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1. INTRODUCTION 

In comparison to linear systems, for which numerous 
identification techniques based both on gathered dada and 
current observations are known (Ljung, 1999, Ljung and 
Söderström, 1983, Söderström and Stoica, 1989), the set of 
theoretical methods of non-linear systems identification is 
considerably restricted. Meanwhile, different algorithms are 
available, whose applicability varies from non-linear system 
identification problems based on their most general 
representation in the form of functional series (Carini et al., 
2019, Jing Xingjian and Lang Ziqiang, 2015, Hung and 
Stark, 1977, Lu Lu et al., 2016, Prawin and Rama Mohan 
Rao, 2017. Schmidt et al., 2014, Wiener, 1958) to problems 
admitting use of methods developed for block-oriented 
systems, when linear and non-linear constituent components 
are pre-specified (Bianchi et al., 2020, Giri and Bai Er-Wei, 
2010, Linwei Li and Xuemei Ren, 2018, Mzyk, 2014, Piroddi 
et al., 2012, Vörös, 2014, Yinggan Tang et al., 2014, 
Zhenghao Ding et al., 2019). 

The solution to the problem of identifying systems is always 
based on the application of certain measures of the 
dependence of random values, whether we are talking about 
representing the systems under study in the form of an input-
output relation or in the state space. Most often, such a 
measure is the conventional linear covariance or correlation, 
the use of which directly arises from the identification 
problem statement on the basis of the mean square criterion. 
Their main advantage is the ease of use, including the ability 
to construct explicit analytical expressions for determining 
the required characteristics, and the relative ease of 
constructing their estimates, involving those on the basis of 
observation of the dependent data. However, the main 
drawback of measures of dependence based on linear 
correlation is, as known, the possibility of their reversal to 
zero even if there exists a deterministic dependence between 

the pair of random values under study, with corresponding 
examples being available, e.g. in (Rajbman, 1981, Rényi, 
1959). 

It is to precisely to overcome this drawback that the use of 
more complex, nonlinear measures of dependence, such as 
the dispersion function, which is an analogue of the well 
known correlation ratio, maximum correlation, and mutual 
information (that is, generically, a divergence measure of two 
probabilistic distributions, when one of which is a joint 
probability distribution of two random values, while the 
second one is the product of the marginal distributions of 
these random values), is aimed to solve identification 
problems. Moreover, the last two measures are consistent (in 
accordance to the terminology, introduced in the fullness of 
time by A.N. Kolmogorov, one can also refer to the paper of 
Sarmanov, and Zakharov (1960)) measures of dependence, 
i.e., vanishing if and only if when the random values in this 
pair are stochastically independent. This, in the first place, is 
the appeal of using maximum correlation and mutual 
information in identification problems, especially in the case 
of non-linear systems, since conventional linear measures of 
dependence possess the pointed out drawbacks. 

More frequently, when using consistent measures of 
dependence in identification problems, the case of bivariate 
probabilistic distributions is involved. In the paper, we will 
consider the problem of identifying a multidimensional 
(multi-input/multi-output, MIMO) nonlinear dynamic 
stochastic system. Moreover, the identification procedure is 
based on the use of such a measure of multiple dependence of 
vector valued random values as mutual information based on 
a corresponding symmetric Tsallis divergence. As well, an 
application of the mathematical apparatus developed to a task 
of automated process control system (APCS) functions 
regarding nuclear power plants (NPP) efficiency monitoring 
is considered. 
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2. A DISCRETE-TIME MIMO SYSTEMS 
IDENTIFICATION: AN INFORMATION THEORETIC 

APPROACH 

2.1  Symmetric Tsallis Divergence and Mutual Information 

In accordance to the statement of Ljung (2010) that the 
system identification as a science and art of constructing 
mathematical models by use of sample observations is a 
component of a versatile process, selecting the identification 
criterion under a system identification problem statement 
should be considered as a constituent part, requiring both 
accounting its relevance to available data and practical 
implementation suitability. In the present Section, an 
approach to the linearized multi-input/multi-output mapping 
identification of stochastic systems is constructed in 
accordance to information-theoretic criteria that are obtained 
on the basis of a symmetric divergence measure, built in turn, 
by use of Tsallis (Tsallis, 2009) entropy. Meanwhile, a 
parameterized description of the model of the system under 
study is applied accompanied with a technique of selecting 
system input variables to be included in the system model. A 
feature of the proposed approach is its basing on consistent 
measures of dependence of random vectors. 

A broad class of measures of dependence is constructed by 
use of corresponding measures of comparison of continuous 
probabilistic distributions, for instance, ݂ሺܢሻ and ݃ሺܢሻ of a k-
dimensional random vector ܈, which are well known as 
divergence measures. Among these measures, Kullback-
Leibler divergence 

௄௅ሺܦ ଵ݃‖݃ଶሻ ൌ െ׬ ݂ሺܢሻln ቀ
௚ሺܢሻ

௙ሺܢሻ
ቁ ோೖܢ݀   

is, perhaps, the most widely known and applicable. 

In turn, the divergence measures may be considered as a 
performance index within different theoretical and practical 
problems. In particular, Kullback-Leibler divergence leads to 
the corresponding expression for the mutual information 
,ଵ܈ሼܫ  ଶሽ (relative differential entropy) of two random vectors܈
 ,ଶ of the dimensions ݇ଵ and ݇ଶ correspondingly܈ ଵ and܈
when one of the probability distribution densities in 
ሻܢ௄௅ሺ݂‖݃ሻ, namely ݂ሺܦ ൌ ,ଵܢమሺܢభܢ݂  ଶሻ, is the jointܢ
probability distribution density of these random vectors, 
while the second one, ݃ሺܢሻ ൌ  ଶሻ, is the productܢమሺܢଵሻ݃ܢభሺܢ݃
of the marginal probability distribution densities of the 
vectors ܈ଵ and ܈ଶ. 

Analogously, corresponding Kullback-Leibler divergence 

௄௅ܦ ቀ  మ൯ቁ leads to the information theoreticܢభ݃ܢమฮ൫݃ܢభܢ݂

performance index that can be considered as a basis of 
constructing a system identification criterion, defining thus 
an information theoretic approach to the system 
identification: 

௄௅ܦ ቀ మ൯ቁܢభ݃ܢమฮ൫݃ܢభܢ݂ ൌ ,ଵ܈ሼܫ ଶሽ܈ ൌ

ൌ െ න න ,ଵܢమሺܢభܢ݂ ଶሻlnܢ
ଶሻܢమሺܢଵሻ݃ܢభሺܢ݃

,ଵܢమሺܢభܢ݂ ଶሻܢ
ଶܢଵ݀ܢ݀

ோೖమோೖభ

ൌ

ൌ ۳ቆln
,ଵܢమሺܢభܢ݂ ଶሻܢ

ଶሻܢమሺܢଵሻ݃ܢభሺܢ݃
ቇ ,

 

where ۳ሺ⋅ሻ stands for the mathematical expectation. 

In turn, as well known, the mutual information (relative 
differential entropy) is expanded in the sum of corresponding 
differential entropies. Meanwhile, there exist more general 
approaches to define the entropy of a random value / vector. 
For a k-dimensional random vector ܈ having a probability 
distribution density (pdd) ݂ሺܢሻ, Tsallis entropy of the order ߙ 
(Tsallis, 2009) is defined as 

ఈܶሺ݂ሻ ൌ
ଵ

ఈିଵ
൫1 െ ׬ ሺ݂ሺܢሻሻఈ݀ܢோೖ ൯, ߙ ൐ 0, ߙ ് 1. (1) 

Simultaneously, as ߙ tends to the infinity, ఈܶሺ݂ሻ tends to the 
expression defining the conventional differential entropy that, 
thus, may be considered as the limit case of Tsallis entropy of 
“order 1”. 

From the computational point of view, especially under the 
necessity of estimating by use of sample data, Tsallis entropy 
is commonly recognized as more attractive than the 
differential entropy, since the latter involves “integral of 
logarithm” possessing certain computational complexity, 
while Tsallis entropy does not involve logarithm et all. 

Based on the definition of Tsallis entropy (1), in the paper of 
Chenyshov (2018) a symmetric Tsallis divergence ܦఈ்ሺ݂‖݃ሻ 
of the order ߙ of probability distribution densities ݂ሺܢሻ and 
݃ሺܢሻ has been constructed. It has the form 

ఈ்ሺ݂‖݃ሻܦ ൌ
ଵ

ଶ⋅|ఈିଵ|
׬ ൫ሺ݂ሺܢሻሻఈ ଶ⁄ െ ሺ݃ሺܢሻሻఈ ଶ⁄ ൯

ଶ
ோೖܢ݀ , (2) 

and meets the following natural conditions. 

ఈ்ሺ݂‖݃ሻܦ (1 ൒ 0 for any ߙ ൐ 0, ߙ ് 1 and any probability 
distribution densities ݂ሺܢሻ and ݃ሺܢሻ. 

ఈ்ሺ݂‖݃ሻܦ (2 ൌ 0 if and only if, when ݂ሺܢሻ ≡ ݃ሺܢሻ. 

ఈ்ሺ݂‖݃ሻܦ (3 ൌ  .ఈ்ሺ݃‖݂ሻܦ

One should be noted that the third condition, the symmetry, is 
a considerable advantage in the comparison to Kullback-
Leibler divergence that is not symmetric: ܦ௄௅ሺ݂‖݃ሻ ്
 .௄௅ሺ݃‖݂ሻܦ

Again, since the above involved random vector ܈ can be 
considered as concatenation of two random vectors ܈ ൌ
ሺ܈૚

૛܈		்
்ሻ், where dim܈૚ ൌ ݇ଵ and dim܈૛ ൌ ݇ଶ, its pdd ݂ሺܢሻ 

can accordingly be considered as the joint pdd ݂܈૚܈૛ሺܢ૚,  ૛ሻܢ
of the random vectors ܈૚ and ܈૛. Simultaneously, if within 
these designations the pdd ݃ሺܢሻ is considered as product of 
two marginal probability distribution densities ݃܈૚ሺܢ૚ሻ and 
 ૛ correspondingly, then܈ ૚ и܈ ଶሻ of the random vectorsܢ૛ሺ܈݃
symmetric Tsallis divergence (2), 

ఈ்ሺ݂‖݃ሻܦ ൌ ఈ்൫ܦ  ,૛൯܈భ݃܈૛ฮ݃܈૚܈݂
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acquires the sense of a measure of dependence of the random 
vectors ܈૚ and ܈૛. Accordingly, such a measure of 
dependence is natural to be referred as symmetric Tsallis 
mutual information ܫఈ்ሺ܈૚,  of the random ߙ ૛ሻ of the order܈
vectors ܈૚ and ܈૛: 

,૚܈ఈ்ሺܫ ૛ሻ܈ ൌ
ଵ

ଶ⋅|ఈିଵ|
׬ ׬ ሺߜఈሺܢ૚, ૛ோೖమோೖభܢ૚݀ܢ૛ሻሻଶ݀ܢ ,

,૚ܢఈሺߜ ૛ሻܢ ൌ

ൌ ൫ ,૚ܢ૛ሺ܈૚܈݂ ૛ሻ൯ܢ
ఈ ଶ⁄

െ ൫݃܈૚ሺܢ૚ሻ݃܈૛ሺܢ૛ሻ൯
ఈ ଶ⁄

.

 (3) 

Meanwhile, selecting a particular magnitude of the order ߙ in 
(1) (and, correspondingly, in (3)) is of importance, since the 
larger the order is, the more complicated the calculations 
become. Within the context, the magnitude of ߙ ൌ 2, which 
quadratic symmetric Tsallis mutual information corresponds 
to, 

ଶܫ
்ሺ܈૚, ૛ሻ܈ ൌ

ଵ

ଶ
׬ ׬ ሺߜଶሺܢ૚, ૛ோೖమோೖభܢ૚݀ܢ૛ሻሻଶ݀ܢ ,

,૚ܢଶሺߜ ૛ሻܢ ൌ ,૚ܢ૛ሺ܈૚܈݂ ૛ሻܢ െ ,૛ሻܢ૛ሺ܈૚ሻ݃ܢ૚ሺ܈݃
 (4) 

is commonly recognized as the most appropriate. 

2.2  Local Multi-input/multi-output Models 

Just ܫଶ
்ሺ܈૚,  ૛ሻ from (4) will be applied as an information܈

theoretic criterion to construct an input/output model of a 
MIMO system. Namely, let a nonlinear discrete time 
dynamic system to be identified be characterized by n-
dimensional output process ܻሺݐሻ and m-dimensional input 
process ܷሺݐሻ. To model the system behavior, a linearized 
system model is considered as a totality of local models of 
the form 

෠ܻሺݐ; ߬ሻ ൌ ܹሺ߬ሻܷሺݐ െ ߬ሻ,
ݐ ൌ 1, 2, … ; 				߬ ൌ 0, 1, … , ߬௣ ൏ ∞. (5) 

In expression (5), ෠ܻሺݐ; ߬ሻ is the model output process, 
ܹሺ߬ሻ,				߬ ൌ 0,				1, … , ߬௣ stand for a coefficient ݊ ൈ݉-
matrices to be identified by use of sample observation of the 
system input and output processes, with ܹሺ߬ሻ ൌ ૙௡ൈ௠ as 
ݐ ൏ ߬. 

Within the present identification problem statement, 
information-theoretic measure of dependence (4) plays a dual 
role. As the first step, the model coefficient matrices in (5) 
are determined in accordance to the following information-
theoretic criterion based on expression (4): 

ଶܫ
்൫ܻሺݐሻ, ෠ܻሺݐ; ߬ሻ൯ ൌ ଶܫ

்ሺܻሺݐሻ,ܹሺ߬ሻܷሺݐ െ ߬ሻሻ → max
ௐሺఛሻ

,

߬ ൌ 0, 1, … , ߬௣.
 

2.3  Criterion of Involving Local Models and Constructing a 
Total Model 

As the second step, quadratic symmetric Tsallis mutual 
information (4) is applied to make decisions on final 
involvement of local models (5) in accordance to the 
following procedure. 

Let 

ܹ∗ሺ߬ሻ ൌ argmax
ௐሺఛሻ

ଶܫ
்ሺܻሺݐሻ, ܹሺ߬ሻܷሺݐ െ ߬ሻሻ,

߬ ൌ 0,				1, … , ߬௣.
 (6) 

Then, the decision on involving a corresponding local model 
(4) is to be made on accounting the magnitude of the 
corresponding measure of dependence 
ଶܫ
்ሺܻሺݐሻ, ܹ∗ሺ߬ሻܷሺݐ െ ߬ሻሻ. Meanwhile, such a decision is to 

be made by use of a corresponding normalized magnitude 
rather than that of ܫଶ

்ሺܻሺݐሻ, ܹ∗ሺ߬ሻܷሺݐ െ ߬ሻሻ in (6) directly, 
with the normalization being understood in the sense of 
taking values in the unit interval, while symmetric Tsallis 
mutual information (3) takes its values in the whole positive 
semiaxis. 

A corresponding normalization procedure is just constructing 
a mapping of the semiaxis in the unit interval, but selecting 
such a mapping is not straightforward, since, from one hand 
side, such a selection is to be justified and explained, and, 
from another hand side, there are infinitely many such 
mappings. 

Nevertheless, there exists an approach to construct a 
normalization mapping, which can be considered as 
objective, since it is based purely on properties of measures 
of dependence of random values and vectors. Namely, in 
accordance to an axiom from the commonly recognized set of 
(Rényi, 1959) axioms for measures of dependence, if in the 
case of bivariate probabilistic distribution the joint 
probability distribution between two random values is 
Gaussian, then any measure of dependence between the 
random values is to coincide with the absolute value of the 
ordinary correlation coefficient between them. 

Hence, applying the approach implies calculating symmetric 
Tsallis mutual information (4) for bivariate Gaussian 
distribution of two random values, say, ݔ and ݕ, with the 
correlation coefficient ݎ௫௬ as a function in หݎ௫௬ห, with 
subsequent inverting this function. Then straightforward 
calculations yield the following equation for หݎ௫௬ห: 

ଶܫ
்ሺݔ, ሻݕ ൌ

ଵ

଼గටଵି௥ೣ ೤
మ
െ

ଵ

ଶగටସି௥ೣ ೤
మ
൅

ଵ

଼గ
ൌ ߮൫หݎ௫௬ห൯. (7) 

As a measure of dependence of random values, the exact 
solution of equation (7) meets all axioms (Rényi, 1959) for 
measures of dependence with the exception of the axiom of 
invariance to one-to-one transformations of the random 
values. 

At the same time, as can easily be seen, the exact analytical 
solution of equation (7) cannot be derived explicitly, so a 
suitable approximation of the function ߮൫หݎ௫௬ห൯ in (7) is 
required to obtain an explicit analytical approximation of 
߮ିଵ൫หݎ௫௬ห൯. For this purpose, the addendum 

1

ඥ4ߨ2 െ ௫௬ଶݎ
 

in (7) can be substituted with a suitable constant, namely 
ሺ4ߨሻିଵ, as an approximation. The entity of selecting such a 
constant is the aim to provide meeting the following 
conditions: vanishing ܫଶ

்ሺݔ,  ݕ and ݔ ሻ if the random valuesݕ
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are independent; and tending ܫଶ
்ሺݔ,  ሻ to the infinity if theݕ

random values ݔ and ݕ are deterministically dependent. 

In accordance to these considerations, finally the expression 
for the normalization of symmetric quadratic Tsallis mutual 
information (4) follows: 

ુଶ
்ሺ܈૚, ૛ሻ܈ ൌ ට1 െ

ଵ

൫଼గ⋅ூమ
೅ሺ܈૚,܈૛ሻାଵ൯

మ. (8) 

The dependence of ુଶ
்ሺ܈૚,  ૛ሻ in (8) as a function in܈

ଶܫ
்ሺ܈૚,  .૛ሻ is displayed in Fig. 1܈

 

Fig. 1. The dependence of ુଶ
்ሺ܈૚,  ૛ሻ as a function in܈

ଶܫ
்ሺ܈૚,  .૛ሻ܈

Thus, selecting representative model input variables ܷሺݐ െ
߬ሻ,				߬ ൌ 0,				1, … , ߬௣ is implemented by the researcher on 
the basis of verifying the condition  

ુଶ
்ሺܻሺݐሻ, ܹ∗ሺ߬ሻܷሺݐ െ ߬ሻሻ ൒ ߭ሺ߬ሻ,				߬ ൌ 0,				1, … , ߬௣, (9) 

where ߭ሺ߬ሻ,				߬ ൌ 0,				1, … , ߬௣ are certain threshold values 
preset by the researcher. 

Meanwhile, within applying condition (9) in the light of 
assigning values ߭ఛ,				߬ ൌ 0,				1, … , ߬௣ it becomes 
particularly clear the importance of applying namely 
normalized values of (4), rather than their “direct” ones, since 
a value that could be recognized as rather small, and therefore 
could be neglected by the researcher, from the point of view 
of the whole positive semiaxis, reflects a considerable 
normalized value and corresponding significant quantitatively 
expressed dependence of input and output variables of model 
(4), what is evidently illustrated just by Fig. 1. 

Therefore, by virtue of all the above considerations presented 
one can write the following expression for the total model 
output process ෠ܻሺݐሻ on the basis of local models (4): 

෠ܻሺݐሻ ൌ ൫∑ జሺఛሻߟ
ఛ೛
ఛୀ଴ ൯

ିଵ
∑ ݐజሺఛሻܹሺ߬ሻܷሺߟ െ ߬ሻ
ఛ೛
ఛୀ଴ , (10) 

where 

జሺఛሻߟ ൌ ൜1, if		ુଶ
்ሺܻሺݐሻ, ܹ∗ሺ߬ሻܷሺݐ െ ߬ሻሻ ൒ ߭ఛ,

0, otherwise,
 

߬ ൌ 0,				1, … , ߬௣. 

Evidently, model (10) has a sense if at least for a one of 
߬ ൌ 0,				1, … , ߬௣ there is hold: 

జሺఛሻߟ ൌ 1. (11) 

Otherwise, the system under study should be recognized as 
unidentifiable from the researcher decision making point of 
view. From the theoretical point of view, condition (11) is 
natural to be substituted simply with the following one 

෤ఛߟ ൌ 1, (12) 

where 

෤ఛߟ ൌ ൜1, if		ܫଶ
்ሺܻሺݐሻ, ܷሺݐ െ ߬ሻሻ ൐ 0

0, otherwise
 

for at least one of ߬ ൌ 0,				1, … , ߬௣. Condition (12) means, 
thus, the condition of the theoretical identifiability of the 
system under study. 

3. AN APPLICATION WITHIN AN INFORMATION 
TASK OF ADVANCED NPP APCS 

The present Section presents the applicability of the technique 
proposed in the preceding Section within the information task 
“Calculation of technical and economical indexes” (“IT-
TEI”). “IT-TEI” is a calculation program and is a part of the 
application software of the top unit-level system (Byvaikov et 
al., 2006, Zharko, 2006) of advanced NPP APCS. Meanwhile, 
the significance of the necessity of solving this task under any 
reactor power level mode can be illustrated by the fact that no 
novel NPP APCS will be accepted by the customer for 
operation until the “IT-TEI” task will be demonstrated to be 
able to perform under any reactor power level. 

Due to the fact that there are no two identical NPP units, the 
problem arises for creating software oriented only to the 
specifics of a particular NPP unit, both in terms of hardware, 
as well as based on the available control points of 
technological parameters (Jharko, 2019). Calculation of TEI is 
the technological basis for the automated receipt of 
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information characterizing the thermal efficiency of the unit 
and equipment involved as a part of it. Wherein, thermal 
efficiency (hereinafter referred to as simply “efficiency”) is 
understood as the efficiency of using the heat generated in the 
reactor by nuclear fuel to generate electricity. 

The functional purpose of the “IT-TEI” information task is the 
implementation of processes for collecting, pre-processing 
information, determining and analyzing TEI for operational 
and reporting intervals, displaying and recording the results of 
calculation, preparation and reconfiguration of the software 
during operation. 

The operational purpose of the information task “IT-TEI” is to 
provide operational, production and technical staff of the NPP 
with the operational and reporting information on the 
operating efficiency of the technological equipment. 

“IT-TEI” is determined for the main equipment affecting the 
efficiency of the unit, as well as for the equipment whose 
status determines the operational mode of the NPP unit with 
the VVER-1000 reactor (pressurized water reactor (the water 
is both coolant and neutron moderator)) of 1000 megawatt 
power), the heat circuit diagram of which is shown in Fig. 2. 

 
Fig. 2. Heat circuit diagram of NPP unit with reactor VVER-1000.  
 

The purpose of the TEI calculation is to provide information 
for the most economical use of the equipment, forecasting its 
maintenance and repair, as well as to compile a report about 
the efficiency of the unit. 

The problem is solved for the main equipment affecting the 
efficiency of the power unit, as well as for the equipment 
whose status determines the operational mode of the unit. 

The first group includes equipment, the status of which is 
evaluated on the basis of the results of a set of tasks. It 
includes a turbine unit, including the turbine itself, high 
pressure heaters, low pressure heaters, separator 
steamoverheater, condenser; deaerator, etc. 

The second group includes equipment (pumps, valves), which 
changes the operational mode of the technological systems of 
the first and second circuit depending on their status, and 
thereby changes the TEI calculation algorithm accordingly. 
This equipment includes feed and condensate pumps, fittings 
on the feed and condensate lines, main circulation pumps, etc. 

The output data of “IT-TEI” is displayed on automated 
workstations of the unit’s operational shift managers. 

The software of the information task “IT-TEI” according to 
the type of tasks being solved is subdivided and consists of the 
following major parts: 

 providing proper calculation, analysis, and displaying TEI 
calculation results on the automated workstations 
(operates in real time); 

 providing the formation of report forms (operates in 
interactive mode); 

 providing service functions (operates in interactive 
mode). 

TEI calculation is carried out with the help of a mutually 
coordinated set of functional tasks, which includes: 

 preliminary calculations during the operational interval; 

 calculation of TEI during the operational interval; 

 sorting information by different periodic intervals; 

 TEI calculation at different intervals; 

 displaying the results of the TEI calculation. 
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All estimated technical and economic indexes are divided into 
three main groups: 

 actual indexes that characterize the efficiency levels of 
the equipment during operating conditions; 

 regulatory indexes that characterize the estimated level of 
the equipment efficiency; 

 indexes of changes in the efficiency of the power unit due 
to deviation of the actual indexes from the regulatory 
ones. 

The initial time period (sampling period) is the length of time 
between the start of two consecutive sensor polling cycles. 
The duration of the sampling period is assumed to be the same 
as the other functions of the control system. The most rational 
duration of the sampling period is 1 min for calculating TEI. 

The following time periods for which the calculation was 
performed are provided for calculating TEI: 

 an operational period of 15 minutes; 

 shift – a period equal in duration to one work shift; 

 day – a time period equal to 24 hours; 

 month – a period equal to the number of hours in a 
calendar month. 

Depending on the period at which the indexes were calculated, 
they are called operational, shift, daily and monthly, 
respectively. In addition to these indexes, it has been provided 
to obtain integral indexes on an accrual basis (progressive 
total) from the beginning of the month until as demanded 
within the period of this month. 

More than 400 analog and discrete signals are used as input 
variables for the “IT-TEI” task, and, even if at least one of 
these signals is unauthentic, it becomes impossible to obtain a 
authentic calculation of the unit’s technical and economic 
parameters in full and there is no operational conclusive 
information on the task on the workstation monitors of shift 
engineers for reactor and turbine control. As a result, only 
those output signals for which there is a full set of necessary 
authentic input signals would be calculated and displayed on 
the monitors. The task of calculating technical and economic 
indexes is strongly connected and individual input signals 
(both discrete as well as analog) are involved in the 
calculation of a sufficiently large number of output signals 
and their unauthentic nature (for example, consumption of 
chemically demineralized water in turbine condensers) can 
lead to exclusion from the calculation of up to 30 % of the 
output signals of the task associated with this unauthentic 
signal. Fig. 3 shows an example of output data results to a 
video frame of an incomplete calculation (fields painted in 
crimson show the value fields for which there was no 
complete set of authentic input signals). 

At the same time, during set up and commissioning it was 
necessary for at least certain partial data information output of 
the tasks in order to: 

 diagnose both equipment malfunction and equipment 
inconsistencies with ranges of analog signal changes; 

 determining the cost-effectiveness of equipment in use. 

 

Fig. 3. Example of output of incomplete calculation of “IT-
TEI” problem to a video frame. 

Consequently, the task arose of decomposing the problem into 
input signals and establishing the influence of these signals on 
the output signals (see Fig. 4). 

 

Fig. 4. Example of calculation decomposition. 

To implement such a decomposition, applying the technique 
proposed, which is based on involving a consistent measure of 
dependence, quadratic symmetric Tsallis mutual information, 
between input and output signals is just the way to the 
required solution. Namely, applying of a model of the form 
defined by expression (10) enables one to elicit the available 
impact of input signals in output ones in a maximally flexible 
and comprehensive, but, simultaneously, a unified and concise 
manner due to the procedure of model (10) construction. 
Meanwhile, several type models are constructed in accordance 
to a requirement of the representation/displaying needs, 
namely ones calculated for different sampling periods in 
accordance to the time periods mentioned above, namely: 
operational period, shift, day, and month. Thus, applying the 
technique proposed in Section 2 enables one to exclude the 
case of elimination of essential interconnections between 
input and output signals due the properties of quadratic 
symmetric Tsallis mutual information involved in 
constructing model (10). 
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4. CONCLUSIONS 

In the paper, a problem of identifying a multidimensional 
nonlinear dynamic stochastic system has been considered. 
Within the approach proposed, the identification procedure is 
based on the use of such a measure of dependence of vector-
valued random processes as symmetric Tsallis mutual 
information constructed in (Chernyshov, 2018) on the basis of 
the Tsallis entropy definition (Tsallis, 2009). 

From an industrial application point of view, model of the 
(10) class is involved as an algorithmic tool within an 
information task of advanced NPP APCS intended to monitor 
the power unit efficiency under the conditions, when direct 
calculations based on real physical data cannot be 
implemented just due to the reasons that these data are 
recognized as unauthentic. 
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