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Abstract: A general matrix pencil based approach is developed for efficient non-conservative
realization of dual dynamic high-gain scaling based control designs. A general class of uncertain
feedforward-like nonlinear systems is considered and it is shown that the output-feedback control
design procedure can be cast into a set of matrix pencil based sub-problems that capture the
detailed system structure, state dependence structure of uncertain terms, and the precise roles
of the design freedoms in the context of the detailed structure of the Lyapunov inequalities.
The design freedoms in the dynamic high-gain scaling based design are extracted in terms of
generalized eigenvalues of the formulated matrix pencil structures. It is seen that the proposed
matrix pencil based approach greatly reduces design conservatism and algebraic complexity
compared to prior results on dynamic high-gain scaling based control designs.
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1. INTRODUCTION

We consider the class of feedforward-like (i.e., triangular-
like structure) uncertain nonlinear systems given by:

ẋi = ψi(y)xi+1 + φi(y, xi, u) , i = 1, . . . , n− 2

ẋn−1 = ψn−1(y)xn+φn−1(y, u) ; ẋn = u ; y = [x1, xn]T (1)

where 1 x = [x1, . . . , xn]T ∈ Rn is the state of the
system, u ∈ R is the input, y ∈ R2 is the measured
output, and xi denotes [xi+2, . . . , xn]T for i = 1, . . . , n−1.
ψi : R2 → R, i = 1, . . . , n − 1, are known continuous
functions. φi : Rn+2−i → R, i = 1, . . . , n−1, are uncertain
continuous functions. The control objective is asymptotic
stabilization of the system via a dynamic output-feedback
control law for u using the measurement of the output
y. The “upper triangular” feedforward structure of state
dependence of ẋi has been studied in, for example, Kaliora
and Astolfi (2001); Teel (1992); Mazenc and Praly (1996);
Sepulchre et al. (1997). The particular structure (1), which
is a slightly generalized version wherein ẋi can also involve
x1, has been considered in Krishnamurthy and Khorrami
(2004b, 2008) and dual dynamic high-gain scaling based
output-feedback control designs have been developed.

High gain as a design methodology (Khalil and Saberi
(1987); Ilchmann (1996)) has been studied in the literature
for various classes of systems, both for observer and con-
troller designs, and both using static and dynamic scaling
terms. Static high-gain scaling based observers have been
studied in Teel and Praly (1994); Khalil (1996); Atassi
and Khalil (1999); Khalil (2008) based on observer gains
r, . . . , rn with a constant r to obtain semiglobal results.

1 R, R+, and Rk denote the sets of real numbers, non-negative real
numbers, and real k-dimensional column vectors, respectively.

State-dependent scaling techniques for control of nonlinear
systems are also addressed in Ito (2006). A combina-
tion of a high-gain observer (with dynamics of high gain
parameter r in the form of a scalar differential Riccati
equation) and a backstepping controller was developed
in Praly (2003); Krishnamurthy et al. (2003). A dual
observer/controller dynamic high-gain scaling technique
was introduced in Krishnamurthy and Khorrami (2002,
2004a) that combined dynamic scaling based observer and
controller structures to address uncertain strict-feedback-
like systems including uncertain terms dependent on all
states and uncertain Input-to-State Stable (ISS) appended
dynamics with nonlinear gains from all the system states
and the input. The dynamic high-gain scaling technique
provides a unified design methodology applicable to both
state-feedback and output-feedback control of both strict-
feedback (Krishnamurthy and Khorrami (2004a); Kaliora
et al. (2006); Krishnamurthy and Khorrami (2007b)) and
feedforward (Krishnamurthy and Khorrami (2004b, 2008))
systems as well as state-feedback control of nontriangu-
lar polynomially-bounded systems (Krishnamurthy and
Khorrami (2007a)) and is also applicable to systems with
state and input time delays (Krishnamurthy and Khorrami
(2010)) and systems with input unmodeled dynamics (Kr-
ishnamurthy and Khorrami (2013)).

However, while the scaling based methodology provides a
flexible design approach, application of the methodology
poses challenges due to significant algebraic complexity
in computing upper bounds used on various terms during
Lyapunov analysis to compute the design freedoms (such
as dynamics of scaling parameter r). Due to this algebraic
complexity, it is often difficult to compute tight bounds for
a given specific system, necessitating utilization of conser-
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vative upper bounds instead, which then results in effective
control gains being much larger than required hampering
practical performance of the closed-loop system. While the
scaled state vector is handled in the Lyapunov analysis in a
matrix structure (via coupled Lyapunov inequalities), the
computation of upper bounds of uncertain terms often re-
quires dropping down, for algebraic tractability, to conser-
vative effectively scalar bounds that do not capture specific
structure of where uncertain terms appear in the system
dynamics and the specific state dependence structure. To
address the challenges outlined above, a new matrix pencil
based framework is developed in this paper that casts the
overall design problem into a sequence of matrix pencil
based subproblems that capture the precise roles of the
design freedoms in the context of the detailed structure
of the Lyapunov inequalities appearing during the control
design taking into account the detailed state dependence
structure of uncertain terms. The proposed approach re-
duces conservatism of the resulting design and also reduces
algebraic complexity by replacing hand computations of
upper bounds in previous scaling based designs with direct
matrix pencil based specifications of the design freedoms.

2. NOTATIONS

Given a vector a, |a| denotes its Euclidean norm. The
diagonal matrix with diagonal elements T1, . . . , Tm is de-
noted by diag(T1, . . . , Tm). λmax(P ) and λmin(P ) denote
the maximum and minimum eigenvalues, respectively, of
a symmetric positive-definite matrix P . Im denotes the
m × m identity matrix. Given a matrix M , diag(M) de-
notes the diagonal matrix whose diagonal elements are
equal to the diagonal elements of M . Given a vector a =
[a1, . . . , am]T , |a|e denotes [|a1|, . . . , |am|]T . Given vectors
a = [a1, . . . , am]T and b = [b1, . . . , bm]T , a ≤e b indicates
the element-wise inequalities |ai| ≤ |bi|, i = 1, . . . ,m.
With M1, . . . ,Mm being matrices, diag(M1, . . . ,Mm) de-
notes the block diagonal matrix formed by the matrices
M1, . . . ,Mm as the blocks on the diagonal. Given a matrix
M , ||M || denotes its Frobenius norm. Given a square
matrix M , det(M) denotes its determinant. Given square
matrices M1 and M2, the generalized eigenvalues of the
matrix pencil M1 − sM2 with scalar s are defined as the
values of s that make det(M1 − sM2) = 0. The set of
generalized eigenvalues of the matrix pencil M1 − sM2

are denoted as σ(M1,M2). The subset of these eigenvalues
that are finite in magnitude are denoted as σf (M1,M2).
When M1 and M2 are symmetric and at least one of M1

or M2 is positive-definite (or negative-definite), it is seen
that the generalized eigenvalues are real numbers; under

such condition, denote σmin(M1,M2)
4
= min(σ(M1,M2))

and σmax,f (M1,M2)
4
= max(σf (M1,M2)).

3. ASSUMPTIONS ON CLASS OF SYSTEMS

Assumption A1: A positive constant σ exists such that
ψi(y) ≥ σ, 1 ≤ i ≤ n− 1, for all y ∈ R2.

Assumption A2: The functions φi, can be bounded as 2

|φi| ≤ Γa(y, u)

[∑n
j=i+2 Γ(i,j)(y)|xj | + γu(y)|u|

]
for i =

1, . . . , n− 2, and |φn−1| ≤ Γa(y, u)γu(y)|u|, for all x ∈ Rn

2 For notational convenience, we drop the arguments of functions
when no confusion will result.

and u ∈ R with Γa(y, u) = ψ1(y)γ1(xn)γ2

(
γu(y)u

)
where

γ1, γ2, γu, and Γ(i,j), i = 1, . . . , n− 2, j = i+ 2, . . . , n, are
known continuous non-negative functions.

Assumption A3: Positive constants ρi and ρ̃i, i =
2, . . . , n− 1, exist such that the inequalities

ψi(y) ≤ ρiψi−1(y) ; ψi(y) ≥ ρ̃iψi−1(y) (2)

are satisfied for all y ∈ R2 and i = 2, . . . , n− 1.

Assumption A4: A continuous function γo : R → R+

exists such that ψn−1(y)γu(y) ≤ γo(xn) for all y =
[x1, xn]T ∈ R2. The functions γ1 and γo are polynomially
upper bounded functions of xn, i.e., nonnegative constants
p1, p2, α1, p3, p4, and α2 exist such that γ1(xn) ≤ p1 +
p2|xn|α1 and γo(xn) ≤ p3 + p4|xn|α2 for all xn ∈ R.

Remark 1: Assumptions A1-A4 are analogous to Kr-
ishnamurthy and Khorrami (2004b) except that Assump-
tion A2 involves a more detailed structure of the state
dependence of each φi (specifically, different “weighting”
coefficients Γ(i,j) instead of a single “worst-case” bound
with Γ(i,j) = Γ0) The matrix pencil based approach devel-
oped in this paper provides an efficient approach to address
the detailed structure of the bounds in Assumption A2.

4. DUAL DYNAMIC SCALING-BASED DESIGN

As in Krishnamurthy and Khorrami (2004b, 2008), a
scaling-based observer and controller (Section 4.1) are
combined and the various design freedoms are designed
based on a Lyapunov analysis (Sections 4.2–4.4).

4.1 Observer and Controller Designs

An observer with state x̂ = [x̂1, . . . , x̂n]T is designed as

˙̂xi = ψi(y)x̂i+1 + r−igi(y)(x̂1 − x1), 1 ≤ i ≤ n− 1 (3)

˙̂xn = u+ r−ngn(y)(x̂1 − x1) (4)

where gi(y) are functions that will be designed in Sec-
tion 4.3 based on a pair of coupled Lyapunov inequalities.
The dynamics of the high-gain scaling parameter r to be
designed in Section 4.4 will be such that r(t) ≥ 1 for all
time t ≥ 0. The observer error variables are defined as
ei = x̂i − xi, i = 1, . . . , n and the scaled observer errors
are defined as ε = [ε1, . . . , εn]T with εi = ei

rn−i , i = 1, . . . , n
The dynamics of scaled observer error vector ε are

ε̇ =
1

r
Aoε−

ṙ

r
(Do − bI)ε− Φ (5)

where Ao(y) is the n×n matrix function with (i, j)th entry
given by Ao(i,i+1)

= ψi for i = 1, . . . , n− 1, Ao(i,1) = gi for

i = 1, . . . , n, and zeros everywhere else; Do = diag(n−1 +

b, n−2+b, . . . , 1+b, b); Φ =

[
φ1

rn−1 , . . . ,
φn−1

r , 0

]T
. Defining

ξi = x̂i

rn−i , i = 1, . . . , n, a dynamic extension and control
input transformation are defined as follows with ρn and bv
being any positive constants:

u =
ψn(y)ξn+1

r
; ψn(y)

4
= ρnψn−1(y) (6)

ξ̇n+1 = v − bv
ṙ

r
ξn+1. (7)

The new control input v is defined as

v = r−1[k1(y), k2(y), k3(y), . . . , kn+1(y)]ξ (8)

with ki, i = 1, . . . , n + 1, being functions of y that will
be designed in Section 4.3 based on a pair of coupled
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Lyapunov inequalities involving the upper diagonal terms
ψi. The dynamics of ξ = [ξ1, . . . , ξn+1]T are given by

ξ̇ =
1

r
Acξ −

ṙ

r
(Dc − bI)ξ +

1

r
gε1 (9)

where b is any positive constant and Ac(y) is the (n +
1)× (n+ 1) matrix with (i, j)th element Ac(i,i+1)

= ψi for
i = 1, . . . , n − 1, Ac(n,n+1)

= ρnψn−1, and Ac(n+1,j)
= kj

for j = 1, . . . , n+1 with zeros everywhere else. Also, Dc =
diag(n−1+b, n−2+b, . . . , 1+b, b, bv+b) and g = [g1, . . . , gn, 0]T .

4.2 Lyapunov Functions

With Po and Pc being symmetric positive definite matrices
to be designed in Section 4.3, define

Vo = εTPoε ; Vc = ξTPcξ (10)

V =
1

r2b
[cVo + Vc] (11)

where c > 0 is picked during the control design (Sec-
tion 4.4). From (5), (9), (10), and (11), we have

V̇ =
c

r1+2b
εT [PoAo +ATo Po]ε+

1

r1+2b
ξT [PcAc +ATc Pc]ξ

− 2
c

r2b
εTPoΦ +

2

r1+2b
ξTPcgε1

− ṙ

r1+2b

{
cεT [PoDo+DoPo]ε+ ξT [PcDc+DcPc]ξ

}
. (12)

4.3 Coupled Lyapunov Inequalities

The choice of functions g1, . . . , gn, k1, . . . , kn+1, and ma-
trices Po and Pc are based on pairs of coupled Lyapunov
inequalities detailed below, the key to the solvability of
which is the set of inequalities (the cascading dominance
conditions Krishnamurthy and Khorrami (2004a, 2006))
in Assumption A3 on the relative “sizes” (in a nonlinear
function sense) of ψi, i = 2, . . . , n − 1. Under the first set
of inequalities in (2), the constructive procedure in Kr-
ishnamurthy and Khorrami (2004a, 2006) enables finding
of functions g1, . . . , gn and a symmetric positive definite
matrix Po such that, with C = [1, 0, . . . , 0], the pair of
state-dependent Lyapunov inequalities

PoAo +ATo Po ≤ −ν1oψ1I − ν∗1oψ1C
TC

ν2oI ≤ PoDo +DoPo ≤ ν2oI.

}
(13)

is satisfied for all y ∈ R2 with ν1o, ν
∗
1o ν2o, and ν2o being

positive constants. Also, under Assumption A1 and the
second set of inequalities in (2), functions k1, . . . , kn+1 and
a symmetric positive definite matrix Pc can be constructed
such that the following pair of state-dependent Lyapunov
inequalities are satisfied (for all y ∈ R2)

PcAc +ATc Pc ≤ −ν1cψ1I ; ν2cI ≤ PcDc +DcPc ≤ ν2cI
(14)

with ν1c, ν2c, and ν2c being some positive constants. Fur-
thermore, from Theorem 2 in Krishnamurthy and Khor-
rami (2006), g1, . . . , gn can be chosen to be linear constant-
coefficient combinations of ψ2, . . . , ψn−1. Hence, using As-
sumption A3, a positive constant g can be found such that

(

n∑
i=1

g2
i )

1
2 ≤ gψ1. (15)

Similarly, the functions k1, . . . , kn+1 can be chosen to be
linear constant-coefficient combinations of ψ1, . . . , ψn−1.

4.4 Design Freedoms

After picking the functions g1, . . . , gn, and k1, . . . , kn+1,
as discussed in Section 4.3, the remaining design freedoms
appearing in the Lyapunov inequality (12) are the constant
c and the dynamics of r. The basic strategy in dynamic
scaling-based designs is to design the dynamics of r in
such a way that ṙ is “large” until r itself becomes “large,”
largeness for both ṙ and r being defined in terms of
appropriately designed nonlinear functions of the available
state variables. To determine the required structure of the
dynamics of r, note that the terms in the first line of
(12) are negative, the terms in the second line are sign
indefinite, and the signs of the terms in the third line can
be made non-positive by picking ṙ ≥ 0. Hence, c and ṙ need
to be picked such that the terms in the first and third lines
dominate over the terms in the second line of (12).

To compute an upper bound for the first term in the second
line of (12), note from Assumptions A2 and A4 that

|φi|
rn−i

≤ Γa
r2

[ n∑
j=i+2

Γ(i,j)[|εj |+ |ξj |] + γoρn|ξn+1|
]
. (16)

Hence, it is seen that the first term in the second line of
(12) can be upper bounded as

−2
c

r2b
εTPoΦ ≤

1

r2+2b
Q(y, u)[|ε|2 + |ξ|2] (17)

with Q(y, u) = 4cλmax(Po)Γa(y, u)[
∑n−1
i=1

∑n
j=i+2 Γ(i,j) +

nγo(xn)ρn]. Using (13) and noting that |g| can be upper
bounded by gψ1 from (15), it is seen that the second term
in the second line of (12) can be dominated by the negative
terms in the first line of (12) if c is chosen large enough.
For example, by picking

c ≥ 4

ν1cν∗1o
λ2
max(Pc)g

2, (18)

it is seen that
2

r1+2b
ξTPcgε1 ≤

ν∗1o
r1+2b

ψ1ε
2
1 +

ν1c

4r1+2b
ψ1|ξ|2. (19)

From (13) and (14), it is seen from (19) that the second
term in the second line of (12) is dominated by the negative
terms in the first line of (12). From the above discussion
and the form of the bound in (17), it is seen that to utilize
ṙ to help in dominating the first term in the second line of
(12), we need to pick the dynamics of r in the form

ṙ = max

{
− a+

1

r
Ω(y, u), 0

}
; r(0) ≥ 1 (20)

where a is to be chosen as a positive constant and Ω(y, u)
is a function to be chosen taking into account the terms
appearing in (12), e.g., the upper bound in (17). When r

becomes “large enough” (specifically, when r ≥ Ω(y,u)
a ), we

have ṙ = 0. With this design of dynamics of r, (12) yields

V̇ =
c

r1+2b
εT [PoAo +ATo Po]ε+

1

r1+2b
ξT [PcAc +ATc Pc]ξ

+
2

r1+2b
ξTPcgε1

+
a

r1+2b

{
cεT [PoDo+DoPo]ε+ ξT [PcDc+DcPc]ξ

}
− 2

c

r2b
εTPoΦ

− Ω

r2+2b

{
cεT [PoDo+DoPo]ε+ ξT [PcDc+DcPc]ξ

}
. (21)
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The terms in (21) can be considered in terms of two parts:

• terms multiplied by 1
r1+2b , i.e., first three lines of

(21); the sum of these terms can be made negative
by choosing c large enough and a small enough.
• terms multiplied by 1

r2+2b , i.e., the fourth and fifth
lines of (21); the term in the fifth line of (21) is
considered as a term multiplied by 1

r2+2b by taking
into account the r dependence of the upper bound in
(17). As discussed below, the sum of all these terms
can be made non-positive by picking Ω appropriately.

Based on (21), the primary design considerations are
summarized below:

• The positive constant c appearing in the definition
of the composite Lyapunov function V in (10) must
be chosen large enough so that the sign-indefinite
term in the second line of (21) can be dominated by
the negative terms in the first line of (21). As noted
above, c can be chosen, for example, to satisfy (18).
• The positive constant a appearing in the dynamics

of r in (20) must be chosen small enough to ensure
that the positive terms in the third line of (21) can
be dominated by the negative terms in the first line
of (21). For example, using the coupled Lyapunov
inequalities (13) and (14) and noting the choice of
c above, a can be picked to satisfy

a ≤ 1

2
min

(
ν1oσ

ν2o
,
ν1cσ

2ν2c

)
. (22)

• The function Ω must be picked such that the negative
term in the fifth line of (21) dominates the sign
indefinite term in the fourth line of (12). For example,
based on the bound computed in (17), Ω can be picked

as Ω(y, u) = Q(y, u) max

(
1

cν
2o
, 1
ν
2c

)
.

With the above design of c, a, and Ω, it is seen that (21)

yields V̇ ≤ −κr V with

κ =
σ

4
min(ν1o, ν1c). (23)

While the typical design procedure in dynamic scaling-
based control designs (and indeed in most other nonlinear
control designs) is based on the sort of algebraic computa-
tion of scalar upper bounds as described above (e.g., (17)
and (19)), these computations are algebraically complex
and often result in conservative upper bounds for algebraic
tractability. For example, the bounds in (17) and (19)
are essentially worst-case upper bounds that do not, for
instance, take into account the relative sizes of functions
Γ(i,j) and the detailed structures of Po and Pc). In contrast,
the matrix pencil based approach described in Section 5
will formulate the choice of the design freedoms discussed
above directly in terms of the required properties to be
enforced on the Lyapunov inequalities to thereby obtain
non-conservative bounds with lower algebraic complexity.

5. MATRIX PENCIL BASED DESIGN OF c, a, AND Ω

In this section, we develop a matrix pencil based for-
mulation for picking the design freedoms c, a, ζ1, and
Ω. The main observation motivating the proposed ap-
proach is that these design freedoms are all scalar con-
stants/functions and appear linearly in the Lyapunov
inequality (21), therefore motivating an analysis of the

corresponding designs via matrix pencil subproblems. For
this purpose, a few almost self-evident observations, which
are easy to show from the definitions of σmin and σmax,f ,
are summarized below.
Lemma 1: If M1 is a symmetric negative definite matrix
and M2 is a symmetric negative semidefinite matrix, then
M1 − sM2 is negative definite for all s < σmin(M1,M2).
Lemma 2: If M1 is a symmetric positive definite matrix
and M2 is a symmetric positive semidefinite matrix, then
M1 − sM2 is positive definite for all s < σmin(M1,M2).
Lemma 3: If M1 is a symmetric matrix and M2 is a
symmetric positive definite matrix, then M1 − sM2 is
negative definite for all s > σmax,f (M1,M2).
Lemma 4: If M1 is a symmetric matrix and M2 is a
symmetric negative definite matrix, then M1 − sM2 is
positive definite for all s > σmax,f (M1,M2).
Noting that the definition of V contains an r2b in the de-
nominator while the negative terms in the right hand side
of (21) contain a r1+2b in the denominator, the objective
that we want to achieve in the choice of design freedoms
c, a, and Ω is to ensure an inequality of form

V̇ ≤ −κ
r
V (24)

with κ being a positive constant. For this purpose, from the
analysis of the roles of the design freedoms in Section 4.4,
the picking of these design freedoms can be considered in
four steps. In the first step, the design freedom c is chosen
to ensure that the following matrix inequality is satisfied
with c1 being any constant chosen in the interval (0, 1):

0 ≥ (1− c1){cεT [PoAo +ATo Po]ε

+ ξT [PcAc +ATc Pc]ξ}+ 2ξTPcgε1. (25)

In the second step, c2 is chosen to be any constant in the
interval (0, c1) and the design freedom a is chosen to ensure
that the following matrix inequality is satisfied:

0 ≥ (c1 − c2){cεT [PoAo +ATo Po]ε+ ξT [PcAc +ATc Pc]ξ}
+ a{cεT [PoDo +DoPo]ε+ ξT [PcDc +DcPc]ξ}. (26)

In the third step, the function Ω is picked such that the
following matrix inequality is satisfied:

0 ≥ −2rcεTPoΦ

− Ω

r

{
cεT [PoDo+DoPo]ε+ ξT [PcDc+DcPc]ξ

}
(27)

In the fourth step, a positive constant κ is chosen such
that

0 ≥ c2{cεT [PoAo +ATo Po]ε+ ξT [PcAc +ATc Pc]ξ}

+ κ
{
cεTPoε+ ξTPcξ

}
(28)

Each of the four steps outlined above is discussed below.

Design of c: Writing the right hand side of (25) as a
quadratic form in terms of [εT , ξT ]T , (25) can be written
in matrix form as

0 ≥ c
[

(1− c1)(PoAo +ATo Po) 0
0 0

]
+

[
0 (PcgB1)T

(PcgB1) (1− c1)(PcAc +ATc Pc)

]
(29)

where B1 = [1, 0, . . . , 0] is a 1 × n row vector so that
B1ε = ε1. In the matrix inequality (29) and all matrix
inequalities below, the parts shown as 0 denote, as per
the standard notation, blocks of compatible dimensions
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based on the other shown parts of the matrices. The right
hand side of (29) is of form cQc1(y) + Qc2(y) with Qc1
and Qc2 being known and completely determined matrix
functions of y (with c1 being a constant chosen to be in
the interval (0, 1)). In Section 4.4, it was seen that c can
be chosen to be large enough (e.g., similar to (18)) to
satisfy an inequality analogous to (29). However, such a
construction of c is conservative (i.e., larger than required)
since it is computed purely in terms of “macroscopic”
quantities such as λmax(Pc), g, ν∗1o, and ν1c and ignores
the detailed structure of g, Pc, Po, etc. Alternatively, by
directly addressing the actual underlying requirement that
we want to satisfy (25), i.e., equivalently make cQc1(y) +
Qc2(y) negative semidefinite as shown in (29), a much
less conservative estimate of c can be found. One point
however to note is that we want to find a constant c since
a state-dependent c will result in additional terms in V̇ ,
which will substantially change the resulting Lyapunov
analysis. To obtain a constant c, we use the bi-directional
cascading dominance conditions from Assumption A3 that
the upper diagonal terms ψi are comparable (in a nonlinear
function sense) and the fact noted in Section 4.3 that
g1, . . . , gn, and k1, . . . , kn+1 can be picked to be linear
constant-coefficient combinations of ψ1, . . . , ψn−1. Hence,
dividing (29) throughout by ψ1, each matrix appearing
in the resulting inequality varies in a polytopic set whose
vertices can be computed in terms of constants ρi and
ρ̃i, i = 2, . . . , n − 1 from Assumption A3, and coefficients
in the designs of functions g1, . . . , gn and k1, . . . , kn+1

in terms of ψ1, . . . , ψn−1. In particular, when all upper
diagonal terms ψi are identical (up to scaling by constant
coefficients), the polytope reduces to a single point. In
either case, the resulting system of equations (diagonally
concatenated over vertices of the polytope or from the
single value when the polytope reduces to a single point)
can be written in the form 0 ≥ cQc1 + Qc2 with Qc1 and
Qc2 being constant matrices. From (18), we know that a
large enough constant c definitely exists that will ensure
that this inequality is satisfied. Analogous to Lemma 3, it
is seen that the large enough constant c can be picked as

c = σmax,f (Qc2,−Qc1). (30)

Design of a: Writing the right hand side of (26) as a
quadratic form in terms of [εT , ξT ]T , the inequality (26)
can be equivalently written as the matrix inequality

0 ≥ a
[
c(PoDo +DoPo) 0

0 (PcDc +DcPc)

]
+ (c1 − c2)

[
c(PoAo +ATo Po) 0

0 (PcAc +ATc Pc)

]
. (31)

which is of the form 0 ≥ aQa1(y) + Qa2(y). Both Qa1

and Qa2 are known and completely determined matrix
functions of y given a choice of c2 in the interval (0, c1).
While the choice of c was required to be a constant, the
choice of a can indeed be a function of y as long as
it is lower bounded by a constant, i.e., a(y) ≥ a with
some positive a. While c appears in the definition of the
Lyapunov function in (10) and time variation in c results

in additional terms in V̇ , a is simply a term appearing
in the dynamics of r and dependence of a on y does
not result in new terms in V̇ and does not affect the
stability analysis. Instead, allowing a to be a function of
y could make utilization of larger values of a possible.

Since a acts as a stabilizing term in the dynamics of

r (and ṙ = 0 if r ≥ Ω(y,u)
a ), larger values of a tend

to reduce values of r, benefiting the transient response
of the closed-loop system. From the coupled Lyapunov
inequalities (13) and (14), it can be seen that both Qa2 and
−Qa1 are symmetric negative definite matrices. Hence,
from Lemma 1, it is seen that Qa2 + sQa1 is negative
definite for all s < σmin(Qa2,−Qa1). Hence, to satisfy
(26), a can be picked to be a function of y defined as

a(y) = σmin(Qa2(y),−Qa1(y)). (32)

Design of Ω: Similar to the discussion in Section 4.4, the
design of Ω to satisfy (27) entails finding a large enough
function Ω(y, u) to ensure that the negative terms in the
second line of (27) dominate over the sign indefinite term
in the right hand side of the first line of (27). While an
upper bound for −2rcεTPoΦ can be written using (17), a
less conservative upper bound can be written from (16)
retaining the structure of the state dependence in the
bounds in Assumption A2 as

−2rcεTPoΦ ≤ 2rc|ε|Te |Po|e|Φ|e (33)

|Φ|e ≤e
1

r2
Γa(y, u)[Φε(y),Φξ(y)]

[
|ε|e
|ξ|e

]
(34)

• Φε is an n× n matrix with (i, j)th elements given by

Φε,(i,j) = Γ(i,j), i = 1, . . . , n− 1, j = i+ 2, . . . , n (35)

and zeros everywhere else.
• Φξ is an n× (n+ 1) matrix with (i, j)th elements

Φξ,(i,j) = Γ(i,j), i = 1, . . . , n− 1, j = i+ 2, . . . , n

Φξ,(i,n+1) = γoρn, i = 1, . . . , n− 1. (36)

While the upper bound from (33) and (34) is much less
conservative than the upper bound from (17), it is to be
noted that (33) and (34) involve the element-wise magni-
tudes |ε|e and |ξ|e instead of just ε and ξ. This reflects the
fact that the signs of elements of Φ are not known (since
the only information on the uncertain φi is the structure
of upper bounds in Assumption A2). Hence, the negative
term in the second line of (27) must also be written in
terms of |ε|e and |ξ|e. While conservative estimates can
be written such as εT (PoDo + DoPo)ε ≥ −ν2o|ε|Te |ε|e,
relatively non-conservative estimates can be obtained by
considering the diagonal elements of matrices PoDo+DoPo
and PcDc+DcPc, etc. Defining Do = diag(PoDo+DoPo),
we have εTDoε = |ε|Te Do|ε|e. Considering the matrix
pencil of form PoDo + DoPo − sDo and defining δDo

=
σmin(PoDo +DT

o Po, Do), we have PoDo +DoPo ≥ δDo
Do.

Similarly, defining Dc = diag(PcDc + DcPc) and δDc
=

σmin(PcD̃c + D̃T
c Pc, Dc), we have PcDc +DT

c Pc ≥ δDc
Dc.

Using (33) and (34) and noting that Do and Dc are
diagonal matrices, (27) reduces to

0 ≥ 2
1

r
c|ε|Te |Po|eΓa(y, u)[Φε(y),Φξ(y)]

[
|ε|e
|ξ|e

]
− Ω

r

{
cδDo
|ε|Te Do|ε|e + δDc

|ξ|Te Dc|ξ|e
}
. (37)

Hence, writing (37) as a quadratic form in terms of
[|ε|Te , |ξ|Te ]T , (37) can be written equivalently as

0 ≥
[

2cΓa|Po|eΦε cΓa|Po|eΦξ
cΓa(|Po|eΦξ)T 0

]
−Ω

[
cδDoDo 0

0 cδDc
Dc

]
(38)
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The matrix inequality (38) is of the form 0 ≥ QΩ1(y, u)−
Ω(y, u)QΩ2. Noting that QΩ2 is a symmetric positive
definite matrix, it is seen from Lemma 3 that Ω can be
picked as Ω(y, u) = σmax,f (QΩ1(y, u), QΩ2).

Design of κ: Writing the right hand side of (28) as a
quadratic form in terms of [εT , ξT ]T , (28) can be written
equivalently as

0 ≥ c2
[
c(PoAo+ATo Po) 0

0 (PcAc+A
T
c Pc)

]
+κ

[
cPo 0
0 Pc

]
(39)

which is of the form 0 ≥ Qκ1(y) +κQκ2. Noting that both
Qκ1 and −Qκ2 are symmetric negative definite matrices
and using Lemma 1, it is seen that κ can be chosen as

κ(y) = σmin(Qκ1(y),−Qκ2). (40)

As with the choice of a, it is acceptable for κ to be a
function of y as long as it is lower bounded by a positive
constant since a state dependence of κ will not create any
additional terms in V̇ . It is known that a positive constant
κ can be chosen as (23) from the analysis in Section 4.4;
hence, the choice of κ in (40) is lower bounded by a positive
constant. Once the inequality (24) is achieved through the
above choices of the design freedoms, it can be shown as
in Krishnamurthy and Khorrami (2004b, 2008) that the
closed-loop signals are all uniformly bounded over time
interval [0,∞) and x, x̂, and u converge to 0 as t→∞.

6. CONCLUSION

A matrix pencil based approach was developed for efficient
non-conservative realization of dual dynamic high-gain
scaling based control designs based on capturing the
detailed structure of the closed-loop system and associated
Lyapunov inequalities within matrix pencil structures that
explicitly show the roles of each of the design freedoms.
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