
systems with delayed couplings.

3.2 Synchronization condition for N coupled systems with
sampled-data couplings

Applying the input vector given by

u(t) = −σ(L(G)⊗ Im)y(tk) = −σ(L(G)⊗ C)x(tk),

the total dynamics of the network system is described by
the following equation.

ẋ(t) =(IN ⊗A0)x(t) + F (x(t))

− σ(IN ⊗B)(L(G)⊗ C)x(tk) (7)

where F (t) = col(f(x1(t)), · · · , f(xN (t))).

For the above network system, we derive a synchronization
condition based on the synchronization condition for two
bidirectional coupled systems with synchronous sampled-
data couplings.

First, we derive the error dynamics of two bidirectional
coupled systems with synchronous sampled-data cou-
plings. Defining the synchronization error between systems
1 and 2 as e12(t) = x1(t)−x2(t), the synchronization error
dynamics is given by

ė12(t) = A0e12(t) + ψ(x1(t), e12(t))− 2σBCe12(tk) (8)

for all t ∈ [tk, tk+1), where

ψ(x1(t), e12(t)) = f(x1)− f(x1(t)− e12(t)).

Therefore, if the zero solution of the synchronization error
dynamics of two coupled systems (8) is asymptotically
stable, then synchronization of the two coupled systems
is accomplished. Now, we assume that there exists a set
{(σ, h)} where the zero solution of the synchronization
error dynamics (8) is asymptotically stable and denote the
set as S.

Next, we consider N bidirectionally coupled systems with
synchronous sampled-data couplings. We define the syn-
chronization error as

e(t) =

 e12(t)
...

e1N (t)

 =

x1(t)− x2(t)
...

x1(t)− xN (t)


:=(M ⊗ In)x(t) (9)

where M =

 1 −1 0
...

. . .
1 0 −1

 ∈ R(N−1)×N and apply the

coordinate transformation defined by

[
x1(t)
e(t)

]
=




1 0 · · · 0
1 −1 0
...

. . .
1 0 −1

⊗ In
x(t) := (M0 ⊗ In)x(t)

(10)

to the dynamics of the total systems. Then, the total
system can be rewritten as[

ẋ1(t)
ė(t)

]
=(IN ⊗A0)

[
x1(t)
e(t)

]
+

[
f(x1)

Ψ(x1(t), e(t))

]
− σ

[
0 a12BC · · · a1NBC
0 ML(G)M+ ⊗BC

] [
x1(tk)
e(tk)

]
,

∀t ∈[tk, tk+1) (11)

where
Ψ(x1(t), e(t)) = col(ψ(x1(t), e12(t)), · · · , ψ(x1(t), e1N (t))),
M0 = M−1

0 , and M+ ∈ RN×(N−1) denotes a pseudo
inverse of M given by

M+ =


0 0

−1
. . .
. . . 0

0 −1

 ∈ RN×(N−1).

Note that (11) consists of the dynamics of x1 and the
following synchronization error dynamics.

ė(t) =(IN−1 ⊗A0)e(t) + Ψ(x1(t), e(t))

− σ(ML(G)M+ ⊗BC)e(tk),∀t ∈ [tk, tk+1) (12)

3.3 Complete graph networks

If the network structure G is the complete graph with
N nodes, which is denoted as KN , the the corresponding
graph Laplacian L(KN ) is given by

L(KN ) =


N − 1 −1 · · · −1

−1 N − 1
. . .

...
...

. . .
. . . −1

−1 · · · −1 N − 1

 ,
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and the eigenvalues are λ1 = 0 with multiplicity 1 and
λ2 = N with multiplicity N − 1. Therefore, the matrix
ML(KN )M+ in the third term on the right-hand side of
the equation (12) is

ML(KN )M+ = diag(N, · · · , N) ∈ R(N−1)×(N−1),

the synchronization error dynamics has a block-diagonal
structure and is decomposed into N − 1 identical subsys-
tems.

ė1i(t) = A0e1i(t) + ψ(x1(t), e1i(t))−NσBCe1i(tk) (13)

From this equation, we know that the synchronization
condition for the network system (7) is equivalent to the
stability condition of the origin of the decomposed equa-
tion (13). In addition, comparing the synchronization error
dynamics (8) for N = 2 with the equation (13) for N = N ,
we know that the stability region {(σ, h)} of Eq. (13) for
any N ≥ 3 is given by scaling the synchronization region
S = {(σ, h)} for N = 2 with respect to the coupling
strength σ. As a result, the synchronization region for
an N -coupled system with synchronous sampled-data cou-
plings with the complete graph structure can be estimated
by obtaining the synchronization region S for N = 2 and
scaling S by a factor 2

N over the coupling strength σ-
axis, that is, if a pair (σ, h) for the N -complete graph
network satisfies (N2 σ, h) ∈ S, we can estimate that all
of the systems in the network are synchronized for the
coupling strength σ and the sampling interval h. Based on
the above discussion, we can state the following theorem.

Theorem 7. Consider N systems (1) on a complete graph
network that are interacted with synchronous sampled-
data couplings (5). Suppose that there exists a non-empty
set S such that two coupled systems (N = 2) synchronize
for any (σ, h) ∈ S. Then the N(≥ 3) coupled systems (1)
synchronize if (N2 σ, h) ∈ S.

3.4 General network systems

Next, we consider network systems with general net-
work topologies. The matrix ML(G)M+ is not always
diagonal and in turn the error dynamics also not, but
there always exists a non-singular matrix P such that
P−1ML(G)M+P = diag(λ2, · · · , λN ), where λi are the
eigenvalues of L(G) and satisfy 0 = λ1 < λ2 ≤ · · · ≤ λN .
Linearizing Ψ(x1, e) around e = 0 and applying the coor-
dinate transformation e = (P ⊗ In)ē into (12), the syn-
chronization error dynamics can be rewritten as follows.

˙̄e(t) =(IN−1 ⊗ (A0 + ψ′(x1(t))))ē(t)

− σ(P−1ML(G)M+P ⊗BC)ē(tk),∀t ∈ [tk, tk+1)
(14)

Since P−1ML(G)M+P is diagonal, the equation (14) can
be decomposed into N − 1 independent equations as
follows.

˙̄e1i(t) = (A0 + ψ′(x1(t)))ē1i(t)− λiσBCē1i(tk) (15)

for i = 2, . . . , N .

Now we assume that each above equation is asymptotically
stable for a pair (σ, h) ∈ Si, where Si denotes the corre-
sponding stability region and the intersection S̄ =

⋂
i∈J Si

is nonempty for J = {2, . . . , N}. If (σ, h) ∈ S̄, then the
zero solution of the error dynamics (12) is locally asymp-
totically stable and eventually full synchronization in the
network is accomplished. As a result, the synchronization

region can be estimated by the intersection of the stability
regions (σ, h) for all of the systems (15). In addition,
replacing λiσ with σ̄ allows all of the systems (15) to
be identified. Therefore, the synchronization region can
also be estimated by scaling the synchronization region for
two mutually coupled systems via sampled-data couplings
depending on the eigenvalues of the graph Laplacian and
seeking the intersection of all of the scaled regions.

Theorem 8. Consider N systems (1) on networks with any
undirected graph topology. Assume that a pair (σ, h) is
in a non-empty set S̄ =

⋂
i∈J Si for J = {2, . . . , N}.

Then the zero solution of the synchronization error dy-
namics is locally asymptotically stable, and this means
that full synchronization in the network is accomplished,
i.e., x1(t) = x2(t) = · · · = xN (t) as t→∞.

4. ASYNCHRONOUS SAMPLED-DATA COUPLINGS

In this section, we consider networks of systems with asyn-
chronous sampled-data couplings. In particular, we focus
on the effect of asynchronous sampling on synchronization.

For simplicity of discussion, we consider two mutual cou-
pled systems with asynchronous sampled-data couplings.
We assume that the outputs of systems 1 and 2 are mea-
sured at sampling instants tk and t∆k = tk + ∆h, respec-
tively, where ∆h ∈ [0, h) denotes the difference between
the sampling instants for the two systems. Then the input
with zero-order hold for each system is given as follows.{

u1(t) = −σ(y1(tk)− y2(t∆k−1))

u2(t) = −σ(y2(t∆k−1)− y1(tk))
,∀t ∈ [tk, t

∆
k ) (16){

u1(t) = −σ(y1(tk)− y2(t∆k ))

u2(t) = −σ(y2(t∆k )− y1(tk))
,∀t ∈ [t∆k , tk+1) (17)

Using the Newton’s law and the mean value theorem, these
inputs can be rewritten as{

u1(t) = −σ(y1(tk)− y2(tk))− σ∆(t)

u2(t) = −σ(y2(tk)− y1(tk)) + σ∆(t)
(18)

where

∆(t) =

{
(h−∆h)ẏ2(t∆k−1 + δ) (tk ≤ t < t∆k )

−∆hẏ2(tk + δ′) (t∆k ≤ t < tk+1)
(19)

and δ ∈ (0, h −∆h], δ′ ∈ (0,∆h]. Here ∆(t) is a step-like
function. Under the inputs (16),(17), the synchronization
error dynamics between two systems is given by

ė12(t) =A0e12(t) + ψ(x1(t), e12(t))− 2σBCe12(tk)

− 2σBC∆(t).

Therefore, the effect of asynchronous sampling appears on
the synchronization error dynamics as the perturbation,
and the synchronization error dynamics does not have an
equilibrium point at the origin.

Theorem 9. Consider two systems (1) (or equivalently (2))
via the asynchronous sampled-data couplings (16) and
(17). Under Assumptions 1 and 2, there exist positive
constants σ and γ such that the systems practically
synchronize for any σ and h satisfying σ > σ and σh < γ.

Due to the limitation of the space, we do not show the
proof, but by reducing the synchronization problem to
the practical stability problem of the synchronization error
dynamics with perturbation, we derive this theorem. The
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proof itself is almost the same as the proof of Theorem
5. First, we consider the behavior of the synchronization
error dynamics in the interval [tk, tk+1). Then we show
that the synchronization error converges to the bounded
ball around the origin and the inequality (6) holds by using
the Lyapunov-Krasovskii approach and the comparison
theorem between a Krasovskii functional defined for each
sampling interval and a continuous Krasovkii functional
defined for all t ≥ 0.

5. NUMERICAL EXAMPLES

In this section, we show the validity of the results obtained
herein through numerical simulations of the Hindmarsh-
Rose neuron systems. The Hindmarsh-Rose neuron system
is given by the following mathematical model.

ẏi(t) =− ay3
i (t) + by2

i (t) + zi,1(t)− zi,2(t)

+ Em + ui(t)

żi,1(t) =c− dy2
i (t)− zi,1(t)

żi,2(t) =r(s(yi(t) +Q)− zi,2(t))

where a = 1, b = 3, c = 1, d = 5, r = 0.005, s = 4,
Q = 1.618 and Em = 3.25. Under these parameters and
ui(t) ≡ 0, this system behaves chaotically. In addition,
note that this system satisfies Assumptions 1 and 2 as
shown in Oud and Tyukin (2004).

Throughout this section, we consider Hindmarsh-Rose
neuron systems coupled via bidirectional sampled-data
couplings with sampling interval h. In addition, the initial
conditions for each system are randomly given in the range
of [0, 1] throughout all of the numerical examples in this
section.

5.1 Synchronous sampled-data couplings

First, we clarify the synchronization condition consisting
of the possible pairs of the coupling strength and the
sampling interval to achieve the synchronization of two
coupled systems. Figure 3 shows the synchronization errors
obtained by numerical simulations in the region of σ ∈
[0, 4] and h ∈ (0, 10]. In this figure, the color of each cell
corresponds to the maximum value of the synchronization
error between the systems for t ∈ [4750, 5000], which is
calculated by

c(σ, h) = max
t∈[4750,5000]

‖e12(t)‖ = max
t∈[4750,5000]

‖x1(t)−x2(t)‖.

Therefore, the dark-blue region indicates that the synchro-
nization error is almost close to zero, and the region can be
recognized as the synchronization region for this coupled
system. From this figure, we can see that the sampled-data
coupled systems synchronize for a larger coupling strength
σ than a certain threshold value depending on sampling
interval h. Compared with Figure 2, the synchronization
region shown in Figure 3 is very similar in shape.

Fig. 3. Maximum synchronization error for each (σ, h).

Next, based on this simulation result, we show the validity
of Theorems 7 and 8. First, we consider the complete
graphs with N = 2, 3, 4 nodes as shown in Figure 4. If
Theorem 7 holds, then the scaled region determined by
scaling the synchronization region for N coupled systems
with a factor 2

N over the σ-axis must coincide with
the synchronization region S for two coupled systems.
Figure 5 shows the scaled regions obtained by scaling the
synchronization regions for N = 3 and 4 with 2

N over
the σ-axis and the synchronization region for N = 2.
These regions almost coincide, and this result illustrates
the validity of Theorem 7.

Σ1 Σ2 Σ1

Σ2

Σ3 Σ4 Σ3

Σ2Σ1

Fig. 4. Complete graphs with N = 2, 3, and 4 nodes

Fig. 5. Scaled synchronization regions for N = 3 and 4 and
the synchronization region for N = 2.

Next, to show the validity of Theorem 8, we consider a
path graph with three nodes P3 as shown in Figure 6. The
corresponding graph Laplacian is

L(P3) =

[
1 −1 0
−1 2 −1
0 −1 1

]
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Σ1 Σ2 Σ3

Fig. 6. Path graph with N = 3 nodes

and the eigenvalues are 0, 1, 3. Now, we attempt to esti-
mate the synchronization region by applying Theorem 8.
In Figure 7, the red dotted line indicates the scaled re-
gion by scaling the synchronization region for two coupled
systems with a factor λmin

2 over the σ-axis, and the blue
dashed line indicates the scaled region corresponding to
λmax, where λmin is the nonzero minimum eigenvalue of
L(P3), i.e. λmin = 1, and λmax is the maximum eigen-
value, λmax = 3. Therefore, the intersection of these two
scaled regions is the estimated synchronization region for
the systems on the P3 network. On the other hand, the
black solid line indicates the synchronization region for the
network system obtained through numerical simulations.
The black line is completely overlapped with the estima-
tion. Therefore, this result indicates the effectiveness of
the estimation method of the synchronization region for
general network systems based on Theorem 8.

Fig. 7. Synchronization region for the 3-path graph net-
work and the region estimated by the proposed
method.

5.2 Asynchronous sampled-data couplings

At last, we consider the effect of asynchronous sampled-
data couplings on synchronization. Here, we consider two
mutual coupled systems via asynchronous sampled-data
couplings. Fixing the time difference between samplings
at two systems as ∆h = t∆k − tk = 0.05, the maximum
synchronization error for each (σ, h) is shown in Figure
8, which is the counterpart of Figure 3 for asynchronous
sampled-data couplings with ∆h = 0.05. Due to the
effect of asynchronous sampling, synchronization cannot
be completely accomplished, but the synchronization error
remains in the neighborhood of the origin.

Fig. 8. The maximum synchronization error for each (σ, h)
with ∆h = 0.05.

6. CONCLUSION

In this paper, we considered the synchronization problem
of coupled systems via sampled-data couplings. After a
brief review of our previous results, we showed that the
synchronization conditions in networks of systems with
undirected graph structures via synchronous sampled-data
couplings can be estimated by scaling the synchroniza-
tion condition obtained for two mutual coupled systems.
We then investigated the synchronization problem of sys-
tems with asynchronous sampled-data couplings. For asyn-
chronous sampled-data couplings, we discussed the prob-
lem from the viewpoint of practical synchronization.
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