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Abstract: The basis of nonlinear system identification underlies a proper functional structure provided 

through either a detailed physical process description or a-priori knowledge from experts. However, these 
conditions are not provided in many engineering disciplines due to continuously changing functional 

structures depending on acting operational points and complex plant operations, which makes classical 

White-Box- or Grey-Box-Modelling difficult or even impossible. In order to achieve a reliable performance 

in nonlinear system identification, this paper seeks to examine a data-driven approach to identify the 

functional structure for the special case of nonlinear single-input-single-output (SISO) systems. The 

identified functional structures from the proposed method will be embedded as nonlinear candidates into 

the sparse regression method as system identification procedure and the performance of the estimation will 

be observed. 
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1. INTRODUCTION 

System identification forms a fundamental basis for further 

investigations in many engineering disciplines. In order to 

achieve sustainable and reliable results in further analysis, the 

reliability of the identified model must be ensured.  

However, the known linear approaches for system 

identification (Shardt (2015), Unbehauen et al. (2016), Ljung 

(1999)) are not applicable to nonlinear cases, since both the 

transition between time-domain and frequency domain is non-

existent and the pre-defined structure identification resulting 

from the models is not given. Classical nonlinear system 
identification approaches consist of neural network 

approaches, block-oriented system identification or sum-series 

application, in which either the structure is provided arbitrarily 

through a base function, a static nonlinearity or in case of sum-

series without a structure until the fit of the data is promising 

(Narendra et al. (1990), Nelles. (2001), Unbehauen et al. 

(2016), Hofmann. (2003)). 

Thus, in this paper, based on the previously mentioned 

challenges, a theoretical derivation of the results for nonlinear, 

deterministic SISO structure identification is presented that 

takes into consideration the measurements from an open loop 

condition. The theoretical result is used to modify the sparse 
regression method of Brunton et al. (2015) to provide the 

required nonlinear candidates for a proper reduced model 

order. The overall performance is then validated using an 

inverted pendulum as a benchmark system in a simulation 

environment. 

2. THEORY 

Consider an open-loop nonlinear SISO system, consisting of 

the input signal 𝑢𝑡, the output signal 𝑦𝑡 and the unknown 

nonlinear dynamics described in the time domain as 𝑓 

containing the state expressions 𝑥𝑡 and the unknown transition 

between output and states 𝐶 such that the overall expression 

will be 

 

�̇�𝑡 = 𝑓(𝑥𝑡, 𝑢) 

𝑦𝑡 = 𝐶(𝑥, 𝑢) (1) 

Here, the assumption is made that the sampling is sufficient 

containing the dynamic information and the output is directly 

connected to the states. Furthermore, the obtained results are 

applicable both in time and frequency-domain, since the 

dynamics acts in both representations. To prove this statement 

the structure identification is derived in the frequency domain, 

while the system identification is conducted in time domain in 

order to determine a state-space representation. Based on these 
circumstances, the structure identification method will be 

applied in the following manner as shown in Figure 1. 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 1: Overview of the structure identification method 

Fast Fourier 

Transform 
Residual 

evaluation 

Residual 

evaluation 

Residual 

evaluation 

Convolution 

Operation 

Asymptotic analysis 

Nonlinear candidates 

Presented as late breaking results contribution
21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors



 

 

 

     

The major objective of the proposed structure identification 

method consists of providing the possible, available nonlinear 

candidates derived from the dynamic behaviour of the system 

either from excitation or sufficient measurements. While the 

Fast Fourier Transform is applied to determine possible 

harmonic function candidates at the beginning, the 

convolution operation and the asymptotic analysis is used to 

cover all other existing nonlinear candidates except for non-

bijective functions. In order to ensure that the loop can be 

broken in case no further dynamics are available, a residual 
evaluation is implemented to save the computational effort. 

Hence, the initial output signal can be expressed as 

 

𝑦𝑡 = ℎ𝑡 + 𝑐𝑡 + 𝑎𝑡 + 𝑒𝑡               (2) 

 

Eq.2 is used as a regression indicator including the determined 

harmonic part ℎ𝑡, the convolution part 𝑐𝑡  and the asymptotic 

part 𝑎𝑡  with respect to the estimation error 𝑒𝑡. 
 

2.1. Fast Fourier Transform 

Fast Fourier Transform will be used to filter out the possible, 

existing harmonic part ℎ𝑡 of the output signal 𝑦𝑡. Therefore, 

the harmonic part with 𝑁 samplings can be expressed as: 

 

ℎ𝑡 = ∑ 𝑎𝑛 cos(𝜔𝑛𝑡) +
𝑁
𝑛=1 ∑ 𝑏𝑗 sin(𝜔𝑗𝑡)

𝑁
𝑗=1                               (3) 

 

Applying the Fourier Transform results 

 

𝐻𝑓 = ∑
𝑎𝑛

2
[𝛿(𝜔 + 𝜔𝑛) + 𝛿(𝜔 − 𝜔𝑛)] +

𝑁
𝑛=1 ∑

𝑏𝑗

2
𝑖[𝛿(𝜔 + 𝜔𝑗) + 𝛿(𝜔 −

𝑁
𝑗=1

𝜔𝑗)]                                                               (4) 

 

where 𝛿(. ) is the Dirac function and 𝑖 an imaginary number. 
The result from Eq.4 is complex, wherefore the sinusoidal 

expression will be replaced by a phase shifted cosine 

expression. In order to achieve the Fast Fourier Transform of 

the real Fourier series, the classical Fourier Transform is 

modified with the Cooley-Tukey Algorithm, which gives 

 

𝐻𝑓 = ∑
𝑎𝑛

2
[𝛿(𝜔 + 𝜔𝑛) + 𝛿(𝜔 − 𝜔𝑛)]

2𝑁
𝑛=1                                      (5) 

 

and provides the necessary frequencies to cancel out the 

harmonic part from Eq. 2. 

2.2. Convolution operation 

Starting from the condition stated in Eq. 5 and assuming the 

residual evaluation resulted a non-white sequence, the 
convolution operation is used both to determine possible 

underlying polynomial or exponential functional structures 

and to distinguish in between, since in time-domain the 

possibility of approximating functions with higher order 

polynomial is given. 

 

2.2.1.Convolution operation for polynomial identification 

In general, a polynomial function 𝑝𝑡 can be written as 

 

𝑝𝑡 = ∑ 𝑎𝑖𝑡
𝑖𝑛

𝑖=1                           (6) 

 

where 𝑖 denotes the polynomial order with n samplings and 𝑎𝑖 
the related weightings. In order to obtain a polynomial library 

based on the convolution operation, the correspondence of the 

Laplace Transform for convolution operation is used, that is, 

 

ℒ{𝑝𝑡 ∗ 𝑝𝑡} = ℒ{∫ 𝑝(𝑢)𝑝(𝑡 − 𝑢)𝑑𝑢
∞

0
} = ℒ{𝑝𝑡} ∙ ℒ{𝑝𝑡}                             (7)  

              

Theorem 1. Using Eq.7, it can be obtained that the convolution 

of two polynomials itself results into a piecewise higher order 

polynomial 𝑃 with 2𝑛 samples, 𝑇𝑧 denoting the intermediate 

time stamps  and 𝑇𝑚  describing the last time stamps, that is  

 

𝑃 =

{
 
 
 
 

 
 
 
 ∑ ∑ 𝑎𝑖𝑎𝑗

𝑖!𝑗!

(𝑖+𝑗+1)!
𝑡𝑖+𝑗+1𝑛

𝑗=0
𝑛
𝑖=0      0 < 𝑡 < 𝑇1
…                                                                    

∑ ∑ 𝑎𝑖𝑎𝑗
𝑖!𝑗!

(𝑖+𝑗+1)!
𝑡𝑖+𝑗+1𝑛

𝑗=0
𝑛
𝑖=0 +

∑ ∑ 𝑎𝑖𝑎𝑗
𝑖!𝑗!

(𝑖+𝑗+1)!
(𝑡 − 𝑇𝑧−1)

𝑖+𝑗+1𝑛
𝑗=0

𝑛
𝑖=0 −

∑ ∑ 𝑎𝑖𝑎𝑗
𝑖!𝑗!

(𝑖+𝑗+1)!
(𝑇𝑧 − 𝑡)

𝑖+𝑗+1𝑛
𝑗=0

𝑛
𝑖=0  𝑇𝑧 < 𝑡 < 2𝑇𝑧
…
0                                                           𝑡 > 𝑇𝑚

                            (8) 

 

Proof.  Assume that Eq.6 holds, and P is defined as 

 
𝑃 = 𝑝𝑡 ∗ 𝑝𝑡                                                   (9) 

 

then Eq.7 can be re-written as 

 
ℒ{𝑃} = ℒ{∑ 𝑎𝑖𝑡

𝑖𝑛
𝑖=1 } ∙ ℒ{∑ 𝑎𝑖𝑡

𝑖𝑛
𝑖=1 }  

          = ∑ ∑ 𝑎𝑖𝑎𝑗
𝑖!𝑗!

(𝑖+𝑗+1)!

(𝑖+𝑗+1)!

𝑠𝑖+𝑗+1+1
𝑛
𝑗=0

𝑛
𝑖=0   

𝑃      = ℒ−1{∑ ∑ 𝑎𝑖𝑎𝑗
𝑖!𝑗!

(𝑖+𝑗+1)!

(𝑖+𝑗+1)!

𝑠𝑖+𝑗+1+1
𝑛
𝑗=0

𝑛
𝑖=0 }  

          = ∑ ∑ 𝑎𝑖𝑎𝑗
𝑖!𝑗!

(𝑖+𝑗+1)!
𝑡𝑖+𝑗+1𝑛

𝑗=0
𝑛
𝑖=0                                             (10) 

 

The result of Eq.10 represents the polynomial library function, 

if no intersection in between during the convolution occurs. In 

case of intersections during the convolution, the area changes 

in between need to be considered. Therefore, the number of 

intersections 𝑧 is related to the number of existing global 

extrema of the polynomial itself. In order to obtain the result 

for the convolution in between of intersections, Eq.10 can be 

re-written as   

 

𝑃 = ∫ 𝑝(𝑢)𝑝(𝑡 − 𝑢)𝑑𝑢
𝑇𝑧
𝑡−𝑇𝑧−1

  

    = ∫ 𝑝(𝑢)𝑝(𝑡 − 𝑢)𝑑𝑢
𝑡

0
+ ∫ 𝑝(𝑢)𝑝(𝑡 − 𝑢)𝑑𝑢

0

𝑡−𝑇𝑧−1
− ∫ 𝑝(𝑢)𝑝(𝑡 − 𝑢)𝑑𝑢

𝑇𝑧
𝑡

  

    = ∑ ∑ 𝑎𝑖𝑎𝑗
𝑖!𝑗!

(𝑖+𝑗+1)!
𝑡𝑖+𝑗+1𝑛

𝑗=0
𝑛
𝑖=0 +        ∑ ∑ 𝑎𝑖𝑎𝑗

𝑖!𝑗!

(𝑖+𝑗+1)!
(𝑡 −𝑛

𝑗=0
𝑛
𝑖=0

          𝑇𝑧−1)
𝑖+𝑗+1 − ∑ ∑ 𝑎𝑖𝑎𝑗

𝑖!𝑗!

(𝑖+𝑗+1)!
(𝑇𝑧 − 𝑡)

𝑖+𝑗+1𝑛
𝑗=0

𝑛
𝑖=0                           (11) 

 

where 𝑇𝑧 denotes the time stamp of the intersection. 

Concluding the results from Eq.10 and Eq.11 and replacing the 

result from Eq.11 for arbitrary intersections of the convolution 

product denoted with … leads to the final solution  

 

𝑃 =

{
 
 
 
 

 
 
 
 ∑ ∑ 𝑎𝑖𝑎𝑗

𝑖!𝑗!

(𝑖+𝑗+1)!
𝑡𝑖+𝑗+1𝑛

𝑗=0
𝑛
𝑖=0      0 < 𝑡 < 𝑇1
…                                                                       

∑ ∑ 𝑎𝑖𝑎𝑗
𝑖!𝑗!

(𝑖+𝑗+1)!
𝑡𝑖+𝑗+1𝑛

𝑗=0
𝑛
𝑖=0 +

∑ ∑ 𝑎𝑖𝑎𝑗
𝑖!𝑗!

(𝑖+𝑗+1)!
(𝑡 − 𝑇𝑧−1)

𝑖+𝑗+1𝑛
𝑗=0

𝑛
𝑖=0 −

∑ ∑ 𝑎𝑖𝑎𝑗
𝑖!𝑗!

(𝑖+𝑗+1)!
(𝑇𝑧 − 𝑡)

𝑖+𝑗+1𝑛
𝑗=0

𝑛
𝑖=0  𝑇𝑧 < 𝑡 < 2𝑇𝑧
…
0                                                           𝑡 > 𝑇𝑚

                      (12) 

       Q.E.D 
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For demonstration purpose, Figure 2 shows the convolution 

behaviour for a polynomial of third order. 

 

 

Figure 2: Convolution product of two polynomials of third 

order 

2.2.2.Convolution operation for exponential identification 

 

Having derived the relationship of the convolution operation 

between two polynomials, it is in interest to investigate the 

convolution behaviour of exponentials and its result, since the 

behaviour of both functionalities in time domain can be 

identical. Therefore, the general exponential expression 

𝑠𝑡  given as 
 

 𝑠𝑡 = 𝑎1exp (𝑏𝑡)                        (13) 

 

with the given correspondence from Eq.7 will be investigated.  

 

Theorem 2. Using Eq.13, the convolution of two polynomials 

itself results into a piecewise higher order exponential 𝑆 with 

two intersections, which is  

 

𝑆 = {
𝑎1

2𝑡 exp(𝑏𝑡)                                                 0 < 𝑡 < 𝑇

𝑎1
2[𝑇exp(𝑏𝑇) − (𝑡 − 𝑇)exp(𝑏(𝑡 − 𝑇))] T < t < 2T

0                                                                                  𝑡 > 2𝑇

                    (14) 

 

Proof.  This theorem can be proved following a similar 

approach from theorem 1. Using the inverse Laplace transform 
from the convoluted product, it can be obtained that 

 
𝐿{𝑆} = 𝐿{𝑎1exp(𝑏𝑡)} ∙ 𝐿{𝑎1exp(𝑏𝑡)} 

𝑆       =  𝑎1
2𝑡 exp(𝑏𝑡)                                        (15) 

 

To determine the convolution product for one intersecting 

area, the expression from Eq.11 is used with the result from 

Eq.15 and modified ranges, that is,  

 

𝑆 = ∫ 𝑠(𝑢)𝑠(𝑡 − 𝑢)𝑑𝑢
𝑇

𝑡−𝑇
  

    = 𝑎1
2[𝑇exp(𝑏𝑇) − (𝑡 − 𝑇)exp(𝑏(𝑡 − 𝑇))]                     (16)  

 

Concluding the results from Eq.15 and Eq.16, the overall result 

for the convolution operation can be summarized as  

 

𝑆 = {
𝑎1

2𝑡 exp(𝑏𝑡)                                                 0 < 𝑡 < 𝑇

𝑎1
2[𝑇exp(𝑏𝑇) − (𝑡 − 𝑇)exp(𝑏(𝑡 − 𝑇))] T < t < 2T

0                                                                                  𝑡 > 2𝑇

                    (17)     

Q.E.D  

From Eq.12 and 17, it can be shown for the identification of 

the functional structure, that both the exponential and 

polynomial features can be distinguished, and two general 

structure expressions are provided. Thus, the convolution part 

of Eq.2 can be updated with the obtained results. 

 

 

Figure 3: Convolution product of two exponential functions 

2.3. Asymptotic analysis 

Unless, the residual evaluation is revealed to be a non-white 

sequence after the application of the proposed two methods, 

this is referred to a misdetection of an unknown nonlinear 
candidate due to the numerical constraints of the Laplace 

operation. Therefore, the asymptotic analysis is proposed to 

focus on the sigmoid functions and rational functions without 

definition gaps. 

 

Theorem 3. The properties of any sigmoid and rational 

function can be determined and distinguished by obtaining the  

related asymptote and the first two derivatives. 

 

Proof.  Let the generalised sigmoid function be 

 
𝑓(𝑡) =

𝐿

1+exp (−𝑘(𝑡−𝑡0))
                                     (18) 

 

and the rational function be 

 

𝑓(𝑡) =
𝐾

√𝑇+𝑡𝑝
𝑛   with 𝐾, 𝐿 ∈ ℜ, 𝑛 ∈ ℜ+\{0}, 𝑝 ∈ ℜodd                       (19) 

 

Computing the first derivative and the related asymptotes for 

Eq.18 and 19 lead to 

 

𝑓(𝑡) =
𝐿

1+exp (−𝑘(𝑡−𝑡0))
=

𝐿 exp(𝑘(𝑡−𝑡0))

1+exp(𝑘(𝑡−𝑡0))
                                           (20) 

lim
𝑡→+∞

𝑓(𝑡) = 𝐿 and lim
𝑡→−∞

𝑓(𝑡) = 0                                                 (21) 
𝑑𝑓

𝑑𝑡
= 𝑘 𝑓(𝑡)(1 − 𝑓(𝑡))                                                  (22)                    

𝑓(𝑡) =
𝐾

√𝑇+𝑡𝑝
𝑛                                         (23) 

lim
𝑡→+∞

𝑓(𝑡) = 0 and lim
𝑡→−∞

𝑓(𝑡) = 0                                               (24) 
𝑑𝑓

𝑑𝑡
=

−𝐾

𝑛 √(𝑇+𝑡𝑝)𝑛 𝑛+1 𝑝𝑡
𝑝−1                                                  Q.E.D  (25) 

As a result, it can be obtained that the characteristics of a 

sigmoid function and a rational function can be defined and 
distinguished between the asymptotes and its first derivative. 

Finally, the derived theoretical results can be added to the 

regression indicator in Eq.2 to complete the structure 

identification. 

3. SIMULATION 

The derived structure identification method will be tested on 

the use case of an inverted pendulum, which is defined as 

 
�̇� = 𝑦

�̇� =
𝑔

𝑙
sin(𝑥) −

𝑘

𝑚
𝑦
                                     (26) 
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where 𝑔 is the gravitational constant, 𝑙 the length of the rope, 

𝑘 the damping factor, and 𝑚 the mass of the pendulum, while 

𝑥 and 𝑦 are respectively the elongation angle and its deviaton 

with the following normed parameters: 

 

Table 1: Parameter setting for the inverted pendulum process 

Variable 𝑔 𝑙 𝑘 𝑚 

Values 9.81 3 3 20 

 

 

Figure 4: Fast Fourier Transform of output signal 

Firstly, the system is excited with an PRBS signal to determine 

the dynamic content in the data set to apply the structure 

identification procedure. After ensuring a sufficient excitation, 

the Fast Fourier Transform is applied. From Figure 4, the 

specific frequencies at 850 Hz and 1500 Hz are obtained, 

which indicate a sinusoidal influence. Moreover, the residual 

shows a non-white sequence, which hints another dynamic 
influence in the dataset. Applying the convolution product 

provides a fit with the convolution product structure from 

Eq.12, that is, 

 

 𝑆 = {
0.002(𝑥 + 0.9586)5             0 < 𝑥 < 60

0.002[60−(𝑥 + 0.9586)5] 60 < 𝑥 < 107
0                                                           𝑥 > 107

                              (27) 

 

with the resulting polynomial 

 

  𝑠𝑡 = 0.2488𝑥2 + 0.2385𝑥                                                       (28)
                       

 

Figure 5: Convolution product of rest output signal 

 

Figure 6: Residual evaluation after convolution operation 

Since the last residual evaluation indicates a white-noise 

sequence with scores below the significance level according to 

the Ljung-Box Test statistics, the structure identification is 

completed. From the results, it can be obtained that the 

following nonlinear candidates need to be considered to 

achieve a proper parameter estimation: 

 

Table 2: Selected nonlinear candidates 

 

Functional 

candidates 
sin (𝑥, 𝑦) cos (𝑥, 𝑦) 𝑥, y (𝑥, 𝑦)2 

 
Hence, the sparse regression is applied, and the following 

parameter estimates are determined: 

 

Table 3: Parameter estimates 

 

 sin (𝑥) cos (𝑥) y 𝑥2 

�̇� 0 0 1 0 

�̇� 3.27 0 -0.15 0 

 
�̇� = 𝑦

�̇� = 3.27 sin(𝑥) − 0.15𝑦
                       (29) 

4. CONCLUSIONS 

 This paper proposed a new data-driven structure identification 

method to support and improve the nonlinear system 

identification procedure. The investigated structure 

identification method provided the appropriate candidates for 

the sparse regression method to determine the estimates for the 

nonlinear candidates for the SISO use case of an inverted 

pendulum. The sequential algorithm proved that it is capable 

of determining harmonic functions over the Fast Fourier 
Transform and covering the nonlinear dynamics over the 

convolution operation and asymptotic analysis as well with 

respect to the bijective feature of the candidates and a sufficient 

excitation with a PRBS input signal. Future work will focus on 

extending the developed structure identification method to 

noisy data and coupled nonlinearities. 
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