

Autonomous Process Model Identification using

Recurrent Neural Networks and Hyperparameter Optimization

Mehmet Mercangöz, Andrea Cortinovis, and Sandro Schönborn

* ABB Future Labs, Baden-Dättwil, Switzerland (e-mail: andrea.cortinovis@ch.abb.com, sandro.schoenborn@ch.abb.com,

mehmet.mercangoez@ch.abb.com)

Abstract: We demonstrate the application of automated machine learning to the problem of identifying

dynamic process models using recurrent neural networks (RNNs). The general concept relies on continu-

ous monitoring of input-output data from a plant and the processing of this data by a collection of algo-

rithms. The data is first processed by a collaborative filtering system, which suggests a classification of

system dynamics per output channel. The proposed classification and the number of input channels is used

to initialize a search over RNN hyperparameters. The search algorithm uses subsets of historical data for

training and validation to select the RNN architecture and determine the network parameters according to

preselected objectives for balancing model accuracy and model compactness. The proposed approach is

demonstrated on a simulated case study for online system identification of a chemical reactor, where the

underlying dynamic characteristics of the simulated system are changed during the simulation as the sys-

tem undergoes a number of disturbances and handles control tasks. Process models for the system in ques-

tion are obtained via the automated machine learning approach and the models are updated as the system

dynamics change. The results show good prediction accuracy of the models throughout the simulation

representing changes in system dynamics.

1. INTRODUCTION

Operator room staff of large industrial complexes such as

refineries, chemical plants, or pulp and paper mills have re-

petitive, stressful, and difficult jobs. It is becoming more and

more difficult to replace retiring personnel and, given the

aging workforce in most developed countries, the situation is

expected to lead to a shortage of skilled labor. The operators

play a very critical role for these plants as the existing auto-

mation systems are generally built with an assumption of

having supervising human operators. At the same time, sta-

tistically the leading cause of unexpected shutdowns in these

facilities is operator error, and such shutdowns, given the

massive inertia in these operations, often means several

hours if not days of outage and hundreds of thousands of

dollars in lost revenues. These observations are strongly mo-

tivating research and development of intelligent systems,

which could substitute or at the very least assist human oper-

ators to increase their productivity to counter the shortage of

co-workers and at the same time minimize the risk of errors

and therefore human error related shutdowns. Addressing

this challenge requires investigation in multiple dimensions.

Since industrial processes operate most of the time under

normal conditions, the first aspect to address would be to

look at the base automation tasks and substitute the in-

volvement and intervention of operators within highly ex-

pected scenarios of disturbances and operational changes.

This can be considered analogous to highway driving in au-

tonomous driving systems but rolling out an autonomous

plantwide solution is non-trivial and will require significant

engineering effort for every plant when using current state-

of-the-art methods. Machine learning (ML) solutions that

learn from past operator responses and historical data could

be a more scalable and economically feasible alternative

(Mercangöz et al., 2019).

At a very high level two different approaches can be con-

sidered when using ML to handle the challenges described

above. The first approach would be the consideration that it

is easier to learn control policies directly from data, rather

than learning a model. Ongoing attempts at learning to di-

rectly control, optimize, and operate systems are using ap-

proaches like imitation learning, machine teaching, or rein-

forcement learning (Spielberg et al., 2017; Zhu, 2015; Evans

et al., 2016; Kober&Peters, 2010). Although these approach-

es have certain advantages like exploiting the possibility of

only learning the relevant components of a system for the

tasks at hand, most of the demonstrated solutions utilize a

simulation environment to generate the massive experiments

and datasets required to learn the control policies, which is

not feasible to carry out in real-world systems for various

reasons and reliable simulations are typically not available

for large scale process systems especially for those, whose

behavior tends to change in time due to a wide variety of in-

ternal and external factors (such as catalyst poisoning, which

is used in the case study of this article).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 11787

The second approach for utilizing data driven methods for

process operations is to follow a two-step procedure of mod-

el learning followed by the desired application such as mod-

el based control, optimization, or process monitoring. This is

also the approach followed in this article, as it forms a basis

for explicit analysis to provide insights into the potential de-

cisions coming from systems using the models, which is typ-

ically lacking in the former approach of direct decision mak-

ing from data. The model learning process corresponds to

solving the system identification problem (Ljung et al.,

2011) and given the original motivation our focus is the pos-

sibility to treat any system-of-interest, which rules out many

techniques, which are limited in system properties e.g. only

applicable to linear time-invariant systems (Coulson et al.,

2019) or which have unfavorable scaling properties like

Gaussian process models (Chan et al., 2013). Artificial Neu-

ral Networks (ANNs) are by now established as very power-

ful universal function approximators and although they are

inferior in some respects to other approaches (e.g. they can-

not provide calibrated uncertainty output) they scale very

well and there is growing support for both software and

hardware implementations, which makes them attractive for

industrial applications. For approximating the behavior of

dynamic systems there are two possibilities for using ANNs:

(i) utilization of an explicit memory in an autoregressive

form or (ii) utilization of an implicit memory using a recur-

sive structure within the ANN resulting in what is referred to

as recurrent neural networks or RNNs. Generally, RNNs

outperform feedforward networks in representing dynamic

behavior for similar number of parameters. As an example,

Fig. 1 shows a comparison of validation plots for open-loop

predictions of the output variable in the case study later to be

introduced in this article with NARX and RNN models.

RNNs were recognized early on as a suitable approach for

modeling dynamic systems (Funahashi &Yuichi, 1993) and

there are numerous articles published using these structures

for various control systems applications (Pan & Wang, 2011;

Yan&Wang, 2012; Lanzetti et al., 2019; Patan, 2014).

Since the motivation of the present article is the develop-

ment of solutions toward autonomous operations, having a

basic method for learning system dynamics alone is not

enough. Therefore, in this paper, we tackle the problem of

autonomous learning of unknown system dynamics, where

the dynamic system in consideration can be subject to

changes over time. In Section 2, we provide the concept of a

superstructure that can be used for autonomous model learn-

ing and discuss the various components and the possible

technologies that can be used in this superstructure, includ-

ing an automated ML component for neural architecture se-

lection. In Section 3 we consider in detail the automated ML

component and present in detail, how such an algorithmic

step can be implemented. Finally, in Section 4 we present a

case study where we deploy a reduced version of the auton-

omous model learning superstructure (AMLS) for predicting

the discharge concentration of a simulated chemical reactor.

2. AUTONOMOUS MODEL LEARNING

We will pose the autonomous model learning problem for

a so-called brownfield setting. This entails that at the initial

step historical data will be available for the inputs and out-

puts of the plant in consideration. In the best possible case,

the historical data will be frequency rich to learn a satisfacto-

ry model and assuming the resulting applications created

from the learned models provide a similar persistency of ex-

citation, relearning of the models will also be possible from

historical data as the system experiences changes over time.

If this is not the case, an interaction with the system via the

inputs to generate the necessary output data will be required

and this will then be equivalent to starting with a greenfield

plant, where no historical data is present.

Fig. 1. Open-loop predictions using validation data for
changes in product concentration in a chemical reactor us-
ing a NARX NN (20 hidden neurons and 4 step delay for
inputs and measurements) and an RNN (10 hidden neurons
with 4 recurrent layers)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11788

Fig.2 shows the general arrangement of the functions

needed in the AMLS. A combination of six distinct compo-

nents are envisioned to provide the necessary functionality.

The flow of information and the execution of the different

tasks are carried out in the following order:

1. Plant data is ingested by the data preparation block,

which carries out various filtering tasks including

outlier removal and missing data imputation. Data

preparation block can also be envisioned to scan

over large time series signals to seek frequency rich

periods corresponding to start-ups, shut-downs, or

grade changes. Data is also organized here to form

batches of training and validation sets.

2. The training data is received by the neural architec-

ture optimization block, where the data is processed

first by a classification algorithm, which is linked to

a model bank containing models and corresponding

architecture parameters. This classification provides

an initial guess to start the architecture optimization

process.

3. The training data and the model architecture is pro-

vided to a model training block, which comes up

with a parametrization corresponding to the provid-

ed architecture. The training data can be further

split into multiple batches by this block depending

on the underlying algorithms and the software used.

The model training block will also control the train-

ing process according to default or user specified

AMLS parameters, which determine among others

termination criteria or number of repeated trainings

with different initial guesses for the parameter op-

timization

4. The trained model and validation data are provided

to a model validation block, which simulates the

provided model with validation input data and

compares simulation results with the validation

output data to generate validation results. The vali-

dation results can contain various key performance

indicators (KPIs) such as integral errors, maximum

deviations, or other criteria of importance.

5. The validation KPIs and the trained model are re-

ceived by the neural architecture optimizer, which

assesses based on the overall targets, if the model is

satisfactory, if it needs to be further optimized, or if

the optimization process needs to be terminated due

to training data deficiency. The model and the in-

termediate results are also saved at the model bank.

If the model is satisfactory, the model is provided to

applications downstream of the AMLS.

6. If a data deficiency is detected the experiment de-

sign block is executed. It is envisioned that this

block will not only come up with the plant testing

plan, but it will also carry out and monitor the plant

testing effort in coordination with the various con-

trol and optimization loops for manipulating the

plant inputs. This block is not further discussed in

this paper and is one of the subjects for future work.

7. Finally, the model validation block takes on the task

of validating the existing model continuously with

new validation data and in case a significant drop in

validation KPIs is detected a new cycle will be

started to relearn a new model

Fig. 2. The AMLS with six distinct components is shown. The arrows and the associated text represent the infor-
mation flow and the boxed elements represent the components with the processing and storage tasks

New model

Plant data

Input design

AMLS Parameters

Data
preparation

AMLS

Model
bankTraining

data

Validation
data

Neural architecture
optimization

Model training

Model validation

Model architecture

Trained model
Experiment design

Validation
KPIs

Detection of data
deficiency

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11789

As noted in the description of the workflow, there are also

configuration parameters, which will specify the thresholds

used in the automated evaluation of the plant data by the

AMLS. These parameters can be provided or adjusted exter-

nally by plant operators or a default setting can be consid-

ered to have a completely autonomous system. The details of

such configuration options will not be discussed here as the

purpose in this section is to provide the AMLS at a concept

level. The details of the experiment design block of the

AML is also not discussed in this paper. The question on

how the existing historical data or the unsuccessful modeling

attempts can be used in the experiment design are not con-

sidered. However, there is considerable prior work in this

area and interested readers can follow e.g. Hjalmarsson,

Gevers, & De Bruyne, 1996; Forssell & Ljung, 2000; Rojas

et.al., 2007; Bavdekar & Mesbah, 2016. A detailed discus-

sion of the neural architecture optimization step is provided

in the next section.

3. NEURAL ARCHITECTURE OPTIMIZATION

As discussed in the introduction, when it comes to model-

ing time-series data, RNNs enjoy several advantages over

other methods such as high scalability and capability of

modeling multiple-output data. Because an RNN simulates a

discrete-time dynamical system, it has the build-in capability

of modeling sequential data, which is typically not offered

by other variants of neural networks. At the same time

RNNs have the disadvantage of being more difficult to han-

dle in the training, mainly due to vanishing or exploding

gradients. Therefore, it is important to have a good guess for

hyperparameters. Therefore, we are considering the problem

of how to suggest RNN hyperparameters for unseen time-

series. The hyperparameters we consider are: the number of

recurrent units (R) and the number of layers (N) for a fully

connected architecture specifically in the form of so called

“Elman Network” (Elman, 1990). In this paper we will focus

on these two parameters, however the idea can be extended

to different machine learning models and model structures.

We also only consider multiple-input-single-output (MISO)

systems in the current paper to show the feasibility of the

approach as multiple-input-multiple-output (MIMO) systems

can be considered as a collection of MISO systems, where

the state and hence output interactions are assumed to be

captured by the RNNs.

The problem at hand is composed of finding a pair of R

and N for an unseen time-series such that the model com-

plexity is acceptable while having a good prediction accura-

cy of the model. This trade-off needs to abstract the system

complexity arising from system delays, nonlinearities, inter-

nal states, etc. and find a model structure that is large enough

to be able to predict the system output. If R and N are chosen

too small, the model will not be able to capture the dynam-

ics, whereas if R and N are excessively large the prediction

performance will either saturate or worsen depending on the

information content and the amount of training data.

The proposed solution consists of a two-step approach. In

the first step prior knowledge is used in order to determine

the best starting pair of R and N for a previously unseen

time-series. In the second step a heuristic search finds the

most suitable R and N.

3.1. Search initialization

Two approaches are considered for the search initializa-

tion step: collaborative filtering and classification via convo-

lutional neural networks (CNNs). Both approaches rely on

the availability of a model bank formed by a heuristic search

process as illustrated in Fig. 3. The collaborative filtering

approach also requires the trace of the search process.

Collaborative filtering is a technique extensively used in

recommendation systems (Su & Khoshgoftaar, 2009). In the

present work collaborative filtering is used with a similarity-

based vector model as illustrated in Table 1.

 R1N1 R1N2 R2N1 … RiNj

System 1 - KPI1 KPI2 -

System 2 KPI3 - KPI4 KPI5

System 3 KPI6 KPI7 KPI8

…

System N KPIk KPIk+1

When a previously unseen time series is received the sys-

tem takes the current median combination of R and N values

and trains a model with the new training data. The resulting

performance is then used as an input to a prediction step,

where multipliers obtained from the matrix factorization of

the interaction matrix is used to generate an R and N combi-

nation that is recommended as a good initial guess for the

heuristic search. A widely used algorithm for this purpose is

Funk SVD (Funk, 2006), which can handle interaction ma-

trices with missing elements, which makes it suitable for us-

ing in the current setting, where the heuristic search for dif-

ferent systems will never cover all possible R and N combi-

nations.

In the alternative method, standard size snapshots of

augmented time-series with both input and output measure-

ments are labelled with corresponding system identifiers and

CNNs are trained to classify snapshot inputs to system iden-

tifier outputs. Multiple snapshots from the same system can

be used as training data for the classifier. When a snapshot

from a previously unseen system is entered, an assignment to

one of the known systems will be made and optimized R and

N values for the known system will be used as initial guesses

for the new one.

Table 1. The system and hyperparameters interaction
matrix.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11790

3.2. Hyperparameter search

The heuristic search used in the case study of this paper is

carried out in two parts. The algorithm tries to reach the

complexity-accuracy trade-off by first increasing R and N

values from the initialization point linearly and after the pre-

diction performance improvement of linear increase on vali-

dation data becomes smaller than a threshold, the search tries

to compactify the model structure by decreasing R and N

iteratively. This complexity reduction is only accepted if the

prediction accuracy loss is tolerable. The pseudo-code for

search is shown below:

R=R_init, N=N_init

error = error_init

yval = sim(real_model)

while improvement > imp_threshold

 model_i = Train_model(data, R, N)

 y=sim(model_i)

error_new = sum(abs(yval-y))

improvement = error – error_new

 if improvement > impr_ threshold

 increment(R)

 increment(N)

 else

 retry K times

 end

end

while loss < loss_threshold

 model_i = Train_model(data, R-1, N)

 y=sim(model_i)

error_new_R = sum(abs(yval-y))

 model_i = Train_model(data, R, N-1)

 y=sim(model_i)

error_new_N = sum(abs(yval-y))

loss = min(error_new_R,error_new_N)-error

 if loss < loss_threshold

reduce(R) if error_new_R< error_new_N

reduce(N) if error_new_N< error_new_R

 else

 retry K times

 end

end

The important step to note is the retry commands before

termination of the search algorithms. This step is needed

since the RNN training process is stochastic and can fail or

result in inferior performance depending on the initial condi-

tions of the training algorithm. For larger values of R and N

values the training starts to become computationally de-

manding and building a control layer to terminate the train-

ing depending on the evolution of the learning rate becomes

advisable. The hyperparameter search problem lends itself to

parallel computing and although we do not state an efficient

way of parallelizing the described approach here, the dual

search in the R and N directions during compactification

parallelizes without any effort. The search heuristic we pre-

sent here can be substituted with more elaborate optimiza-

tion algorithms. We have used also a genetic algorithm (GA)

configured for search over integer variables and observed

that a larger number of training instances was needed, and

the performance improvement was not significant. For illus-

tration purposes we provide the response surface showing

the validation error observed during the GA run for the case

study system in Fig. 4.

4. CASE STUDY

We build a simplified AMLS with fixed initial hyper-

parameters and without an experiment design module for a

non-isothermal continuous stirred tank chemical reactor

(CSTR) problem, a variant of which can be found at Chen et

al., 1995. The reactor has two reactants, a product, and a by-

product in two reactions. The objective of the model-based

application is to build a soft sensor for the prediction of the

product concentration in the output stream of the reactor.

Fig. 3: Building a model bank. As the system learns more and more system models, it keeps a history of how different combina-

tion of hyperparameters were performing during the heuristic search procedure. This trace of performance and hyperparameter

combinations are useful for using methods like collaborative filtering to recommend hyperparameters to previously unseen time

series by means of few trials.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11791

The CSTR is simulated as a six state ODE system with

mass balances for the four species, a volume balance, and an

energy balance equation. A level and a sluggishly tuned

temperature control loop are included in the simulations.

During the simulations the concentrations of the reactants in

the feed stream is varying in a stochastic way, which is af-

fecting the reaction rates and therefore the energy balance

causing the temperature control loop to react. Fig 5. Illus-

trates the performance of the soft sensor in predicting the

concentration of the main product. At 5000s, the rate of the

main reaction is reduced by 25% to represent a catalyst poi-

soning event. The AMLS detects the loss of predictive per-

formance and trains a new model, which is engaged at

10000s and recovers good prediction performance. The tem-

perature is not provided as a measurement to the soft sensor

and despite the disturbance caused by temperature variations

on the reaction rates the system is able to provide good pre-

dictions.

5. SUMMARY

We pose a problem of autonomous system identification

and propose a conceptual construct as a solution. The vari-

ous components and features of this concept is discussed and

possible methods to address the emerging challenges are

studied. A partial realization of this AMLS concept is de-

ployed on a chemical reactor soft sensor application as a

case study and promising results are obtained. The points

discussed in this paper can motivate several research activ-

ites relevant for the industry.

References

Mercangöz, M., Cortinovis, A. and Dominguez, L. (2019). Ma-
chines learning machines: AI Learns to Mimic Process Dynam-
ics. in ABB Review Q4 / 2019.

Spielberg, S. P. K., R. B. Gopaluni, and P. D. Loewen. "Deep
reinforcement learning approaches for process control." 2017
6th International Symposium on Advanced Control of Industrial
Processes (AdCONIP). IEEE, 2017.

Zhu, X. "Machine teaching: An inverse problem to machine learn-
ing and an approach toward optimal education." Twenty-Ninth
AAAI Conference on Artificial Intelligence. 2015.

Evans, R., and Gao, J. "Deepmind AI reduces Google data centre
cooling bill by 40%." DeepMind blog 20 (2016).

Kober, J., and Peters, J.. "Imitation and reinforcement learning."
IEEE Robotics & Automation Magazine 17.2 (2010): 55-62.

Coulson, J., Lygeros J., and Dörfler, F., "Data-enabled predictive
control: in the shallows of the DeePC." 2019 18th European
Control Conference (ECC). IEEE, 2019.

Kashiwagi, H. "Nonparametric system identification." CONTROL
SYSTEMS (2009).

Ljung, L. (1998). System identification, Signal analysis and predic-
tion, Springer, pp. 163–173, 1998.

Ljung, L.; Hjalmarsson, H.; Ohlsson, H. Four encounters with sys-
tem identification. Eur. J. Control, 2011,17(5−6), 449−471.

Chan, L.L.T., Liu, Y., and Chen, J., "Nonlinear system
identification with selective recursive Gaussian process
models." Industrial & Engineering Chemistry Research 52.51
(2013): 18276-18286.

Funahashi, K., and Yuichi N. "Approximation of dynamical
systems by continuous time recurrent neural networks." Neural
Networks 6.6 (1993): 801-806.

Pan, Y., & Wang, J. (2011). Model predictive control of unknown
nonlinear dynamical systems based on recurrent neural
networks. IEEE Transactions on Industrial Electronics, 59(8),
3089-3101.

Lanzetti, N., Lian, Y. Z., A., Cortinovis, Dominguez, L.,
Mercangöz, M. and Jones, C. (2019). Recurrent Neutral Net-
work based MPC for Process Industry, 18th European Control
Conference (ECC), Napoli, Italy, June 25-28, 2019.

Yan, Z., & Wang, J. (2012). Model predictive control of nonlinear
systems with unmodeled dynamics based on feedforward and
recurrent neural networks. IEEE Transactions on Industrial
Informatics, 8(4), 746-756.

Patan, K. (2014). Neural network-based model predictive control:
Fault tolerance and stability. IEEE Transactions on Control
Systems Technology, 23(3), 1147-1155.

Rojas, C. R., Welsh, J. S., Goodwin, G. C., & Feuer, A. (2007).
Robust optimal experiment design for system identification.
Automatica, 43(6), 993-1008.

Forssell, U., & Ljung, L. (2000). Some results on optimal
experiment design. Automatica, 36(5), 749-756.

Bavdekar, V. A., & Mesbah, A. (2016). Stochastic model predictive
control with integrated experiment design for nonlinear systems.
IFAC-PapersOnLine, 49(7), 49-54.

Hjalmarsson, H., Gevers, M., & De Bruyne, F. (1996). For model-
based control design, closed-loop identification gives better
performance. Automatica, 32(12), 1659-1673.

Elman, J. L. (1990). Finding structure in time. Cognitive science,
14(2), 179-211.

Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative
filtering techniques. Advances in artificial intelligence, 2009.

S. Funk. Netflix update: Try this at home.http://sifter.org/ ̃
simon/journal/20061211.html, 2006

Chen, H., Kremling, A., & Allgöwer, F. (1995, September). Non-
linear predictive control of a benchmark CSTR. In Proceedings
of 3rd European control conference (pp. 3247-3252).

Fig. 4. Surface plot illustrating the dependence of validation
error on the RNN hyperparameters. The hyperparameter
combinations are shown with the black dots.

Fig. 5. Time trajectory of the product concentration varia-
tion in the CSTR of the case study.

V
a

li
d

a
ti

o
n

 e
rr

o
r

N
R

C
o

n
ce

n
tr

a
ti

o
n

 (
m

o
l/

L)

time (s)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11792

