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Abstract: Searching for odor sources such as hazardous objects or gas leaks is desirable in a
robot. In the literature, many approaches to odor source search are bio-inspired or probabilistic.
However, the performance of either method can decrease if exploring and exploiting olfactory
information is unbalanced. In this paper we investigated whether a balance can be achieved by
a hybrid strategy composed of a bio-inspired search and infotaxis, which is an RL-based method
of the literature. We tested infotaxis and the hybrid algorithm under a time-variant virtual odor
plume. We obtained this plume from readings of a gas sensor array and a wind tunnel. From
this we found that the hybrid algorithm showed better search performance and less deviation
from the plume centerline. Therefore we believe that combining probabilistic and bio-inspired
policies might be useful to balance exploration and exploitation and efficiently perform olfactory
searches.
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1. INTRODUCTION

Searching for olfactory sources is a challenging problem
that requires fast decision-making to track chemical par-
ticles that are frequently diluted in unstructured or tur-
bulent wind flows. It is also a desired capability for an
autonomous robot since it would enable it to search for
dangerous gas leaks at industrial plants or in disaster-
struck areas as well as finding other hazardous materials
such as explosives.

In the literature, many olfactory search algorithms are bio-
inspired, which means they are extracted from observa-
tions of the average behavioral response of insects such
as the silkmoth Bombyx mori (Kanzaki et al. (1992)).
Unfortunately, these have shown to need conditions that
are very similar to the habitat of the studied animal to
perform well. Other studies have developed probabilis-
tic algorithms that use particle filters (Li et al., 2011),
Bayesian inference, and Reinforcement Learning (RL). A
widely-cited example of an RL olfactory search agent is the
algorithm known as “infotaxis” (Vergassola et al. (2007)),
which navigates towards an odor source by minimizing the
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entropy of a belief, which is a probabilistic representation
of the location of the source. Although infotaxis has shown
good results in simulations, Rodŕıguez et al. (2017) re-
ported that if the parameters of the belief function are
not optimally set, the balance between exploration and
exploitation of rewards (decrease in information entropy)
could shift towards either, hence resulting in a decreased
performance. Interestingly, recent works have performed
probabilistic analyses of the olfactory behavior of insects.
For example, Pang et al. (2018), found that fruit flies
turn less towards the wind flow as they accumulate odor
detections; also, Shigaki et al. (2018) found that silkmoths
are less likely to move forward as they experience more
detections.

In this paper we investigate whether combining an RL
and a bio-inspired algorithm could balance exploration
and exploitation of olfactory information and effectively
perform odor source searches. For this, we performed sim-
ulations of infotaxis under a virtual odor plume obtained
from readings of a gas sensor array and a wind tunnel.
From these simulations we found that the largest expected
reward shifted from forward to lateral movements when
the information entropy of the belief and the cumulative
number of odor hits reached the same value. From this
tendency we designed a hybrid policy that switched from
infotaxis to a bio-inspired policy after the crossing point
between entropy and odor hits was met.
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From simulating the hybrid algorithm, we found that it
showed a higher success rate than using only infotaxis.
We believe that this suggests that animals might combine
cognitive behaviors based on memory or predictions and
reactive ones based on instincts to balance exploration and
exploitation, hence resulting in a high odor source search
performance.

2. MATERIALS AND METHODS

2.1 Generation of instantaneous gas distribution maps

To generate the virtual odor plume we used in our simula-
tions, we built a sensor array inside a 550 × 200 mm wind
tunnel as seen in figure 1. We chose these dimensions to
conduct experiments with live silkmoths in a future study.
We placed 27 gas sensors (MiCS 5524, Adafruit, USA) in
the tunnel in a 9 × 3 matrix as seen in figure 1a. We
chose the MiCS5524 sensor because of its small size and
availability. Then, we pulsated an ethanol source into the
wind tunnel at 1 Hz using a solenoid valve (open: 0.2 s;
closed: 0.8 s) and a flow meter (1.0 L/min). We measured
the wind speed at the gas source as 0.68 m/s. We released
ethanol into the tunnel and recorded the response of the
gas sensors during 50 s.

With these recordings and the Kernel DM + V algorithm
(Lilienthal et al., 2009) we estimated the gas distribution
map at each time step. The Kernel DM + V algorithm
employs a uni-variate Gaussian kernel N to weight a
measurement ri obtained at a given location xi to model
the gas distribution as a 2D lattice with k cells. Although
this algorithm provides predictive mean and variance
maps, we focused on the latter because Lilienthal et al.
(2009) reported that the variance map showed better
results at estimating the location of a gas source. The
calculation of the variance map is as follows: first, the
importance weights Ω(k) and the weighted reading R(k)

maps are obtained:

Ω(k) =

n∑
i=1

N
(∣∣∣xi − x(k)

∣∣∣ , σ)
R(k) =

n∑
i=1

N
(∣∣∣xi − x(k)

∣∣∣ , σ) · ri (1)

Here,
∣∣xi − x(k)

∣∣ denotes the distance between the mea-
surement point and the position of a given cell k of the
predicted map, the parameter σ is the width of the Gaus-
sian kernel; we set this value to 25 mm. To normalize the
values of Ω(k), a confidence map α(k) is obtained as follows:

α(k) = 1− e−(Ω(k))
2
/σ2

Ω (2)

Where σΩ is the scaling parameter. We set this value
to 1/

(
2πσ2

)
as recommended by Lilienthal et al. (2009).

Next, the predictive mean of the gas distribution can be
obtained as:

r(k) = α(k)R
(k)

Ω(k)
+
{

1− α(k)
}
r0 (3)

Fig. 1. (a) and (b) Wind tunnel and gas sensor array, (c–
f) snapshots of the predictive variance maps obtained
with the Kernel DM+V method. Dimensions are in
millimeters

Here, r0 is the mean of the values of all gas sensors in the
wind tunnel. Afterward, the weighted variance V (k) can
be obtained as:

V (k) =

n∑
i=1

N
(∣∣∣xi − x(k)

∣∣∣ , σ)(ri − r(k(i))
)2

(4)

Where r(k(i)) is the predictive mean of the nearest cell to
the measurement point xi. Finally, the predictive variance
map v(k) can be obtained by:

v(k) = α(k)V
(k)

Ω(k)
+
{

1− α(k)
}
v0 (5)

We obtained the predictive variance map for each time step
of the data recorded from the sensor array. Some snapshots
are shown in figure 1 (b–e). Since these maps essentially
represent the distribution of ethanol in the wind tunnel,
we used these maps as the input odor plume of a simulated
olfactory search agent as described in the next section.

2.2 Infotaxis: reinforcement learning-based olfactory search

Infotaxis was proposed by Vergassola et al. (2007) to per-
form olfactory searches on turbulent plume environments.
In this algorithm, a point-mass agent located at r searches
an odor source located at rs throughout a 2D workspace
(similar to a Gridworld (Sutton and Barto, 2018)) denoted
asW based on the probability Pt(rs) of the location of the
source; which is also called a belief.

The goal of the agent is to minimize the information
entropy St = −

∫
W Pt(r) log (Pt(r)) dr of the belief. At

each time step the agent calculates how much entropy
would be decreased by moving from its current location
r at time t to a next location r′ (front, back, left, right,
stay still) at time t+ ∆t as defined in equation 6.
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E[∆St (r 7→ r′)] = Pt (r′) [−St] +

[1− Pt (r′)] [ρ0 (r′) ∆S0 + ρ1 (r′) ∆S1]
(6)

Where ρk (r′) = h (r′)
k
e−h(r

′)/k! is the Poisson probabil-
ity of detecting k odor hits during the time ∆t given that
h (r′) = ∆t

∫
Pt (rs)R (r′|rs) drs, and R (r′|rs) is the rate

of encounters with odor particles for an agent located at r′.
In this paper empirically set the values of the parameters
for the rate of encounters R (r′|rs) as follows: particle
diffusivity D = 0.06, release rate R = 1, particle lifetime
τ = 1500, agent size a = 0.01 (m). For details on the
derivations of infotaxis equations we refer the reader to
the original paper by Vergassola et al. (2007). At each
time step, the agent moves to the location r′ that decreases
entropy the most, in other words, selecting the action with
the largest expected reward as it is common in RL.

2.3 Design of an hybrid algorithm

To identify the tendencies towards exploration or exploita-
tion of an infotaxis agent, we conducted 500 simulation
runs of infotaxis in a virtual environment with the same
dimensions as our wind tunnel (550 × 200 mm). In these
simulations, the odor plume was represented by the Kernel
DM+V variance maps v(k) as described in section 2.1.
The agent was represented as a 10 mm round particle
to emulate the size of a silkmoth (Kanzaki et al., 1992).
When the agent passed a location where the value of v(k)

was higher than the average value along the whole field
(denoted as v0), we determined that the agent experienced
an odor hit (see algorithm 1). From these simulations we
used equation 6 to measure the expected entropy decrease
E[∆St (r 7→ r′)]; these measurements are shown in figure
2a. We also recorded the entropy S and the cumulative
number of hits H experienced by the agent as seen in
figure 2b. Furthermore, we found that when the values
of the entropy S and the number of hits H intersect, the
expected entropy decrease from moving forward reaches
its minimum. In other words, after the time step when
S = H, the agent expects larger rewards by moving
sideways (exploration) rather than forward (exploitation).
This intersection point is indicated by a red dashed line in
figure 2. This is similar to the findings of Pang et al. (2018),
where odor hits happening later in a sequence triggered
weaker upwind turns, and Shigaki et al. (2018), where
the likelihood of a silkmoth to move forward decreases
inversely against the cumulative number of odor hits.
Based on this, we propose a hybrid policy in which after
the entropy-hits intersection, the agent switches its nav-
igation policy from infotaxis to a bio-inspired algorithm
consisting of moving forward for 0.5 s after an odor hit
and alternating between left and right movements during
0.7 s after a new hit is experienced. These timing values
were inspired by the programmed behavior of the male
silkmoth (Kanzaki et al., 1992).

3. RESULTS

We evaluated the performance of infotaxis and the hybrid
algorithm by observing the trajectories generated by each
algorithm as well as their success rate, search time, and
traveled distance. A successful run is one where the agent
reaches a radius of 0.05 m around the source position under

Fig. 2. (a) Expected entropy decrease for each action of an
infotaxis agent; (b) relationship between entropy and
the cumulative number of odor hits, the red dashed
line shows the time when these values are equal.
For all curves the average and standard deviation
are indicated by solid and shaded colors, respectively
(n=500 simulations)

OdorHit, HybridPolicy = False;
Entropy, NumOfHits, TimeSinceLastHit = 0;
while t < TimeLimit do

Sample odor plume v(k) at time t;

if v(k)(ri) > v0 then
OdorHit = True;
NumOfHits += 1;

else
OdorHit = False;

end
Update entropy;
if Entropy − NumOfHits < 0.01 then

HybridPolicy = True;
end
if HybridPolicy then

if OdorHit then
Move forward;
TimeSinceLastHit = 0;

else
if TimeSinceLastHit > 0.5 s then

Randomly move left or right;
Invert direction every 0.7 s until next OdorHit;

end

end

else
Choose next move with infotaxis policy;

end

end

Algorithm 1: Proposed odor source search algorithm
with an hybrid policy

a time limit of 50 s. We executed 500 simulation runs
for each algorithm. The performance metrics are shown
in table 1. It should be noted that we only considered
the successful trials for the calculation of search time
and traveled distance. The trajectories generated by each
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Fig. 3. Trajectories generated by (a) infotaxis and (b) the
hybrid policy. (c) Centerline deviation of each policy;
average and standard deviation are indicated by solid
and shaded colors, respectively (n=500 simulations)

Table 1. Performance metrics for infotaxis and
hybrid algorithm simulations

Infotaxis Hybrid

Success rate (%) 49.8 69.0
Search time (s) 29.70 ± 1.34 38.13 ± 5.70
Traveled distance 1.04 ± 0.03 1.21 ± 0.11

algorithm are shown in figures 3a and 3b. To visualize the
exploration-exploitation balance in terms of the geometry
of the search area, we propose the concept of centerline

deviation which we define as Cdev =
∑N
t=0 |y(t)−ys| where

y(t) and ys are the y-axis coordinate of the agent and
the source, respectively. This value indicates how much
the agent moved away from the center of the plume, and
as it is shown in figure 3c, the agents using infotaxis
abruptly started moving away from the center of the plume
after around 30 s while the ones using a hybrid algorithm
maintained a mostly linear tendency.

4. DISCUSSION

In this paper, we investigated whether combining infotaxis,
which is a probabilistic and RL based method, and a
bio-inspired algorithm could balance the exploration and
exploitation of information rewards to effectively perform

olfactory searches. We achieved this by analyzing the
expected rewards of infotaxis and found that these are
larger for lateral rather than frontal movements after
the cumulative number of odor hits and the information
entropy of the agent’s belief reach the same value. Based
on this, we designed a hybrid algorithm that starts a
search with infotaxis and then shifts to a bio-inspired
strategy partially based on the programmed behavior of
the silkmoth. By conducting simulations under a time-
variant virtual odor plume obtained from readings of a
gas sensor array and a wind tunnel, we found that the
hybrid algorithm had a better search performance than
pure infotaxis. Additionally, the hybrid algorithm had less
deviation from the plume centerline.

We believe that our findings suggest that efficient odor
source search could be performed by initiating a search
with an RL agent such as infotaxis and shifting to a
bio-inspired agent according to the relationship between
accumulated odor hits and the information entropy of the
belief of the odor source location. We also believe that
these results might indicate that insects modulate their
olfactory searches by the frequency or amount of odor
detections. In future works, we will conduct experiments
with silkmoths and analyze their behavior as an RL agent
and investigate whether a similar shift from exploration to
exploitation is exhibited by them.
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