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Abstract: Cybersecurity of control systems is a topic of increasing concern for chemical
processes. In this work, we develop two techniques for detecting cyberattacks involving false
state measurements being provided to a specific control formulation known as Lyapunov-based
economic model predictive control (LEMPC) that take advantage of the closed-loop stability
properties of the control formulation to seek to detect attacks after they occur. The first approach
utilizes an integrated detection, control, and state estimation framework to flag deviations
of the state estimates from “normal” process behavior as problematic cyberattacks, and the
second control framework uses randomized modifications to an LEMPC formulation online,
with reference to a baseline LEMPC design, to potentially detect cyberattacks.
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1. INTRODUCTION

Cybersecurity is receiving increasing attention in the
chemical process control literature (e.g., Cárdenas et al.
(2011)). One of the challenges for cybersecurity of chemical
processes is that such processes are often described by
nonlinear dynamic models. While a number of results exist
on securing linear systems via state estimation, detec-
tion, and/or control strategies (e.g., Fawzi et al. (2014)),
there are significant gaps with respect to our ability to
secure nonlinear systems under cyberattacks. Our recent
work has focused on defining cyberattacks on nonlinear
systems in a dynamic systems context Durand (2018).
In the present manuscript, we explore two false sensor
measurement attack detection techniques that are based
on the closed-loop stability properties of a control de-
sign known as Lyapunov-based economic model predictive
control (LEMPC) Heidarinejad et al. (2012). The first
utilizes auxiliary state estimators, combined with control,
to develop an attack detection methodology under the as-
sumption that a single state estimator can be compromised
by the attack but that auxiliary estimates are available
for attack detection purposes. The second is based on
the random generation of new control laws on-line with
guaranteed stability properties for which the effect of the
controller (in the sense of a guarantee on a decrease in the
Lyapunov function over a sampling period) is characteri-
zable in the absence of an attack, allowing failures of the
expected effect to signal a potential cyberattack.

⋆ Financial support from the National Science Foundation CBET-
1839675 and CNS-1932026 and Wayne State University is gratefully
acknowledged.

2. PRELIMINARIES

2.1 Notation

The notation | · | signifies the Euclidean norm of a vector.
α : [0, a) → [0,∞) is a class K function if α(0) = 0
and the function is continuous and strictly increasing. Ωρ

denotes a level set of a scalar-valued function V (i.e.,
Ωρ := {x ∈ Rn : V (x) ≤ ρ}). Set subtraction is signified
by ′/′ (i.e., A/B := {x ∈ Rn : x ∈ A, x /∈ B}). xT is
the transpose of the vector x. A sampling time is denoted
by tk := k∆, k = 0, 1, . . ., where ∆ is a sampling period.
A function f(x) is locally Lipschitz in x with Lipschitz
constant Lf if |f(x′)− f(x′′)| ≤ Lf |x′ − x′′| for all x′ and
x′′ in a set.

2.2 Class of Systems

This work considers the following class of systems:

ẋ(t) = f(x(t)) + g(x(t))u(t) + l(x(t))w(t) (1)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm, and w ∈ W ⊂ Rz are
the state, input, and disturbance vectors, respectively, and
f , g and l are sufficiently smooth vector or matrix-valued
functions with f(0) = g(0) = 0. We define W := {w ∈
Rz | |w| ≤ θw, θw > 0} and U := {u ∈ Rm| |u| ≤ umax}.
We consider that the “nominal” system of Eq. 1 (w ≡ 0)
is stabilizable such that there exists an asymptotically
stabilizing feedback control law h(x), a sufficiently smooth
Lyapunov function V , and class K functions αi(·), i =
1, 2, 3, 4, where:

α1(|x|) ≤ V (x) ≤ α2(|x|) (2)

∂V (x)

∂x
(f(x(t)) + g(x(t))h(x)) ≤ −α3(|x|)) (3)
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∣∣∣∣∂V (x)

∂x

∣∣∣∣≤ α4(|x|) (4)

h(x) ∈ U (5)

∀ x ∈ D ⊂ Rn (D is an open neighborhood of the origin).
A level set of V contained within D and X is denoted
by Ωρ and is termed the stability region. We assume that
there are M sets of measurements yi ∈ Rqi , i = 1, . . . ,M ,
available continuously as follows:

yi(t) = ki(x(t)) + vi(t) (6)

where ki is a vector-valued function, and vi represents
the measurement noise associated with the measurements
yi. We assume that the measurement noise is bounded
(i.e., vi ∈ Vi := {vi ∈ Rqi | |vi| ≤ θv,i, θv,i > 0). It is
considered that for each of the M sets of measurements, a
deterministic observer exists defined as follows:

żi = Fi(ϵi, zi, yi) (7)

where zi is the estimate of the process state from the i-
th observer, i = 1, . . . ,M , Fi is a vector-valued function,
and ϵi > 0. When a controller h(zi) with Eq. 7 is used
to control the closed-loop system of Eq. 1, we make the
following assumptions.

Assumption 1. Ellis et al. (2014); Lao et al. (2015) There
exist positive constants θ∗w, θ

∗
v,i, such that for each pair

{θw, θv,i} with θw ≤ θ∗w, θv,i ≤ θ∗v,i, there exist 0 < ρ1,i <
ρ, em0i > 0 and ϵ∗Li > 0, ϵ∗Ui > 0 such that if x(0) ∈ Ωρ1,i ,
|zi(0)−x(0)| ≤ em0i and ϵi ∈ (ϵ∗Li, ϵ

∗
Ui), the trajectories of

the closed-loop system are bounded in Ωρ, ∀t ≥ 0.

Assumption 2. Ellis et al. (2014); Lao et al. (2015) There
exists e∗mi > 0 such that for each emi ≥ e∗mi, there exist
tbi(ϵi) such that |zi(t)− x(t)| ≤ emi, ∀ t ≥ tbi(ϵi).

3. CYBERATTACK-RESILIENT OUTPUT
FEEDBACK LEMPC

This section develops an implementation strategy for a
combined detection, control, and state estimation frame-
work for cyberattack detection (in the case of state mea-
surement falsification cyberattacks) for nonlinear systems
under an LEMPC receiving state estimates (rather than
full state feedback) when it is assumed that only the
i = 1 state estimate is impacted by a cyberattack (i.e.,
the other zj , j = 2, . . . ,M , are not impacted by the
faulty state measurements). The results are initial theo-
retical advances toward characterizing a state estimation-
based cyberattack framework for nonlinear systems under
LEMPC; future work will extend these results to consider
more than one state estimator impacted by a cyberattack
or that the attack is not on the estimator used by the
LEMPC, and will explore the concepts via simulation.

3.1 Output Feedback-Based LEMPC

This section uses LEMPC Heidarinejad et al. (2012) as
part of a cyberattack detection strategy. LEMPC is for-
mulated as follows Ellis et al. (2014); Lao et al. (2015):

min
u(t)∈S(∆)

∫ tk+N

tk

Le(x̃(τ), u(τ)) dτ (8a)

s.t. ˙̃x(t) = f(x̃(t)) + g(x̃(t))u(t) (8b)

x̃(tk) = zi(tk) (8c)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N ) (8d)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (8e)

V (x̃(t)) ≤ ρe,i, ∀ t ∈ [tk, tk+N ),

if x̃(tk) ∈ Ωρe,i
(8f)

∂V (x̃(tk))

∂x
(g(x̃(tk))u(tk)) (8g)

≤ ∂V (x̃(tk))

∂x
(g(x̃(tk))h(x̃(tk)))

if x̃(tk) ∈ Ωρ/Ωρe,i (8h)

In Eq. 8, the stage cost Le is optimized (Eq. 8a) subject
to the state predictions coming from the dynamic model
(Eq. 8b) when the state measurement from the i-th esti-
mator is used at tk (Eq. 8c). The notation u(t) ∈ S(∆) sig-
nifies that u(t) (bounded by Eq. 8e) is a piecewise-constant
input vector with N pieces (N is the prediction horizon)
to be held for ∆. Eq. 8d represents a state constraint, and
Eqs. 8f-8h are Lyapunov-based stability constraints that
enforce boundedness of the closed-loop state within Ωρ.
Ωρe,i

is a subset of Ωρ. Cyberattacks considered are false
measurements being provided to the state estimators used
for Eq. 8b, where the false estimates are assumed to lie
within Ωρ to avoid detection on the basis of the state being
outside of the region in which it should be maintained
when the controller is properly functioning, but are not
required to take any specific trajectory.

3.2 Guaranteed Detection Strategy

In this section, we define a detection strategy which guar-
antees that any cyberattacks on the (i = 1) state estimator
used in designing the LEMPC of Eq. 8 which would drive
the closed-loop state out of Ωρ will be detected before this
occurs. It recognizes cyberattacks by flagging deviations
of the state estimates from “normal” behavior; however,
as “normal” behavior includes both measurement noise
and disturbances (Eqs. 1 and 6), care must be taken in
setting the threshold on the state estimate deviation from
a “normal” value to avoid false detections. To determine a
threshold, we note that the bounds in Assumption 2 imply
that the following holds:

|zi(t)− zj(t)| = |zi(t)− x(t) + x(t)− zj(t)|
≤ |zi(t)− x(t)|+ |zj(t)− x(t)|
≤ ϵij := (e∗mi + e∗mj) ≤ ϵmax := max{ϵij}

(9)
for all i ̸= j, i = 1, . . . ,M , j = 1, . . . ,M , as long as
t ≥ tq = max{tb1, . . . , tbM}. Therefore, abnormal behavior
can be detected if |zi(tk) − zj(tk)| > ϵmax if tk > tq. In
practice, it would not be possible to know the numbers e∗mi
and e∗mj , as they can only be known by knowing an upper
bound on how far off each zi(t) is from x(t), which cannot
be known since full state feedback may not be available.
In the following, we will assume that an upper bound ϵmax

can be estimated.
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3.3 Implementation Strategy

This implementation strategy assumes that the process
has already been run successfully in the absence of attacks
under the LEMPC of Eq. 8 for some time such that |zj(t)−
x(t)| ≤ ϵ∗mj for all j = 1, . . . ,M before an attack:

(1) At sampling time tk, if |z1(tk)−zj(tk)| > ϵmax for j =
2, . . . ,M , or z1(tk) /∈ Ωρ, detect that a cyberattack is
occurring and go to Step 1a. Else, go to Step 1b.
(a) Enter an emergency shut-down mode (e.g., pre-

specified control actions like cutting feeds) that
no longer operates the process under the LEMPC
of Eq. 8 with i = 1 but instead under an
emergency shut-down sequence.

(b) Operate the process under the LEMPC of Eq. 8.
tk ← tk+1. Go to Step 1.

3.4 Stability and Feasibility Analysis

The proposed detection strategy avoids false detections
and will only detect an attack if a non-ordinary state
estimate occurs. Next, we address whether there are any
attacks that would be within the detection limits that
could cause the closed-loop state to leave Ωρ before the
attack is detected at tk. We seek therefore to develop the
conditions defining Ωρ that allow the closed-loop state to
be maintained within Ωρ under the proposed strategy even
if an undetected attack impacting the i = 1 estimate only
occurs at tk. To analyze this, we first define the worst-
case deviation of z1(tk) from x(tk) under the proposed
detection policy in the following proposition.

Proposition 1. Under the implementation strategy of Sec-
tion 3.3 and the assumption that multiple state estimates
are available with a cyberattack impacting only the i = 1
estimate, the worst-case difference between z1(tk) and
x(tk), for all j = 2, . . . ,M , when no attack is detected
at tk is given by:

|z1(tk)− x(tk)| ≤ ϵ∗1j := ϵmax + e∗mj ≤ ϵ∗ := max ϵ∗1j (10)

Proof. The bound of Eq. 10 is derived from the following:

|z1(tk)− x(tk)| = |z1(tk)− zj(tk) + zj(tk)− x(tk)|
≤ |z1(tk)− zj(tk)|+ |zj(tk)− x(tk)| ≤ ϵmax + e∗mj

(11)

where the last inequality follows from the fact that the
detection algorithm was not activated (such that therefore
|z1(tk)− zj(tk)| < ϵmax and the assumption that only the
i = 1 state estimator used by the LEMPC is affected
by the false state measurements (i.e., the other state
measurements with j ̸= 1 continue to have |zj(tk) −
x(tk)| ≤ e∗mj , according to Assumption 2).

We now introduce a theorem that re-purposes a bound
on the allowable error in an estimate supplied to output
feedback LEMPC which can be tolerated without loss of
closed-loop stability (derived in Lao et al. (2015); Ellis
et al. (2014) for the case that the error between the state
estimate and actual state is due to a combination of distur-
bances and measurement noise) to the cyberattack prob-
lem. Specifically, the proposed detection method allows the
bound in Eq. 10 to be developed, allowing cyberattacks to
be treated in the framework previously analyzed in Lao
et al. (2015); Ellis et al. (2014) for guaranteeing closed-loop
stability of output feedback LEMPC in the presence of

measurement noise and disturbances, and thereby allowing
the combined detection-control framework to guarantee
closed-loop stability when a cyberattack is not flagged
according to the proposed methodology.

Theorem 1. Consider the system of Eq. 1 in closed-loop
under the LEMPC of Eq. 8 based on an observer and
controller pair satisfying Assumptions 1-2 and formulated
with respect to the i = 1 measurement vector, and
formulated with respect to a controller h(·) that meets
Eqs. 2-5. Let θw ≤ θ∗w, θv,i ≤ θ∗v,i, ϵi ∈ (ϵ∗Li, ϵ

∗
Ui), and

|zi(0)− x(0)| ≤ em0i, for i = 1, . . . ,M . Also, let ϵW,1 > 0,
∆ > 0, and ρ > ρ1,1 > ρe,1 > ρmin,1 > ρs,1 > 0, satisfy:

ρe,1 ≤ ρ−max{fV (fW (ϵ∗,∆))

+ fV (ϵ
∗),M max{tz1,∆}α4(α

−1
1 (ρ))}

(12)

− α3(α
−1
2 (ρs,1)) + (Lf

V + Lg
V u

max)(M∆+ ϵ∗)

+M l
V θw ≤ −ϵW,1/∆

(13)

ρmin,1 = max{V (x(t+∆))|V (x(t)) ≤ ρs,1} (14)

where Lf
V and Lg

V are Lipschitz constants for ∂V
∂x f and

∂V
∂x g, |ẋ| ≤ M , M l

V bounds |∂V∂x l| for x ∈ Ωρ, tz1 is the
first sampling time after tb1,

fW (s, τ) := (s+
Mlθw

Lf + Lgumax
)e(Lf+Lgu

max)τ

− Mlθw
Lf + Lgumax

(15)

where Lf and Lg are positive Lipschitz constants for the
functions f and g as defined in Section 2.1, and Ml > 0
satisfies |l(x)| ≤Ml, ∀ x ∈ Ωρ, and

fV (s) := α4(α
−1
1 (ρ))s+Mvs

2 (16)

where Mv is a positive constant. Then, if x(0) ∈ Ωρe,1 ,
x(t) ∈ Ωρ, ∀ t ≥ 0 until a cyberattack is detected if the
attack occurs after tq.

4. RANDOMIZED LEMPC CHANGES TO PROBE
FOR CYBERATTACKS

An alternative to probing for cyberattacks is an LEMPC
design that incorporates full state feedback but allows the
steady-state of operation to be adjusted. With slight abuse
of notation, in this section, we refer to the LEMPC design
around the operating steady-state as the baseline or 1-
LEMPC, which has stability region Ωρ1

, stability region
subset Ωρe,1

, Lyapunov function V1, and controller h1

used in its design. The model of Eq. 1 with origin at the
operating steady-state will be defined with a subscript 1
in the following. We will consider brief periods of use of
LEMPC’s formulated around other steady-states within
Ωρ1

. These will be referred to as j-LEMPC designs (for
j > 1) with stability region Ωρj

, stability region subset
Ωρe,j

, Lyapunov function Vj , and controller hj used in
design. The model of Eq. 1 rewritten in deviation variable
form from the j-th steady-state will utilize a subscript j.

The proposed strategy uses random generation of steady-
states within Ωρe,1

of the (baseline) 1-LEMPC that have
steady-state inputs within U to develop new j-LEMPC
(j > 1) designs online which can drive the closed-loop
state toward the new steady-state in the absence of a
cyberattack. Specifically, the LEMPC of Eq. 8 with full
state feedback is used until a random time ts,j , j = 2, 3 . . .,
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when x(tk) ∈ Ωρe,1, at which it is desired to run a
check to determine whether a cyberattack is occurring.
At this random time, a steady-state is selected that has
a stability region around it, contained within Ωρ1

, that
includes x(tk). Then, at ts,j , an LEMPC of the form of
Eq. 8 with state feedback, but formulated with respect to
this new steady-state and with Eq. 8h activated regardless
of the position of the initial state, is selected to control the
system for the next sampling period. This should cause
the value of the Lyapunov function associated with this
new LEMPC to decrease over the subsequent sampling
period if controller and system parameters, such as the
sampling period and disturbance bound, are sufficiently
small and the closed-loop state is not in a neighborhood
of the new steady-state Heidarinejad et al. (2012); if it
does not, a cyberattack may be occurring. There is no
guarantee that this method detects an attack (it is possible
that under an attack, the Lyapunov function around the
random steady-state could also decrease under a false state
measurement trajectory provided by an attacker). The
guarantee that can be provided is that if the Lyapunov
function for the random steady-state does not decrease
over a sampling period following the use of the modified
LEMPC, abnormal behavior is occurring (which may
correspond to a cyberattack). It is noted that this method
does not ensure that the closed-loop state will not exit Ωρ1

under the cyberattack in the sampling period following the
probing (if that occurs, this would not be helpful).

5. APPLICATION TO A CHEMICAL PROCESS
EXAMPLE

The switching LEMPC cyberattack detection method is
illustrated through a simulation of a continuous stirred
tank reactor (CSTR) with the dynamic model and process
parameters in Alanqar et al. (2015). The states are the
reactant concentration and temperature in the reactor (CA

and T , respectively). The manipulated inputs are CA0

(the reactant feed concentration) and the rate of heat
input Q. The vectors of deviation variables for the states
and inputs from their steady-state values, CAs = 1.22
kmol/m3, Ts = 438.2 K, CA0s = 4.0 kmol/m3, and
Qs = 0 kJ/h, respectively, are x = [x1 x2]

T = [CA −
CAs T − Ts]

T and u = [u1 u2]
T = [CA0 − CA0s Q−Qs]

T .
The objective function Le = k0e

−E/(RT )C2
A was used.

Lyapunov-based stability constraints of the form in Eq. 8
were designed using a Lyapunov function V1 = xTPx,
where P = [1200 5; 5 0.1]. The Lyapunov-based controller
utilized h1(x) = 0 kmol/m3 for simplicity and designed
h2(x) via Sontag’s control law Lin and Sontag (1991). The
stability region was set to ρ1 = 300 (i.e., Ωρ1

= {x ∈ R2 :
V1(x) ≤ ρ1}) and ρe,1 = 225.

The process state was initialized off steady-state at xinit =
[−0.21 kmol/m3 28.89 K]T , and for the purpose of illus-
trating the proposed method we consider that both the
cyberattack probing method and the cyberattack (which
consists of the false state measurement x1 = 0.1 kmol/m3,
x2 = 21.75 K being provided to the LEMPC at each sam-
pling time) were initiated at t0. The cyberattack probing
mechanism required the creation of a new steady-state
(selected to be xd = [0 kmol/m3 11.75 K]T ) that has a
stability region in Ωρe,1

. It was defined using V2(x) = (x−
xd)

TP2(x − xd) with P2 = [2100 10; 10 0.25], ρ2 = 100
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Fig. 1. State-space trajectories for the CSTR process
under the switching LEMPC cyberattack detection
methodology with an attack for 0.08 h.

(i.e., Ωρ2
= {(x − xd) ∈ R2 : V2(x − xd) ≤ ρ2}) and

ρe,2 = 75, and was selected to include xinit. When no
attack is performed at t0, the detection mechanism causes
V2 to decrease after t0. However, in the presence of the
attack, though the closed-loop state continues to evolve
(Fig. 1), V2 remains fixed at a value not equal to 0. This
indicates abnormal behavior and here is indicative of a
cyberattack which, if no action is taken to combat it, drives
the closed-loop state out of the stability region.
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