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Abstract: We present a numeric method to compute the safe operating flight conditions for
a helicopter such that we can ensure a safe landing in the event of a partial or total engine
failure. The unsafe operating region is the complement of the backwards reachable tube, which
can be found as the sub-zero level set of the viscosity solution of a Hamilton-Jacobi (HJ)
equation. Traditionally, numerical methods used to solve the HJ equation rely on a discrete grid
of the solution space and exhibit exponential scaling with dimension, which is problematic for
the high-fidelity dynamics models required for accurate helicopter modeling. We avoid the use
of spatial grids by formulating a trajectory optimization problem, where the solution at each
initial condition can be computed in a computationally efficient manner. The proposed method
is shown to compute an autonomous landing trajectory from any operating condition, even in

non-cruise flight conditions.
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1. INTRODUCTION

This paper presents a method to efficiently compute unsafe
operating flight conditions for which no control sequence
exists to safely land the helicopter in the event of partial
or total engine failure. A chart called a height-velocity
diagram or H-V diagram needs to be produced for each
airframe, and a human pilot can utilize the diagram to
avoid operating in unsafe conditions. If operating in the
safe region, there exists a control sequence to initiate
an autorotation, whereby the helicopter enters a glide
slope so as to maintain rotor inertia and then flare to
slow down near the ground and land safely (FAA, 2019,
Chapter 11). H-V diagrams are ultimately determined
through flight testing, which is inherently dangerous since
the test objective is to define the unsafe boundaries of
flight operations. Therefore, there is a need to accurately
compute the safe and unsafe regions directly from the
helicopter dynamics, and construct a H-V diagram prior to
flight testing. The capability to produce H-V diagrams is
desired for aircraft that are in the early design stages and
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have not yet flown, aircraft that are already flying and
preparing for an H-V flight test event, as well as refining
the H-V diagram of operational aircraft. The capability
is required for aircraft that do not have a representative,
high-fidelity flight simulation, as well as for more mature
aircraft for which a high-fidelity simulation is available.

We consider the safe region as any initial flight condition
where there exists a control sequence that can steer the
system to a safe landing condition, i.e. minimal vertical
and horizontal velocity at the ground level, rotor near
level, etc. Determining the set of states of a dynamical
system that can be driven into a particular final condition
is commonly referred to as reachability analysis, and
reachable sets can be determined from the sub-zero level
set of the viscosity solution to a Hamilton—-Jacobi (HJ)
partial differential equation (PDE) (Mitchell et al. (2005)).

Traditionally, these HJ PDEs are solved numerically by
constructing a dense discrete grid of the solution space
(Mitchell (2008)), and are supported by mature theory
(Osher and Fedkiw (2006)). Despite this, HJ reachability
analysis has suffered one critical draw-back: Computing
the elements of a spatial grid scales poorly with dimension,
and therefore have limited applicability for vehicle prob-
lems where the dimension of the state space is greater than
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four. The work of Harno and Kim (2018) attempted to
compute helicopter safe operating regions using the grid-
based method of Mitchell (2008), but was restricted to a
two-dimensional state space, and therefore is not represen-
tative of actual helicopter motion and is not applicable for
safety critical use.

Recent research based on generalizations of the Hopf for-
mula (Hopf (1965)) have avoided a spatial grid of the state
space and instead form a grid over time, where numerical
solutions are obtained by constructing a trajectory opti-
mization problem. These techniques were used in Darbon
and Osher (2016) to compute solutions to the HJ equation
for systems with state and time-independent Hamiltonians
of the form # = f(u(t)), and Kirchner et al. (2018a)
expanded the classes of systems to general linear sys-
tems in high-dimensions. Additionally, these methods were
successfully applied to vehicle control problems such as
collaborative pursuit-evasion (Kirchner et al. (2018b)) and
coordination of heterogeneous groups of vehicles (Kirchner
et al. (2020)).

The methods described above based on the Hopf formula
can be seen as an optimization problem based on the
costate trajectory of the system. We propose in this work
to formulate an optimization of the state trajectory di-
rectly, which allows consideration of the non-linear dynam-
ics encountered in helicopter motion. There is no need to
directly formulate the optimal Hamiltonian of the system,
since the Hamiltonian frequently resulting from helicopter
dynamics does not have a standard form.

There have been various proposals to compute the H-V
diagram using trajectory optimization (see e.g. Johnson
(1977); Lee et al. (1988); Carlson et al. (2006); Yomchinda
(2013); Bibik and Narkiewicz (2012)), but they suffer sev-
eral drawbacks. These methods minimize cost functionals
with weighted cost terms and a terminal state constraint,
which do not guarantee necessary ground landing condi-
tions are met. Therefore, the solution of these optimization
problems do not, in general, give the reachable set. Since
the functional is parameterized by the terminal state at
precisely terminal time, ¢, time is an unknown free pa-
rameter that must be solved for. When combined with the
terminal constraint, it is not guaranteed that a candidate
trajectory is feasible for a particular time and numeric
convergence issues can be observed.

We propose to construct an implicit surface representation
of the desired safe landing condition and, in doing so,
create a trajectory optimization that gives the backwards
reachable tube (Bansal et al. (2017)). We consider the
case where the time-to-land need not be known a priori
by considering that the intersection of the helicopter with
the ground could occur at any time on the interval [0, c0).
We utilize Lagrange polynomials to create a collocation
scheme that converges rapidly with the number of time
samples and can represent the required half-infinite time
intervals. From this we compute the optimal landing
sequence to autonomously achieve a safe landing from any
initial condition that is within the backwards reachable
tube.

2. REACHABILITY AND SAFE OPERATING
REGIONS

We consider helicopter dynamics

d
Ta(s) = (@ (s),uls), (1)

for s € [0,¢] where x € R™ is the system state and
u(s) € U C R™ is the control input, constrained to lie
in the admissible control set ¢/. We denote by ~ the state
trajectory [0,t] 3 s — v (s;z,u(-)) € R™ that evolves in
time with measurable control input [0,s] — wu () € U
according to (1) starting from initial state = at s = 0.
The trajectory v is a solution of (1) in that it satisfies (1)
almost everywhere:

) =fGlsnu()u), @)

v (0;z,u () = .

We denote by ©p C R™ as the goal set that represents
the set of acceptable safe landing conditions. We seek
to determine if a control sequence exists that drives the
system into ©y at exactly time ¢. The set of all initial
states where there exists a control to drive the system to
the set at exactly time t is called the backward reachable
set (BRS) of the system and is defined as

Os(t)={z:Ju()el,y(tz,u(-) €Oo}. (3)
2.1 The Connection of the BRS to the HJ Equation

We represent the set of safe landing conditions, ©g, im-
plicitly with the function J : R™ — R such that

O ={z e R"|J(z) <0} (4)
and use it to construct a cost functional for the system

trajectory v (s;x,u (+)), given terminal time ¢ as
t

K (t,2,u () = / Ty (u(s)ds +J (v (tz,u (), (5)

where the running cost function 7, : R™ — R U {400} is
the characteristic function for the set ¢ and is defined by

0 ifuecld
I =
u () {Jroo otherwise.

The value function ¢ : R™ x [0,¢] — R is defined as
the minimum cost, K, among all admissible controls for
a given state x as
pla) = inf K(Lau(). (6)
u(-)eU
The value function in (6) satisfies the dynamic program-
ming principle (Evans (2010)) and also satisfies the fol-
lowing initial value Hamilton-Jacobi (HJ) equation with
o being the viscosity solution of
0
o (@,8) + H (¢, Voip (2,5)) = 0,
¢ (2,0)=J(z),
for s € [0,t], where the Hamiltonian H : R” x R” — R U
{+00} is defined by
H(map) = Sug <_f ('Tvu) ap>7 (8)
ue
where we denote by p € R™ the costate variable.

Fact 1. (Mitchell (2007a)). The zero sub level sets of the
viscosity solution ¢ (x,t) is an implicit surface represen-
tation of the finite time backwards reachable set, Og (¢)
defined in (3).

(7)
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We note here the important distinction that the BRS in (3)
defines the set of initial states that can be driven into the
set ©g at precisely time ¢. It is possible for the system to
be driven into the set ©¢ at an earlier time ¢ < ¢ and then
later exit the set ©y. This motivated the characterization
of the backwards reachable tube in Mitchell et al. (2005).

2.2 The Backwards Reachable Tube

We are instead interested if the system can be driven into
Oy at any time on the range [0, ¢]. This set of initial states,
coined the backwards reachable tube (BRT) in Bansal et al.
(2017), is defined by
Or(t)={x:3Ju(-)el,3Is€[0,t],v(s;z,u(-)) € Op}.

9)
The seminal work of Mitchell et al. (2005) showed that
the backwards reachable tube is found from the zero sub
level set of ¢ (x,t), which is the viscosity solution to the
following modified Hamilton—Jacobi equation

0
a—f (z,s) + max (0, H (z, Ve (x,5))) =0, (10)
¢ (,0)=J(x),

with H (z,p) the same as given above in (8). The intuition
is that the value function cannot decrease!, which does
not allow the level sets to contract. It can be seen that any
trajectory that enters the set O is not allowed to escape by
“freezing” it in time. The reachable set and reachable tube
are connected through the following relation (Mitchell,
2007b, Proposition 1)

ort) = J ©s(s).

s€[0,¢]

(11)

The boolean set operation in (11) implies a corresponding
property (Osher and Fedkiw (2006)) of the implicit surface
representations

YT (I7t) = min ¥s (I, S) .

s€0,t]

The backwards reachable tube, ©r (t), characterizes the
controllably safe regions of flight. Therefore, the set of
unsafe states is found from

C . 1 n
0° = lm R"\ Or (1).

(12)

3. COMPUTING THE REACHABLE TUBE
THROUGH OPTIMIZATION

Under a mild set of regularity conditions (Subbotin, 1995,
Ch. 7, p. 63), ¢ (x,s) is the unique viscosity solution of
(7) (Subbotin, 1995, Th. 8.1, p. 70). The uniqueness of
the solution, ¢ (z,s), implies that the viscosity solution
is equivalent to the value function and can be found by
minimizing (5) with constraints given by (2). The HJ of
the BRT in (10) can be constructed by augmenting the
dynamics of (1) with

d

) =9(2(s),uls),als) =als) f(x(s),uls)),

(13)

where [0,t] > s — a(s) € [0,1] is measurable scalar
function (Mitchell et al. (2005)). We denote by ( the state
trajectory of the augmented system (13) that satisfies

I In Mitchell et al. (2005), a minimum operator is used since time
is defined in that work on the interval [—t, 0].

Slsmul),a) =g(Clsu),e0),u(s)a (),
COsu()a() = . (1)

Note that since a is constrained to [0,1], a value of a =1
makes the augmented dynamics of (13) equivalent to the
original dynamics of (1) and if @ = 0 the dynamics stop
completely. We denote by

7(9)= [ aar

the pseudotime variable, and denote by o' as a quasi-
inverse of ¢ in the sense that

ol (o (s)) = s.
The formal definition of this quasi-inverse is given in

(Mitchell et al., 2005, Lemma 6), and it was shown that
the trajectories of (14) have the following relations

v(o(s)sau(of () =C(sszu(),a (),
for any s € [0,t] (Mitchell et al., 2005, Lemma 4), and
consequently ¢ visits only a subset states of the v (Mitchell
et al., 2005, Corollary 5). Therefore, we can solve the
modified optimization problem to find the reachable tube:

J(C(tx,u(),a())

L) = 9(C(5) uls) a(s))
C(0)==

u(-)eU
a() € [071]
a(-) <0,

where the last line of (15) is an optional regularization
term since the optimal a (-) is not unique.

min
u(-),a(-)
Subject to

(15)

8.1 Time-Domain Transformation

We use collocation to approximate the trajectory ¢ and
first perform a time domain transformation which maps
s € [0,00) into the computation interval 7 € [—1,1) with
the invertible transform defined as

s=I"1(r) =clog <127_> ,

(16)

where the choice of T" is a scaled version of that proposed
in Garg et al. (2011). The dynamics (13) are similarly
transformed with
d d
(1) = T () g (o (1) u () a (),
T T
and with the transform defined in (16) becomes

d

D= oM, ue)am).
Hereafter, we assume that the trajectory, ¢, is a solution
to the transformed dynamics satisfying

d
T (rwu(),a() =

(1—-7)
x g (msa,u(),a(),u(r),a(r))
C(=Liz,u(-),a()) ==

8.2 Finite Trajectory Approximation

We propose a polynomial trajectory approximation, which
is commonly referred to as pseudospectral optimal control,
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and was introduced in Elnagar et al. (1995) and later
refined in Ross and Karpenko (2012) and Garg et al.
(2010). We denote by ¢V as the approximation to ¢ with
Lagrange polynomials as

N
() =N () =D aL;(7)
=0

defined by a set of N points, z; = ((7;2,u(-),a(-)),
sampled on the time grid

N={r;:j=0,....N},
€ [—1,1]. The Lagrange basis functions are

(17)

where each 7;
given as

T — Tk

=

Lj(r) =

)
Tj*Tk

o
Wyl

0
and it follows that
N
*CN (7i) Z% (1) =>_ Dija;,
§j=0
where we denote by D € ]RN *(N+1) a5 the Gauss differen-

tiation matrix constructed with each element, with row i
and column j, given by

Dij = Lj (’Tl) . (18)
We select 7V as Legendre-Gauss-Radau (LGR) points
with 7%V and the corresponding differentiation matrix, D,
and quadrature weights, w, are found from (Shen et al.,
2011, Section 3.3). Note that since LGR points do not
include a point at 7 = 1, we avoid a singularity in (16)
at t — co. We denote by Dy € RV*! as the first column
of D corresponding to the boundary condition and denote
by D; € RVXN as the remaining columns representing the
interior nodes such that

D=[Dy Dy]. (19)
We denote by X € R™¥ as the concatenated vector of all
collocation points for j =1,..., N given as

X = (zq1, - ,xN)T, (20)
and likewise denote U € R™WV+1) a5 the concatenated
vector of all the collocated control input points

T

U:=(ug, -+ ,un) ,

where each u; is the control input at each time 7; € N
And similarly, for the augmented inputs, a;, we have

A= (GJOv'" 7aN)T

Recall that 9 = 2 = ((—1;2z,u(-),a(-)). We denote by
G (X,U, A) as the concatenated vector of the equations of
motion,

aOWf (z,up)

G(X’U,A) — lef($17u1)

)‘f(CUN,UN)

c
aN —————
N(l*TN

evaluated at each point in 7; € 7. It follows the differen-
tiation matrix (19) of the concatenated of state (20) is

DI :DI ®Ina

where ® denotes the Kronecker product and I,, is the n xn
identity matrix. Likewise, we have

Do =Dy R I,.
The dynamic equality constraint is now written as
DX +Dox =G (X,U,A).
Recall that w is the vector of LGR quadrature weights. It

was proposed in Garg et al. (2010) to estimate the terminal
state with

TNyl =T+ (wT ®In)G(X,U,A).

With = ¢ (0;2,u(-),a(-)) as the given initial condition,
we construct the non-linear programming problem (NLP):
;{llijflA J(zn+1)
Subject to Dy X + Doz = G (X,U, A)

IN41 =2+ (wT®In)G(X, U,A) (21)

(S u

€ [0,1]
a; — aj—1 <0,

which has a numerical solution that approximates (15)
when N is sufficiently large. The time of minimum cost
in (12) can be found from the following quadrature:

c

ao—5
0(1 —T())
tr=w' : . (22)
C

aN(l—TN)

4. HELICOPTER DYNAMICS

We define the state vector as = = (y,v,Q, h,z,P)T €
RS with the vertical velocity, y; horizontal velocity, v;
rotor angular speed, (2; height above ground level, h;
horizontal displacement, z; and engine power, P. The
control inputs are given as u=(Cr,0)' € R x [0, 27) with
thrust coefficient, Crp, effectively the collective control,
and 6, the aircraft pitch angle. Following Lee (1985), the
dynamics are as follows:

. 1
)=g-— % (71'32) (QR)* Crcosf + iﬁfthfy
1
=L (xR?) (R)* Orsinb - S L £V
m

. 1 1
JO=—"—1(P--p(xR? QR3O>

h=—y

z=w

p—_1p

K

(23)
where k denotes the engine response time constant, n the
rotor power efficiency factor, m the mass of the helicopter,
V¢ the velocity magnitude of the fuselage, o the rotor
solidity, R the rotor radius, Ir the rotor inertia, p the
density of the air, and g the acceleration due to gravity.
fen and fe, is the flat plat drag area in the vertical and
horizontal directions, respectively. C, denotes the power
coefficient defined as

1
Cp = gO’RCd + Cr A,
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where ¢4 is the drag coefficient of the rotor airfoil and
vsinf —ycosf +v

QR
is the inflow ratio. The advance velocity, Ur, is given by

)\:

Ur =vcosf + ysinb.
The variable v is induced velocity and we use the inflow

model
/1
v=0OR 50’]’,

which is the ideal inflow in hover. More sophisticated
inflow models exist but are outside the scope of this work,
and the reader is encouraged to read Johnson (1977) and
Chen and Hindson (1986) for more details.

5. RESULTS

We ensure safe landing when the conditions |y| < Ymax
and |v| < vmax are met as the helicopter is sufficiently
close to the ground; in this case |h| < 1. The parameters
Ymax and vmax are found from the structural specifications
of the airframe. We select the function J that satisfies (4)
the terminal conditions with

J (33) = maX(|y| — Ymax, |'U| — Umax; |h| -1,

where, for this example, we chose ym.x = 8ft/s and
Umax = 6knots. The remaining initial states are chosen
as the trim conditions such that y,© = 0, and initial

engine power was set Py = 0, simulating an instant engine
failure and providing a safety factor as it gives the largest
unsafe set. The input Cr is bounded by a blade stall
condition with Cp < 0.150r (Lee et al. (1988)), where
|6] < 40°. The rest of the coefficients for the model in (23)
are from (Yomchinda, 2013, Table 2-1, Table A-1). The
number of interior time samples, IV, is fixed at 24 and the
constant in (16) is set to ¢ = 3. To take advantage of the
inherent sparsity of the formulated optimization, we use
the NLP code IPOPT (Wéchter and Biegler (2006)), where
the constraint Jacobian was computed using automatic
differentiation by the methods of Andersson et al. (2019).

The value function for the system was computed using the
method of Section 3, and an H-V diagram is produced
by finding the unsafe regions, which is all areas where the
value function is greater than zero. Figure 1 shows the H-V
diagram for the dynamics given in (23), where dark regions
on the diagram represent initial height above ground level
(AGL) and forward speed such that a safe landing in the
event of an engine failure is impossible. Note that a disjoint
lobe of the unsafe set appears on the bottom right of Figure
1 and is known as the high-speed unsafe region.

5.1 Autonomous Autorotation

The arguments that minimize (21), denoted as X* and U*,
are the optimal landing trajectory and control sequence,
respectively, provided that the helicopter is operating
in the reachable tube. As an example we consider a
helicopter in a trimmed cruise at h = 500 ft with a forward
speed of 75 knots. Figure 2 shows the state evolution as
computed at the time of engine failure. The computed
trajectory results in a safe landing in 9.06 sec as found
from (22). We note the trajectory of the rotor speed, €,
in Figure 2c, where an increase in rotor speed is observed
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Fig. 1. Shown in green is the set of unsafe H-V flight
conditions as computed from the method of Section
3.

due to translational kinetic energy being transfered into
rotational kinetic energy to successfully decelerate, or
“flare”, at the terminal phase of the landing procedure.

6. CONCLUSION AND FUTURE WORK

Presented is a numeric method for computing the back-
wards reachable tube for general non-linear systems. We
are motivated by locating the unsafe operating states of
a helicopter so they can be avoided by the pilot. By
remaining outside of the unsafe set, it ensures it is possible
to initiate an autorotation sequence after engine failure
and guide the helicopter to a safe landing. The method
can additionally be used to compute control inputs in or-
der to complete an autonomous landing via autorotation.
Future work includes augmenting (23) with human pilot
dynamics as in McRuer and Krendel (1974) and include
pilot reaction delay (Kirchner (2019)). Additionally, we
will investigate integrating failure detection to initiate the
autonomous autorotation landing procedure.
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