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Abstract: The disturbance decoupling problem is considered in the framework of switching linear
systems assuming that no information on the actual value of the switching signal or on the current mode
of the system is available. By introducing the novel notion of strong conditioned invariant subspace, the
solvability of the problem is completely characterized by means of necessary and sufficient conditions.
Constructive procedures to check the solvability conditions and to construct solutions, if any exists, are
given.
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1. INTRODUCTION

In recent years, a large research effort has been devoted to the
study of switching systems in reason of their effectiveness in
modeling complex dynamical behaviors. Stability and stabiliza-
tion problems, as well as control and regulation problems, have
been investigated using different methods and tools. Examples
and results can be found in several books and collections of
papers, like e.g. Antsaklis and Nerode (1998), Antsaklis (2000),
Van der Schaft and Schumacher (2000), Savkin and Evans
(2002), Liberzon (2003), Sun and Ge (2005), Haddad et al.
(2006), Goebel et al. (2012), Zattoni et al. (2020).
In considering control and regulation problems that involve
switching systems, a quite standard assumption is that the value
of the switching signal at each time, and hence the current mode
of the system, is known. This allows the implementation of
switching controllers that switch synchronously with the sys-
tem to be controlled or regulated. Actually, unless the switching
is controlled by the designer or by the system manager himself,
the validity of such assumption may be questionable and, in
some situations, for instance when the switching is due to un-
predictable failures, it is likely that the assumption is violated.
For this reason, it is interesting to explore the possibility of
solving specific control and regulation problems without any
knowledge about the switching signal, except the fact that it
belongs to a given class, although obviously this leads to tight
solvability conditions.
In this paper, we consider the disturbance decoupling problem
for linear switching systems and we look for solutions that work
without any information on the actual value of the switching
signal or of the current mode of the system. We provide a com-
plete characterization of solvability of the problem in terms of
structural necessary and sufficient conditions and we give also
an algorithmic procedure to test the conditions and to construct
solutions, if any exist.
In our approach, we adopt a structural point of view that ex-

ploits the geometric approach for linear systems (Basile and
Marro, 1987; Wonham, 1985) and we introduce a suitable,
novel notion of controlled invariance, called strong controlled
invariance. Our results can be seen as an extension to the case in
which the switching signal is not known of the results obtained
on the same problem in Otsuka (2010), Zattoni et al. (2013),
Conte et al. (2014), Zattoni et al. (2014), Zattoni et al. (2016),
Perdon et al. (2017).
The symbols R, R+ and Z+ are used to denote the sets of real
numbers, nonnegative real numbers and nonnegative integer
numbers, respectively. Real vector spaces and subspaces are
denoted by calligraphic letters, like V . Linear maps between
vector spaces and the associated matrices are denoted by the
same slanted capital letters, like A. Therefore, the statements
A∈R

p×q and A :Rq →R
p are consistent. The image and the

kernel of A are denoted by ImA and KerA, respectively.

2. PRELIMINARIES AND STATEMENT OF THE
PROBLEM

A continuous-time switching linear system Σσ is a dynamical
system described by the equations

Σσ ≡
{
ẋ(t) = Aσ(t) x(t) +Bσ(t) u(t),
y(t) = Cσ(t) x(t),

(1)

where t∈R
+ is the time, x∈X =R

n the state, u∈U =R
m the

input, y ∈Y =R
p the output. Letting I = {1, . . . , N} denote a

finite index set, the function σ :R+ →I is a piece-wise constant
function that represents the switching time signal. For any value
i∈I, Ai, Bi, Ci are real matrices of suitable dimensions. The
time-invariant linear systems

Σi ≡
{
ẋ(t) = Ai x(t) +Bi u(t),
y(t) = Ci x(t),

with i ∈ I, (2)

are called the modes of Σσ . The indexed family Σ= {Σi}i∈I
is said to be the family of the modes of Σσ and the active mode
at the time t is specified by the value of σ(t)∈I.
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We say that the switching signal σ is measurable if its value
σ(t) is known at each time instant t and its knowledge can
be used for control purposes. Otherwise, we say that σ(t) is
unmeasurable. Letting {t�, �∈Z

+, t0 =0}σ be the set of the
discontinuity points of σ, we denote by τσ the dwell time of σ,
defined by τσ = inf {t�+1 − t�, �∈Z

+}. In order to avoid Zeno
phenomena, only switching signals with dwell time greater than
0 are admissible. The set of all switching signals satisfying this
condition is denoted byS0.
Now, assume that Σσ is subject to an additional disturbance
input, so that its equations take the form

ΣDσ ≡
{
ẋ(t) = Aσ(t) x(t) +Bσ(t) u(t) +Dσ(t) d(t),
y(t) = Cσ(t) x(t),

(3)

where d∈R
q is a disturbance input. We want to study the prob-

lem of decoupling the output y(t) of ΣDσ from the disturbance
d(t) by means of a state feedback in the case in which the
switching signal σ is unmeasurable, and hence the current mode
of the system is not known. Clearly, in such case we need to
employ a non-switching feedback. The resulting problem can
then be stated as follows.

Problem 1. Given a switching linear system ΣDσ of the form
(3) for which the switching signal σ is unmeasurable, the Strong
Disturbance Decoupling Problem (SDDP) consists in finding a
state feedback u(t)=F x(t), such that the compensated system
ΣF

Dσ described by the equations

ΣF
Dσ ≡

{
ẋ(t) = (Aσ(t) +Bσ(t) F )x(t) +Dσ(t) d(t),
y(t) = Cσ(t) x(t),

(4)

satisfies the following structural condition:

R 1. the output y(t) of ΣF
Dσ is independent from the distur-

bance d(t) for any σ ∈ S0, that is y(t) = 0 for all t∈R
+,

for all disturbance input d(t) and for any σ ∈S0, provided
that x(0)= 0.

3. PROBLEM SOLUTION

To deal with the problem stated in the previous section, we
introduce a notion that is stronger than the notion of hybrid con-
trolled invariance by which the disturbance decoupling problem
was solved in the case of measurable switching signals (Otsuka,
2010; Conte and Perdon, 2011; Conte et al., 2014; Zattoni et al.,
2014, 2016).

Definition 1. Given a switching linear system Σσ of the form
(1), a subspace V ⊆ X is said to be strong hybrid controlled
invariant, or robust strong (Ai, Bi)-invariant, if there exists
a feedback map F : Rn → R

m such that

(Ai +Bi F )V ⊆ V for every i ∈ I. (5)

Any map F : Rn → R
m satisfying (5) is called a strong friend

of V .
Denoting by VN ⊆ (Rn)N the subspace

VN =

⎛
⎜⎜⎜⎜⎜⎜⎝

V
0
0

...
0

⎞
⎟⎟⎟⎟⎟⎟⎠

⊕

⎛
⎜⎜⎜⎜⎜⎜⎝

0
V
0

...
0

⎞
⎟⎟⎟⎟⎟⎟⎠

⊕ . . .⊕

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0

...
V

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(5) is equivalent to

⎛
⎜⎝

A1

...
AN

⎞
⎟⎠V ⊆ VN + Im

⎛
⎜⎝

B1

...
BN

⎞
⎟⎠ . (6)

Proposition 2. Given a switching linear system Σσ of the
form (1) and a subspace W⊆R

n, the set of all strong hybrid
controlled invariant subspaces contained in W forms a semi-
lattice with respect to inclusion and sum of subspaces, therefore
there exists a maximum element of that set, denoted by V∗

S(W),
or simply by V∗

S if no confusion arises.

Proposition 3. The sequence of subspaces defined by

V0 = W

Vk+1 = Vk

⋂
⎛
⎜⎝

A1

...
AN

⎞
⎟⎠

−1 ⎛
⎜⎝VN

k + Im

⎛
⎜⎝

B1

...
BN

⎞
⎟⎠
⎞
⎟⎠ (7)

converges in a finite number of steps. Its limit is the maximum
strong hybrid controlled invariant subspace V∗

S(W) contained
inW .
Now, we can give a complete characterization of solvability of
the SDDP using the notions introduced above.

Theorem 1. LetΣDσ with modes {ΣDi, i∈I}, be a continuous-
time switched linear system of the form (3) for which the
switching signal σ is unmeasurable and let V∗

S denote the
maximum robust strong (Ai, Bi)-controlled invariant subspace
contained in

⋂
i∈I KerCi. Then, the SDDP for ΣDσ is solvable

if and only if for all i ∈ I one has
ImDi ⊆ V∗

S (8)

Remark 1. Clearly, the necessary and sufficient solvability con-
dition of Theorem 1 is tight, but this has to be expected, since
the fact that σ is unmeasurable makes the information on the
system quite poor. It has to be remarked, however, that condi-
tion (8) can be checked by constructing V∗

S by means of the
procedure given in Proposition 3 and that a friend F can be
synthesized without any information on σ. A solution to the
SDDP, if any exists, can therefore be practically implemented.

4. CONCLUSION

New structural notions have been introduced and shown to be
useful for characterizing structural solvability of the distur-
bance decoupling problem for switching linear systems without
information on the actual value of the switching signal, i.e.
on the current mode, and for synthesizing solutions. The same
problem with the additional requirement of global asymptotic
stability for ΣF

Dσ is much more complex to deal with, since it
involves a simultaneous stabilization problem, whose solvabil-
ity, in general, cannot be expressed by rational conditions, as
shown in Blondel (1994), Blondel (1999), Patel (1999). Further
investigations on this subject will be carried on in the future.
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