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Abstract: A simple and practical method for closed-loop identification of ill-conditioned
systems is presented. The method uses rotation matrices to identify the process in directions
important for control. This approach simplifies the identification and improves reliability,
because simple first order models are usually adequate in the identification step. An open-loop
/ closed-loop duality is introduced, which gives a new holistic viewpoint on control-relevant
identification of 2 × 2 ill-conditioned systems. Pitfalls, and some guidelines how to avoid them,
in control-relevant identification of ill-conditioned systems are discussed.
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1. INTRODUCTION

To achieve tight two-point distillation control, a model-
based control algorithm, e.g. Model-Predictive Control
(MPC) is usually employed. To implement MPC we need
an algorithm, which is usually available for today’s au-
tomation systems, and a model of the controlled process.
Naturally, the model must be tailor-made (identified) for
each application. An identification experiment must be
performed during commissioning, and also later to keep
the model up to date and to ensure good control perfor-
mance.

A process is classified as ill-conditioned when the condi-
tion number of the steady-state gain matrix is high. Ill-
conditioned processes are characterized by directionality,
i.e. some input directions are highly amplified, and some
are not. In addition, process dynamics usually go hand in
hand with the gain directions. For control purposes, it is
important to model and identify both the gains and the
dynamics of all gain directions (Jacobsen and Skogestad,
1994).

Hovd et al. (1997) introduced the SVD control concept
for a subset of multi-variable processes with frequency-
independent rotation matrices of the form

G(s) = WΣ(s)VH ,Σ(s) = diag(σi(s)) (1)

According to Hovd et al. (1997), processes of type (Eq. 1)
are quite common in the process industry.

Friman (2020) used Eq. 1 for high-purity distillation mod-
els to simplify identification. Eq. 1 provides a structure
with fewer states and fewer parameters compared to tra-
ditional modeling. Still, this model structure is useful for
model-based control of ill-conditioned systems, because it
takes into account the dynamics in all gain directions.
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Friman (2020) only discussed open-loop identification, but
closed-loop identification is sometimes preferred, because
identification can often be done during production. In this
paper we extend the results to closed-loop identification.
In addition, a duality that provides a holistic overview of
ill-conditioned system’s identification is presented. The du-
ality clarifies the conditions for successful, control-relevant
identification of ill-conditioned systems.

Our aim is to introduce a simple and practical closed-
loop identification concept that can provide good models
for control. The objectives are: 1) to keep the number of
parameters and states as low as possible, 2) to use simple
ARX identification, 3) to capture the directionality of the
process (both gain and dynamics), which is crucial for
control, and 4) to provide easy assessment of identified
model quality.

It has been estimated that distillation stands for 10-15%
of total energy consumption in the world. We believe
that tight model-based distillation control can reduce
the energy consumption globally, and that the model
identification method presented here is so simple and
practical that it is well suited and useful for industrial
applications.

2. DIFFICULTIES IN IDENTIFICATION OF
ILL-CONDITIONED SYSTEMS

Traditionally, models for high-purity distillation control
have been obtained by fitting individual transfer function
elements, typically first-ordered-plus-dead-time models for
each input-output pair (Wood and Berry, 1973), (Waller
et al., 1988)

G(s) =

k11exp(−L11s)

T11s+ 1

k12exp(−L12s)

T12s+ 1
k21exp(−L21s)

T21s+ 1

k22exp(−L22s)

T22s+ 1

 (2)
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Jacobsen and Skogestad (1994) used a simple heat ex-
changer model to demonstrate that, for ill-conditioned sys-
tems (like high-purity distillation), first-order models (Eq.
2) are able to fit open-loop data well, but they are badly
suited for control purposes because they can not model
the fast responses in the low gain direction. To correct
this drawback, Jacobsen and Skogestad (1994) suggest the
model structure

G(s) =

(
k11(z11s+ 1) k12(z12s+ 1)
k21(z21s+ 1) k22(z22s+ 1)

)
(T1s+ 1)(T2s+ 1)

(3)

This model can capture directionality, but compared to
the original first principle model of the heat exchanger,
which has two states, Eq. 3 has 6 states in the general case.
Therefore, it is motivated to use the SVD model structure
(Eq. 1) to model the heat exhcanger with the the two-state
model

G(s) = W

 k1
T1s+ 1

0

0
k2

T2s+ 1

VT (4)

Here we assume that the rotation matrices are organized
such that k1 is the high gain and k2 is the low gain, i.e.
k1 > k2. The high gain direction is generally slower than
the low gain direction (T1 > T2). This is a general property
of ill-conditioned systems (Häggblom, 2014).

Friman (2020) noticed that open-loop identification of
Eq. 4 is very practical, because using uncorrelated input
excitation, the rotation matrix W can be identified from
the output data using principal component analysis (PCA)
before the actual identification step. As a result, the iden-
tification step simplifies from identification of high-order
MIMO models in one step to identification of first-order
models one output at a time. Simple ARX identification
methods can be used.

3. CLOSED-LOOP IDENTIFICATION IN THE
ROTATED DOMAIN

In system identification we must disturb the process in
some way. Here we consider two methods: 1) setpoint
excitation and 2) input excitation. These two methods are
discussed below.

Closed-loop identification has two options: the direct and
the indirect approach (Gustavsson et al., 1977). In this
paper we consider the direct approach, i.e. we identify the
process from inputs to outputs without utilizing controller
knowledge.

3.1 Closed-Loop Identification Using Setpoint Excitation

We can use the same concept as Friman (2020) also for
closed-loop identification of ill-conditioned systems, but
with some modifications. The steps needed to identify the
parameters of Eq. 4 using setpoint excitation are briefly
discussed together with the heat exchanger (Jacobsen and
Skogestad, 1994) model

Fig. 1. Closed-loop identification of the heat exchanger
example. The first part of the experiment t < 1000 is
the actual identification experiment. An extension of
the experiment, in this case with excitation in the high
gain direction was done to improve the identification
(t > 1000 ).

G(s) =
89.243

(T1s+ 1)(T2s+ 1)

(
−21(T3s+ 1) 20

−20 21(T3s+ 1)

)
(5)

where T1 = 100, T2 = 2.439, and T3 = 4.762. We compare
each identification step to the corresponding open-loop
step (marked ”OLID” below). For a more detailed discus-
sion about the identification concept we refer to Friman
(2020).

We start by performing an identification experiment that
employs a sequence of uncorrelated setpoint changes
(OLID: sequence of uncorrelated inputs) and simple decen-
tralized PI control. An example simulation is illustrated in
Fig. 1 for t < 1000. PCA is scaling dependent, so we scaled
the inputs (OLID: outputs) to zero mean and unit variance
before applying PCA. PCA gives the input rotation matrix
V (OLID: output rotation matrix W). The upper two sub-
plots show the outputs (blue) with corresponding setpoints
(black lines), and the bottom plot shows the input trends.
The rotated inputs (i.e. the principal components of the
inputs) are plotted in the second plot from below.

A system identification method, e.g. ARX identification,
gives a model from rotated inputs to outputs (OLID: from
inputs to rotated outputs). We start by identifying the low
gain (OLID: high gain) direction. With reference to Fig. 1,
we identify the process from the first principal component
(red ”rotated input” trend) to the outputs. To use simple
ARX identification note that W is an orthogonal rotation
matrix with

W =

(
w11 w12

w21 w22

)
=

(
w22 −w21

w21 w22

)
,W−1 =

(
w22 w21

−w21 w22

)
(6)
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and that

W−1y(s) = yr(s) =

k1ur1(s)

T1s+ 1
k2ur2(s)

T2s+ 1

 (7)

where we use notation y for outputs, u for inputs, and the
subscript r refers to rotated signals. With standard least-
squares ARX identification, where we are restricted to
multi-input-single-output models, we identify the (inverse)
model from outputs to rotated inputs. To identify the low
gain direction we have

k2ur2(s) = (T2s+ 1)(−w21y1(s) + w22y2(s)) (8)

and we need to identify parameters a1, a2, b1, b2 in

ur2(s) = a1sy1(s) + a2sy2(s) + b1y1(s) + b1y2(s) (9)

to get the model parameters

k2 =
(
b21 + b22

)−1/2
w21 = −b1k2
w22 = b2k2

(10)

At this point both rotation matrices W and V are known,
so it is straightforward to identify the time constant T2
and the high gain direction parameters k1 and T1 from
rotated inputs to rotated outputs.

Model goodness evaluation is done by evaluating the high-
gain (OLID: low-gain) fit. If the fit is good, the model has
been identified, otherwise we extend the experiment with
excitation in the high-gain (OLID: low-gain) direction.

In the example in Fig. 1 the rotated input 1 (blue ”ro-
tated input”) hardly stands out from noise. Therefore
we extended the experiment with setpoint excitation in
the high-gain direction (W[1, 0]>). At t = 1500, we re-
identified the high gain parameters (k1, T1) by fitting a
first-order system from the rotated input (blue line) to
rotated output 1 (not shown). Note that, for the extended
experiment, the rotation matrices remain unchanged, as
they must be determined based on data from uncorrelated
outputs (t < 1000).

The closed-loop identification method is summarized in
Table 1 for a 2 × 2 system.

3.2 Closed-Loop Identification Using Input Excitation

With closed-loop identification using input excitation we
mean adding uncorrelated input disturbances to the in-
puts, and keeping the setpoints constant. This setup gen-
erates highly correlated outputs, and we can use the open-
loop identification concept (Friman, 2020) to identify the
model.

4. THE ILL-CONDITIONED SYSTEMS
IDENTIFICATION DUALITY

In this section we compare open-loop identification and
closed-loop identification of ill-conditioned systems. We
compare the open-loop concept introduced by Friman
(2020) with the closed-loop identification concept sug-
gested in section 3.1 and summarized in Table 1.

In open-loop we use uncorrelated input excitation, which
produces highly correlated outputs, and PCA analysis of
the outputs gives the output rotation matrix W. Good
identification of high gain (k1, T1) and difficulties in low
gain (k2, T2) identification are expected with noise and
disturbances present during identification experiment.

For closed-loop identification the situation is the opposite.
With uncorrelated outputs, we can employ PCA analysis
of the highly correlated inputs to obtain the input rotation
matrix V. Good identification of low gain (k2, T2) and
difficulties in high gain (k1, T1) direction are expected in
non-ideal circumstances.

The duality for a 2×2 ill-conditioned system is summarized
in in Table 2, and the implications for successful identifi-
cation are discussed below.

5. IMPACT ON IDENTIFICATION RELIABILITY

There are two main pitfalls in control-relevant identifica-
tion of ill-conditioned systems. First, it is easy to have
insufficient perturbation in some gain direction. Secondly,
it common to evaluate model goodness in the output
domain, and in that case model goodness assessment only
considers the gain directions that are present in the data,
and the model fit might look good even though it is not.

Table 1. Summary of closed-loop identification
using input rotation

Step Description
1 Perform a standard identification experiment consisting of

setpoint excitation. At this point the setpoints must be un-
correlated, preferable steps.

2 A PCA analysis of the inputs gives the rotated inputs ur (the
first and second principal components). PCA also gives the
input rotation matrix V.

3 Identify the output rotation matrix W (Eq. 6 - 10) and
calculate the rotated outputs yr

4 Using rotated inputs and rotated outputs, identify gains and
time constants of all gain directions. Simple SISO ARX
identification can be utilized for each rotated input / rotated
output pair.

5 Evaluate model goodness, i.e. the high gain model fit.
6 If evaluation result in step 5 is good, model is identified,

otherwise continue with setpoint excitation in the high gain
direction (W[1, 0]>), re-identify the high gain direction (k1
and T1) and go to step 5.

Table 2. The Ill-Conditioned Systems Identifi-
cation Duality

Open-Loop Closed-Loop

Assumptions uncorrelated inputs uncorrelated outputs
highly correlated out-
puts

highly correlated in-
puts

PCA analysis
of

outputs inputs

... gives output rotation ma-
trix W

input rotation matrix
V

Reliable iden-
tification of

high gain direction low gain direction

... also gives input rotation matrix
V

output rotation ma-
trix W

Model
goodness
assessment

low gain fit high gain fit
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A typical case where modeling fails, is when we use
an open-loop experiment with uncorrelated inputs and
identify a model from physical inputs to physical outputs.
In that case the process is mainly excited in the high-
gain direction, and the model fit looks usually good even
though its not. Ignoring the low-gain direction in both
identification and model assessment easily results in a
model that is useless for control (Jacobsen and Skogestad,
1994).

According to the identification duality in Table 2, the
open-loop and closed-loop experiments perfectly comple-
ment each other. Hence, one possibility would be to per-
form both experiments and to pick the best parts from
each experiment. This is, however, not very practical. A
better way is to choose either method, and to extend
the experiment with perturbation in the weakly identified
direction when needed (e.g. Fig. 1 for t > 1000).

On a general level, we can conclude that identification
experiments that uses either uncorrelated inputs or un-
correlated outputs may be incomplete. To perturb all gain
directions, we should design the experiment such that we
have uncorrelated inputs in one part, and uncorrelated
outputs in the rest of the experiment. Input design meth-
ods that generate uncorrelated outputs of multi-variable
systems have been suggested (e.g. Sadabadi and Poshtan
(2009), Kumar and Narasimhan (2016), Häggblom (2018),
Häggblom (2019)). These experiments provide similar re-
sults as the closed-loop identification concept suggested
here, but with the advantage of inputs being unaffected
by output noise. However, these methods poorly perturb
the process in the high gain direction, so model assessment
in the high-gain direction (using e.g. rotation matrices as
suggested above) is highly recommended for these meth-
ods.

5.1 Integral Controllability

With traditional modeling (models Eq. 2 and 3) it may
be difficult to ensure integral controllability (IC). For
example, for the heat exchanger (Eq. 5), IC is lost if any
gain element deviates more than 10% in an unfavorable
direction. On the other hand, with the rotated model (Eq.
4) IC is obtained when the rotation angles deviate less than
90◦ when we select positive gains in all gain directions.
Note that Table 2 suggests that the rotation matrices are
well identified in both open-loop and closed-loop cases so
IC is practically always obtained when identification is
done in the rotated domain.

6. SUMMARY AND CONCLUSIONS

We have extended the practical concept of ill-conditioned
systems identification in the rotated domain (Friman,
2020) from open-loop to closed-loop. The focus is on prac-
tical and simple solutions. No process knowledge is needed
prior to the identification experiment, simple ARX identi-
fication one output at a time can be used, and minimum
number of model parameters and states are used in the
models. Still, the suggested models can capture the di-
rectionality of ill-conditioned systems, which is important
when models are used for control.

The closed-loop option is important, because closed-loop
identification experiments can often be performed during
production, which is valuable in industrial applications.

By identifying the process in the rotated domain we can
avoid many pitfalls associated with ill-conditioned sys-
tems. It is easy to ensure integral controllability. The key
to successful control-relevant identification is to properly
identify each gain direction. With a possibility to evaluate
model fit in each gain direction, we know when we need
to extend the identification experiment with excitation in
the most problematic gain direction. This ensures good
models for control.
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