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Abstract: We present a novel feasibility criteria for the intersection of finitely many convex sets
where each set is given by an inequality. This criteria allows us to easily assert the feasibility by
analyzing the unconstrained minimum of a certain convex function, that we form with the given
sets. Such a criteria is then used together with bisection techniques to solve general convex
optimization problems within a desired precision in polynomial time. A simple complexity
analysis is given for the case where the functions involved are strongly convex, but the method
can be used for general convex functions.
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1. INTRODUCTION

This paper presents an algorithm for answering a very
important question often arising in science, engineering
and philosophy: the question of feasibility. Given more
constraints one may often wonder if it is possible to meet
all of them. This approach can be used as a basis for
optimization algorithms, therefore we search for a fast way
of deciding upon feasibility of different constraints. We give
a sufficient criteria for asserting the infeasibility based on
the results of an unconstrained optimization of a proposed
function. In the case of strongly convex functions we show
that the answer can be obtained fast.

Recall the following well known operator:

∂

∂X
=
[
∂
∂x1

. . . ∂
∂xn

]
= ∇T (1)

1.1 Convex domains of interest

Let X ∈ Rn×1, n,m ∈ N+ and let gk : Rn×1 → R be
convex functions for k ∈ {1, . . . ,m}. Then we define the
convex sets:

Sk =

{
X ∈ Rn×1

∣∣∣∣gk(X) ≤ 0

}
(2)

and we are interested if the set

S =

m⋂
k=1

Sk (3)

is empty or not.

Let us define the function G : R+ × Rn×1 → R+

G(α,X) =

m∑
k=1

log
(

1 + eα·gk(X)
)

(4)

and check for the convexity of G(α,X) by evaluating its
derivatives:

∂G

∂X
=

m∑
k=1

eα·gk(X)

1 + eα·gk(X)
· α · ∂gk

∂X
(5)

and

∂

∂X

T ∂

∂X
G =

m∑
k=1

eα·gk(X)(
1 + eαgk(X)

)2 · α2 · ∂gk
∂X

T ∂gk
∂X

+

+

m∑
k=1

eα·gk(X)

1 + eα·gk(X)
· α · ∂

∂X

T ∂gk
∂X

(6)

It is easy to see that the hessian of G is positively defined
hence G is convex.

Remark 1. An important class of convex sets is generated
by the following system of linear inequalities:

A ·X +B � 0m (7)

with A ∈ Rm×n, B ∈ Rm×1, X ∈ Rn×1 and m,n ∈ N.
These are m inequalities of the following form: gi(X) =
ATi ·X + bi ≤ 0 where ATi is the i’th line of the matrix A
and bi is the i’th element of the vector B.

At the very core of the following work it is the minimiza-
tion of the above defined function G, for different param-
eters α > 0 to an ε precision G(α,X)−G(α,X?) ≤ ε. The
complexity analysis of the given algorithms will account
for the number of minimizations required to reach a de-
sired conclusion. Therefore in the following subsection we
give some known results for the minimization of a convex
function.

1.2 Results concerning unconstrained minimization of
convex functions

Let us now give a result concerning the minimization of
strongly convex functions. The results are well known but
we provide a different proof to the classical one, Robert
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M. Gower (2018). Our proof can also be used to show the
stability of certain dynamical systems.

Let F : Rn×1 → R be a convex function and consider the
dynamical system given below:

Ẋ(t)T = − ∂F
∂X

(X(t)) (8)

Then multiplying at the right by Ẋ one obtains:

‖Ẋ(t)‖2 = ẊT Ẋ = − ∂F
∂X
· Ẋ = − d

dt
F (X(t)) (9)

Let us give the following lemma:

Lemma 2. Let f(t) = F (X(t)), then f is convex for all
t ∈ R+.

Proof. Indeed

f ′(t) =
∂F

∂X
· Ẋ = −ẊT Ẋ ≤ 0

f ′′(t) =
d

dt

(
∂F

∂X
· Ẋ
)

=

(
d

dt

∂F

∂X
· Ẋ +

∂F

∂X
· Ẍ
)

= −2 · ẌT · Ẋ (10)

where

−ẌT =
[
d
dt

∂F
∂x1

. . . d
dt

∂F
∂xn

]
=
[(

∂
∂X

∂F
∂x1

)
· Ẋ . . .

(
∂
∂X

∂F
∂xn

)
· Ẋ
]

=

[
ẊT ·

(
∂
∂X

∂F
∂x1

)T
. . . ẊT ·

(
∂
∂X

∂F
∂xn

)T]
=

= ẊT ·
[(

∂
∂X

∂F
∂x1

)T
. . .
(

∂
∂X

∂F
∂xn

)T]
= ẊT ·H(X(t))

(11)

where H =
(
∂
∂X

)T ∂F
∂X is the Hessian matrix of F . In

conclusion f ′′(t) = 2 · Ẋ(t)T ·H(X(t)) · Ẋ(t) ≥ 0 since the
hessian of F is positively defined, therefore f(t) is convex.

Because we assume a numeric integration of the dynamical
system (8) with a constant step size, we will consider in the
following the time required to reach the equilibrium point,
which therefore will be proportional with the number of
integration steps, as a measure of algorithm computational
complexity.

Under the hypothesis that F is strongly convex, results
about the velocity of convergence can be obtained in
Lemma 3:

Lemma 3. (Minimization of strongly convex functions). For
a strongly convex function, F : Rn → R, the solution
to the dynamical system (8), X(t), meets ‖F (X(t)) −
F (X(∞))‖ ≤ ε if

t ≥ 1

2 ·K
· log

(∥∥ ∂F
∂X (X(0))

∥∥2
ε · 2 ·K

)
(12)

where K > 0 such that ∂
∂X

T ∂
∂XF (X)−K · I � 0

Proof. Assuming that ∃K > 0 such that ẊT ·H(X) ·Ẋ−
K · ẊT · Ẋ ≥ 0 (i.e F is strongly convex) one obtains:

f ′′ + 2 ·K · f ′ = ẊT · (2 ·H(X)− 2 ·K · I) · Ẋ ≥ 0
(13)

hence using Gronwall’s inequality lemma one obtains:

f ′(t) ≥ f ′(0) · e−2·K·t ⇐⇒ 0 ≤ −f ′(t) ≤ −f ′(0) · e−2·K·t
(14)

which means that for a given X0 = X(0) one obtains

0 ≤ ẊT (t) · Ẋ(t) ≤
∥∥∥∥ ∂F∂X (X0)

∥∥∥∥2 · e−2·K·t (15)

From Robert M. Gower (2018) since F is strongly convex

F (X(t+ T )) ≥F (X(t)) +
∂F

∂X
(X(t)) (X(t+ T )−X(t))) +

+
K

2
‖X(t+ T )−X(t)‖2 (16)

therefore, after some algebraic manipulations, one obtains:

F (X(t))− F (X(t+ T )) ≤

−

∥∥∥∥∥
√
K

2
(X(t)−X(t+ T ))− 1√

2K

∂F

∂X
(X(t))

∥∥∥∥∥
2

+
1

2 ·K

∥∥∥∥ ∂F∂X (X(t))

∥∥∥∥2 (17)

therefore, letting T →∞

∣∣∣∣F (X(t))− F (X?)

∣∣∣∣ ≤ 1

2 ·K
·
∥∥∥∥ ∂F∂X (X(t))

∥∥∥∥2 =
−f ′(t)
2 ·K

≤ e−2·K·t

2 ·K
·
∥∥∥∥ ∂F∂X (X0)

∥∥∥∥2 ≤ ε (18)

from where the conclusion easily follows.

Remark 4. Let us assume that the dynamical system is
integrated using Euler technique:

X(tp+1) = X(tp)− Ts ·
∂F

∂X

T

(X(tp)) (19)

where Ts is the sampling time and tp = p · Ts. In order to
achieve (12) one has

p ≥ 1

K · Ts
· log

(∥∥ ∂F
∂X (X(0))

∥∥2
ε · 2 ·K

)
(20)

hence minimizing a strongly convex function to ε precision

takes O(log

(
‖ ∂F∂X (X(0))‖2

ε

)
) steps constant along gradient

descent direction.

2. MAIN RESULTS

2.1 An Algorithm For Asserting The Feasibility of An
Intersection of Convex Sets

Let us consider the following system of convex inequalities:

gk(X) ≤ 0 (21)

with k ∈ {1, . . . ,m}, X ∈ Rn×1 and m,n ∈ N. We want to
solve the feasibility problem related to the above system
of inequalities.

Definition 5. We say that the system of inequalities 21 is
δ ∈ R feasible, if ∃X ∈ Rn×1 such that ∀k ∈ {1, . . . ,m}
one has gk(X) ≤ δ.

Let ε, δ > 0 be arbitrarily small. In the following we
shall derive an algorithm which: finds a ε feasible
point or returns a proof that the system is not −δ
feasible.
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Algorithm derivation Let us recall the function,G : R+×
Rn×1 → R+ from 4

G(α,X) =

m∑
k=1

log
(

1 + eα·gk(X)
)

(22)

where gk is a convex function.

Let (αp)p∈N ⊂ R+ be an increasing, unbounded sequence
of positive real numbers and let (Gp)p∈N ⊂ R be a sequence
of numbers defined as follows:

Gp = inf
{
G(αp, X)|X ∈ Rn×1

}
(23)

Here we give an important lemma, which is the base of an
infeasibility criterion:

Lemma 6. If the convex system 21 is −δ with δ > 0
feasible, then Gp+1 ≤ η ·Gp for some η ∈ (0, 13 ) and p ∈ N
if

αp+1 ≥
−1

δ
· log

(
e
η·Gp
m − 1

)
(24)

Proof. Indeed, if (21) is −δ feasible, then ∃X̂ ∈ Rn×1
such that gk(X) ≤ −δ for all k, hence

log
(

1 + eαp+1·gk(X)
)
≤ log

(
1 + e−αp+1·δ

)
(25)

hence

Gp+1 ≤
(
m · log

(
1 + e−αp+1·δ

))
≤ η ·Gp ⇐⇒

αp+1 ≥
−1

δ
· log

(
e
η·Gp
m − 1

)
(26)

Remark 7. For each step, while minimizing G(αp+1, X), a
minimizer may not exist, but we can stop searching for it
when

|G(αp+1, X)−Gp+1| ≤ η ·Gp (27)

Let Xp+1 be such a point, hence∣∣∣G(αp+1, Xp+1)− η

2
Gp

∣∣∣ ≤
≤
∣∣∣G(αp+1, Xp+1)−Gp+1 +Gp+1 −

η

2
·Gp

∣∣∣
≤ |G(αp+1, Xp+1)−Gp+1|+

∣∣∣Gp+1 −
η

2
·Gp

∣∣∣
≤ 3η

2
·Gp (28)

Let us denote Ĝp+1 = G(αp+1, Xp+1) with Xp+1 the point
found above. Then in the above 6, if Gp is replaced by

Ĝp = G(αp, Xp) in the lower bound for αp+1 it can also

be replaced in the conclusion, to obtain Gp+1 ≤ η · Ĝp.
This together with 28 leads to

G(αp+1, Xp+1) ≤ 2 · η ·G(αn, Xp) ≤ . . . ≤ (2 · η)p ·G(α1, X1)
(29)

Remark 8. It is important to remember the implications:
the system is −δ feasible

αp+1 ≥ −1δ · log
(
e
η·Gp
m − 1

)
|G(αp+1, Xp+1)−Gp+1| ≤ η ·G(αp, Xp)

⇒

⇒ G(αp+1, Xp+1) ≤ 2 · η ·G(αp, Xp) (30)

If at some step, the right hand side conclusion is not met,
it meas that at least one condition from the cases was not
true. We will make sure that the last two conditions are
met, hence failing to obtain the RHS inequality will mean
that the system is not −δ feasible, for a fixed, initially
given δ > 0. This will be a certificate that the system (21)
is not −δ feasible and we STOP the feasibility algorithm.

Let E > 0 be a given tolerance and let (2·η)p ·G(α1, X1) ≤
E, then for all k one has

log
(

1 + eαp+1·gk(X)
)
≤ G (αp+1, Xp+1) ≤ E (31)

hence

gk(X) ≤ 1

αp+1
· log

(
e
√
E − 1

)
= ε (32)

where ε > 0 is the desired precision, which can be
arbitrarily small.

Complexity analysis for strongly convex functions We
carry this analysis under the hypothesis that evaluating
gk(X) on a constant requires O(n) flops, and eventually
upon some normalization, the value of gk on a constant
belongs to O(1) set. Then we consider that evaluating the
gradient of G(α,X) requires O(m · n) flops.

Next, please note that for a given ε, η a finite deter-
ministic p, the number of steps, is required to obtain
(2 · η)p · G(α1, X1) ≤ E, therefore p ∈ O(log(m)) since
G(α1, X1) ∈ O(m) if gk(X1) ∈ O(1). Next, each step
requires finding Xp+1 given Xp and δ.

We will carry the analysis for the number of steps required
to minimize G(α,X) for the case where gk are strongly
convex functions.

For such functions it is easy to see from (6) that if gk(X) is

strongly convex then let K > 0 such that ∂
∂X

T ∂
∂X gk −K ·

I � 0, hence for all X for which ∃k such that gk(X) ≥ 0
one has:

∂

∂X

T ∂

∂X
Gk �

m∑
k=1

eα·gk(X)

1 + eα·gk(X)
· α · ∂

∂X

T ∂gk
∂X

� α ·K
2
· I (33)

In terms of the memory required, the parameter αp ≈ 1
δ ·

log(m) for very large m.

Since
∥∥∥∂G(αp,X)

∂X (X0)
∥∥∥ ≤ m · αp · dg where

dg = maxk{‖∂gk∂X (X0)‖} ∈ O(1), after some eventual

normalization, there are 2 · log(m·log(m)
ε·δ ) gradient descent

steps required to minimize G(αp, X) with each step re-
quiring the evaluation of the gradient. Computing the
gradient of G(αp, X) consists of evaluating the gk(X) for
all k ∈ {1, . . . ,m}. Under the hypothesis that evaluation of
gk takes n flops one can assume that each gradient descent
step requires O(m · n) flops, hence the overall algorithm
requires N flops of where

N ∈ O
(
m · n · log

(
m2 · log(m)2

ε · δ2

)
· log(m)

)
(34)

for finding a point X? such that gk(X?) ≤ ε > 0 or proving
that there is no point X? such that gk(X?) ≤ −δ < 0.

2.2 Minimizing convex functions with convex constraints

Having solved the feasibility problem for an intersection of
convex sets, it is well known that one can easily proceed
to solve a convex minimization problem with convex
constraints:
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min f(X)

s.t g1(X) ≤ 0

...

gm(X) ≤ 0

(35)

For the sake of the argument we will assume that f(X) ≥
0. Assuming the constraints are feasible (otherwise the
optimization stops), we find a feasible point, call it X1 and
let f1 = f(X1). Next we rewrite (35) like in the following,
using the epigraph technique. Let us associate for each
convex function gk forming the restrictions, the function
ĝk : Rn+1 → R

ĝk

(
X̂
)

= g(X) (36)

where X̂ =

[
X
xn+1

]
for all X ∈ Rn in the domain of gk.

Then similarly, let f̂ : Rn+1 → R

f̂
(
X̂
)

= f(X)− xn+1 (37)

Finally for R ∈ [0, f1] we obtain a family of feasibility
problems:



xn+1 ≤ R
f̂(X̂) ≤ 0

ĝ1(X̂) ≤ 0
...

ĝm(X̂) ≤ 0

(38)

One can start with R = f1 then, if feasible, let R = f1
2

and so on, practically bisecting on the interval [0, f1]. If
f1 ∈ O(1), it is well know that in this case, there will be

log2

(
f1
ε

)
∈ O

(
log
(
1
ε

))
steps required to obtain a solution

to ε precision where the complexity of each step is given
by (34).

3. CONCLUSION AND FUTURE WORK

We presented a sufficient criteria for asserting the feasi-
bility of a intersection of convex sets, which proved easy
to apply in the case of strongly convex functions. The
we merged this into an optimization algorithm based on
bisection and epigraph of the function to be minimized.
As future work one can try to obtain bounds on the com-
plexity for other convex functions not necessarily strongly
convex.
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