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Abstract: We demonstrate the application of automated machine learning to the problem of identifying 

dynamic process models using recurrent neural networks (RNNs). The general concept relies on continu-

ous monitoring of input-output data from a plant and the processing of this data by a collection of algo-

rithms. The data is first processed by a collaborative filtering system, which suggests a classification of 

system dynamics per output channel. The proposed classification and the number of input channels is used 

to initialize a search over RNN hyperparameters. The search algorithm uses subsets of historical data for 

training and validation to select the RNN architecture and determine the network parameters according to 

preselected objectives for balancing model accuracy and model compactness. The proposed approach is 

demonstrated on a simulated case study for online system identification of a chemical reactor, where the 

underlying dynamic characteristics of the simulated system are changed during the simulation as the sys-

tem undergoes a number of disturbances and handles control tasks. Process models for the system in ques-

tion are obtained via the automated machine learning approach and the models are updated as the system 

dynamics change. The results show good prediction accuracy of the models throughout the simulation 

representing changes in system dynamics. 

 

1. INTRODUCTION 

Operator room staff of large industrial complexes such as 

refineries, chemical plants, or pulp and paper mills have re-

petitive, stressful, and difficult jobs. It is becoming more and 

more difficult to replace retiring personnel and, given the 

aging workforce in most developed countries, the situation is 

expected to lead to a shortage of skilled labor. The operators 

play a very critical role for these plants as the existing auto-

mation systems are generally built with an assumption of 

having supervising human operators. At the same time, sta-

tistically the leading cause of unexpected shutdowns in these 

facilities is operator error, and such shutdowns, given the 

massive inertia in these operations, often means several 

hours if not days of outage and hundreds of thousands of 

dollars in lost revenues. These observations are strongly mo-

tivating research and development of intelligent systems, 

which could substitute or at the very least assist human oper-

ators to increase their productivity to counter the shortage of 

co-workers and at the same time minimize the risk of errors 

and therefore human error related shutdowns. Addressing 

this challenge requires investigation in multiple dimensions. 

Since industrial processes operate most of the time under 

normal conditions, the first aspect to address would be to 

look at the base automation tasks and substitute the in-

volvement and intervention of operators within highly ex-

pected scenarios of disturbances and operational changes. 

This can be considered analogous to highway driving in au-

tonomous driving systems but rolling out an autonomous 

plantwide solution is non-trivial and will require significant 

engineering effort for every plant when using current state-

of-the-art methods. Machine learning (ML) solutions that 

learn from past operator responses and historical data could 

be a more scalable and economically feasible alternative 

(Mercangöz et al., 2019).  

At a very high level two different approaches can be con-

sidered when using ML to handle the challenges described 

above. The first approach would be the consideration that it 

is easier to learn control policies directly from data, rather 

than learning a model. Ongoing attempts at learning to di-

rectly control, optimize, and operate systems are using ap-

proaches like imitation learning, machine teaching, or rein-

forcement learning (Spielberg et al., 2017; Zhu, 2015; Evans 

et al., 2016; Kober&Peters, 2010). Although these approach-

es have certain advantages like exploiting the possibility of 

only learning the relevant components of a system for the 

tasks at hand, most of the demonstrated solutions utilize a 

simulation environment to generate the massive experiments 

and datasets required to learn the control policies, which is 

not feasible to carry out in real-world systems for various 

reasons and reliable simulations are typically not available 

for large scale process systems especially for those, whose 

behavior tends to change in time due to a wide variety of in-

ternal and external factors (such as catalyst poisoning, which 

is used in the case study of this article). 
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The second approach for utilizing data driven methods for 

process operations is to follow a two-step procedure of mod-

el learning followed by the desired application such as mod-

el based control, optimization, or process monitoring. This is 

also the approach followed in this article, as it forms a basis 

for explicit analysis to provide insights into the potential de-

cisions coming from systems using the models, which is typ-

ically lacking in the former approach of direct decision mak-

ing from data. The model learning process corresponds to 

solving the system identification problem (Ljung et al., 

2011) and given the original motivation our focus is the pos-

sibility to treat any system-of-interest, which rules out many 

techniques, which are limited in system properties e.g. only 

applicable to linear time-invariant systems (Coulson et al., 

2019) or which have unfavorable scaling properties like 

Gaussian process models (Chan et al., 2013). Artificial Neu-

ral Networks (ANNs) are by now established as very power-

ful universal function approximators and although they are 

inferior in some respects to other approaches (e.g. they can-

not provide calibrated uncertainty output) they scale very 

well and there is growing support for both software and 

hardware implementations, which makes them attractive for 

industrial applications. For approximating the behavior of 

dynamic systems there are two possibilities for using ANNs: 

(i) utilization of an explicit memory in an autoregressive 

form or (ii) utilization of an implicit memory using a recur-

sive structure within the ANN resulting in what is referred to 

as recurrent neural networks or RNNs. Generally, RNNs 

outperform feedforward networks in representing dynamic 

behavior for similar number of parameters. As an example, 

Fig. 1 shows a comparison of validation plots for open-loop 

predictions of the output variable in the case study later to be 

introduced in this article with NARX and RNN models. 

RNNs were recognized early on as a suitable approach for 

modeling dynamic systems (Funahashi &Yuichi, 1993) and 

there are numerous articles published using these structures 

for various control systems applications (Pan & Wang, 2011; 

Yan&Wang, 2012; Lanzetti et al., 2019; Patan, 2014). 

Since the motivation of the present article is the develop-

ment of solutions toward autonomous operations, having a 

basic method for learning system dynamics alone is not 

enough. Therefore, in this paper, we tackle the problem of 

autonomous learning of unknown system dynamics, where 

the dynamic system in consideration can be subject to 

changes over time. In Section 2, we provide the concept of a 

superstructure that can be used for autonomous model learn-

ing and discuss the various components and the possible 

technologies that can be used in this superstructure, includ-

ing an automated ML component for neural architecture se-

lection. In Section 3 we consider in detail the automated ML 

component and present in detail, how such an algorithmic 

step can be implemented. Finally, in Section 4 we present a 

case study where we deploy a reduced version of the auton-

omous model learning superstructure (AMLS) for predicting 

the discharge concentration of a simulated chemical reactor. 

2. AUTONOMOUS MODEL LEARNING 

We will pose the autonomous model learning problem for 

a so-called brownfield setting. This entails that at the initial 

step historical data will be available for the inputs and out-

puts of the plant in consideration. In the best possible case, 

the historical data will be frequency rich to learn a satisfacto-

ry model and assuming the resulting applications created 

from the learned models provide a similar persistency of ex-

citation, relearning of the models will also be possible from 

historical data as the system experiences changes over time. 

If this is not the case, an interaction with the system via the 

inputs to generate the necessary output data will be required 

and this will then be equivalent to starting with a greenfield 

plant, where no historical data is present. 

Fig. 1. Open-loop predictions using validation data for 
changes in product concentration in a chemical reactor us-
ing a NARX NN (20 hidden neurons and 4 step delay for 
inputs and measurements) and an RNN (10 hidden neurons 
with 4 recurrent layers) 
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Fig.2 shows the general arrangement of the functions 

needed in the AMLS. A combination of six distinct compo-

nents are envisioned to provide the necessary functionality. 

The flow of information and the execution of the different 

tasks are carried out in the following order: 

1. Plant data is ingested by the data preparation block, 

which carries out various filtering tasks including 

outlier removal and missing data imputation. Data 

preparation block can also be envisioned to scan 

over large time series signals to seek frequency rich 

periods corresponding to start-ups, shut-downs, or 

grade changes. Data is also organized here to form 

batches of training and validation sets. 

2. The training data is received by the neural architec-

ture optimization block, where the data is processed 

first by a classification algorithm, which is linked to 

a model bank containing models and corresponding 

architecture parameters. This classification provides 

an initial guess to start the architecture optimization 

process. 

3. The training data and the model architecture is pro-

vided to a model training block, which comes up 

with a parametrization corresponding to the provid-

ed architecture. The training data can be further 

split into multiple batches by this block depending 

on the underlying algorithms and the software used. 

The model training block will also control the train-

ing process according to default or user specified 

AMLS parameters, which determine among others 

termination criteria or number of repeated trainings 

with different initial guesses for the parameter op-

timization 

4. The trained model and validation data are provided 

to a model validation block, which simulates the 

provided model with validation input data and 

compares simulation results with the validation 

output data to generate validation results. The vali-

dation results can contain various key performance 

indicators (KPIs) such as integral errors, maximum 

deviations, or other criteria of importance. 

5. The validation KPIs and the trained model are re-

ceived by the neural architecture optimizer, which 

assesses based on the overall targets, if the model is 

satisfactory, if it needs to be further optimized, or if 

the optimization process needs to be terminated due 

to training data deficiency. The model and the in-

termediate results are also saved at the model bank. 

If the model is satisfactory, the model is provided to 

applications downstream of the AMLS. 

6. If a data deficiency is detected the experiment de-

sign block is executed. It is envisioned that this 

block will not only come up with the plant testing 

plan, but it will also carry out and monitor the plant 

testing effort in coordination with the various con-

trol and optimization loops for manipulating the 

plant inputs. This block is not further discussed in 

this paper and is one of the subjects for future work. 

7. Finally, the model validation block takes on the task 

of validating the existing model continuously with 

new validation data and in case a significant drop in 

validation KPIs is detected a new cycle will be 

started to relearn a new model 

 

Fig. 2. The AMLS with six distinct components is shown. The arrows and the associated text represent the infor-
mation flow and the boxed elements represent the components with the processing and storage tasks 
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As noted in the description of the workflow, there are also 

configuration parameters, which will specify the thresholds 

used in the automated evaluation of the plant data by the 

AMLS. These parameters can be provided or adjusted exter-

nally by plant operators or a default setting can be consid-

ered to have a completely autonomous system. The details of 

such configuration options will not be discussed here as the 

purpose in this section is to provide the AMLS at a concept 

level. The details of the experiment design block of the 

AML is also not discussed in this paper. The question on 

how the existing historical data or the unsuccessful modeling 

attempts can be used in the experiment design are not con-

sidered. However, there is considerable prior work in this 

area and interested readers can follow e.g. Hjalmarsson, 

Gevers, & De Bruyne, 1996; Forssell & Ljung, 2000; Rojas 

et.al., 2007; Bavdekar & Mesbah, 2016. A detailed discus-

sion of the neural architecture optimization step is provided 

in the next section. 

3. NEURAL ARCHITECTURE OPTIMIZATION 

As discussed in the introduction, when it comes to model-

ing time-series data, RNNs enjoy several advantages over 

other methods such as high scalability and capability of 

modeling multiple-output data. Because an RNN simulates a 

discrete-time dynamical system, it has the build-in capability 

of modeling sequential data, which is typically not offered 

by other variants of neural networks. At the same time 

RNNs have the disadvantage of being more difficult to han-

dle in the training, mainly due to vanishing or exploding 

gradients. Therefore, it is important to have a good guess for 

hyperparameters. Therefore, we are considering the problem 

of how to suggest RNN hyperparameters for unseen time-

series. The hyperparameters we consider are: the number of 

recurrent units (R) and the number of layers (N) for a fully 

connected architecture specifically in the form of so called 

“Elman Network” (Elman, 1990). In this paper we will focus 

on these two parameters, however the idea can be extended 

to different machine learning models and model structures. 

We also only consider multiple-input-single-output (MISO) 

systems in the current paper to show the feasibility of the 

approach as multiple-input-multiple-output (MIMO) systems 

can be considered as a collection of MISO systems, where 

the state and hence output interactions are assumed to be 

captured by the RNNs. 

The problem at hand is composed of finding a pair of R 

and N for an unseen time-series such that the model com-

plexity is acceptable while having a good prediction accura-

cy of the model. This trade-off needs to abstract the system 

complexity arising from system delays, nonlinearities, inter-

nal states, etc. and find a model structure that is large enough 

to be able to predict the system output. If R and N are chosen 

too small, the model will not be able to capture the dynam-

ics, whereas if R and N are excessively large the prediction 

performance will either saturate or worsen depending on the 

information content and the amount of training data. 

The proposed solution consists of a two-step approach. In 

the first step prior knowledge is used in order to determine 

the best starting pair of R and N for a previously unseen 

time-series. In the second step a heuristic search finds the 

most suitable R and N. 

3.1. Search initialization 

Two approaches are considered for the search initializa-

tion step: collaborative filtering and classification via convo-

lutional neural networks (CNNs). Both approaches rely on 

the availability of a model bank formed by a heuristic search 

process as illustrated in Fig. 3. The collaborative filtering 

approach also requires the trace of the search process. 

Collaborative filtering is a technique extensively used in 

recommendation systems (Su & Khoshgoftaar, 2009). In the 

present work collaborative filtering is used with a similarity-

based vector model as illustrated in Table 1. 

 

 R1N1 R1N2 R2N1 … RiNj 

System 1 - KPI1 KPI2  - 

System 2 KPI3 - KPI4  KPI5 

System 3 KPI6 KPI7   KPI8 

…      

System N  KPIk   KPIk+1 

When a previously unseen time series is received the sys-

tem takes the current median combination of R and N values 

and trains a model with the new training data. The resulting 

performance is then used as an input to a prediction step, 

where multipliers obtained from the matrix factorization of 

the interaction matrix is used to generate an R and N combi-

nation that is recommended as a good initial guess for the 

heuristic search. A widely used algorithm for this purpose is 

Funk SVD (Funk, 2006), which can handle interaction ma-

trices with missing elements, which makes it suitable for us-

ing in the current setting, where the heuristic search for dif-

ferent systems will never cover all possible R and N combi-

nations. 

In the alternative method, standard size snapshots of 

augmented time-series with both input and output measure-

ments are labelled with corresponding system identifiers and 

CNNs are trained to classify snapshot inputs to system iden-

tifier outputs. Multiple snapshots from the same system can 

be used as training data for the classifier. When a snapshot 

from a previously unseen system is entered, an assignment to 

one of the known systems will be made and optimized R and 

N values for the known system will be used as initial guesses 

for the new one. 

Table 1. The system and hyperparameters interaction 
matrix. 
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3.2. Hyperparameter search 

The heuristic search used in the case study of this paper is 

carried out in two parts. The algorithm tries to reach the 

complexity-accuracy trade-off by first increasing R and N 

values from the initialization point linearly and after the pre-

diction performance improvement of linear increase on vali-

dation data becomes smaller than a threshold, the search tries 

to compactify the model structure by decreasing R and N 

iteratively. This complexity reduction is only accepted if the 

prediction accuracy loss is tolerable. The pseudo-code for 

search is shown below: 

 

R=R_init, N=N_init 

error = error_init 

yval = sim(real_model) 

while improvement > imp_threshold 

 model_i = Train_model(data, R, N) 

 y=sim(model_i) 

error_new = sum(abs(yval-y)) 

improvement = error – error_new 

 if improvement > impr_ threshold 

  increment(R) 

  increment(N) 

 else 

  retry K times 

 end 

end 

while loss < loss_threshold 

 model_i = Train_model(data, R-1, N) 

 y=sim(model_i) 

error_new_R = sum(abs(yval-y)) 

 model_i = Train_model(data, R, N-1) 

 y=sim(model_i) 

error_new_N = sum(abs(yval-y)) 

loss = min(error_new_R,error_new_N)-error 

 if loss < loss_threshold 

reduce(R) if error_new_R< error_new_N 

reduce(N) if error_new_N< error_new_R 

 else 

  retry K times 

 end 

end 

The important step to note is the retry commands before 

termination of the search algorithms. This step is needed 

since the RNN training process is stochastic and can fail or 

result in inferior performance depending on the initial condi-

tions of the training algorithm. For larger values of R and N 

values the training starts to become computationally de-

manding and building a control layer to terminate the train-

ing depending on the evolution of the learning rate becomes 

advisable. The hyperparameter search problem lends itself to 

parallel computing and although we do not state an efficient 

way of parallelizing the described approach here, the dual 

search in the R and N directions during compactification 

parallelizes without any effort. The search heuristic we pre-

sent here can be substituted with more elaborate optimiza-

tion algorithms. We have used also a genetic algorithm (GA) 

configured for search over integer variables and observed 

that a larger number of training instances was needed, and 

the performance improvement was not significant. For illus-

tration purposes we provide the response surface showing 

the validation error observed during the GA run for the case 

study system in Fig. 4. 

4. CASE STUDY 

We build a simplified AMLS with fixed initial hyper-

parameters and without an experiment design module for a 

non-isothermal continuous stirred tank chemical reactor 

(CSTR) problem, a variant of which can be found at Chen et 

al., 1995. The reactor has two reactants, a product, and a by-

product in two reactions. The objective of the model-based 

application is to build a soft sensor for the prediction of the 

product concentration in the output stream of the reactor. 

Fig. 3: Building a model bank. As the system learns more and more system models, it keeps a history of how different combina-

tion of hyperparameters were performing during the heuristic search procedure. This trace of performance and hyperparameter 

combinations are useful for using methods like collaborative filtering to recommend hyperparameters to previously unseen time 

series by means of few trials. 
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The CSTR is simulated as a six state ODE system with 

mass balances for the four species, a volume balance, and an 

energy balance equation. A level and a sluggishly tuned 

temperature control loop are included in the simulations. 

During the simulations the concentrations of the reactants in 

the feed stream is varying in a stochastic way, which is af-

fecting the reaction rates and therefore the energy balance 

causing the temperature control loop to react. Fig 5. Illus-

trates the performance of the soft sensor in predicting the 

concentration of the main product. At 5000s, the rate of the 

main reaction is reduced by 25% to represent a catalyst poi-

soning event. The AMLS detects the loss of predictive per-

formance and trains a new model, which is engaged at 

10000s and recovers good prediction performance. The tem-

perature is not provided as a measurement to the soft sensor 

and despite the disturbance caused by temperature variations 

on the reaction rates the system is able to provide good pre-

dictions. 

5. SUMMARY 

We pose a problem of autonomous system identification 

and propose a conceptual construct as a solution. The vari-

ous components and features of this concept is discussed and 

possible methods to address the emerging challenges are 

studied. A partial realization of this AMLS concept is de-

ployed on a chemical reactor soft sensor application as a 

case study and promising results are obtained. The points 

discussed in this paper can motivate several research activ-

ites relevant for the industry. 
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